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ABSTRACT 

When an embankment is to be built on ground that is too weak and 
compressible to support the embankment appropriately, columns of firm material can 
be installed in the soft ground to offer essential support by carrying the embankment 
load to a stiff stratum. This procedure is referred to as column supported 
embankments. There are two main motives to employ columns supported 
embankments: a) expedite construction compared to traditional construction 
techniques such as staged construction or pre-designed vertical drains, b) protection 
of nearby amenities against distress, like settlement of existing carriageways when a 
highway is being extended. Despite its extensive usage in the construction industry, 
the current situation of technology suggests that further investigation is needed to 
give a deeper understanding of the technology in reference to sustainable material 
used in column, performance and failure mechanisms of the columns underneath the 
embankment. In this study, the performance of a group of bottom ash, cement bottom 
ash and geopolymer columns in enhancing the load-carrying capacity of soft soil 
under embankment were investigated. A series of laboratory physical model test was 
carried out to examine the behaviour of improved ground under an embankment 
subjected to constant strain loading. The influence of key parameters such as column 
materials, length of columns and area replacement ratio on the performance of 
improved ground was investigated by the overall number of 13 model tests. The 
research variables include two column lengths of 150 mm (floating) and 200 mm 
(end bearing), three area replacement ratios of 11%, 16% and 22%, three column 
materials such as bottom ash (stone column), cement bottom ash and geopolymer 
(rigid column). In addition, numerical analysis was carried out in parallel to model 
the behaviour of laboratory model tests by using Plaxis 3D foundation software. It is 
evident from the results that the load-carrying capacity of the foundation soil under 
embankment increased significantly with columns installation. The load-carrying 
capacity of bottom ash columns reinforced clay with the area replacement ratio of 
11%, 16% and 22% increased by 24.31%, 39.09% and 63.35% for the floating 
columns and 27.49%, 42.63% and 83.60% for the end bearing columns as compared 
to the unreinforced model. Cement bottom ash columns reinforced clay with an area 
replacement ratio of 16% and 22% increased the load-carrying capacity by 19.53% 
and 69.39% for the floating case and 53.00% and 78.24% for the end bearing 
columns in comparison to unreinforced test. While geopolymer columns reinforced 
ground with an area replacement ratio of 16% increased the load-carrying capacity 
by 64.47% and 83.48% for the floating and end bearing columns, respectively. The 
results showed that the area replacement ratio and column length significantly affect 
the performance of reinforced ground. The load-carrying capacity and stiffness of 
foundation soil under embankment enhanced by increasing the area replacement ratio 
and column length. In addition, bottom ash columns reinforced ground showed 
perfectly plastic behaviour failure, while cement and geopolymer columns reinforced 
ground under embankment possess ductile behaviour failure. Bulging as a mode of 
failure occurred in the bottom ash columns, while tilting and punching occurred in 
the cement bottom ash and geopolymer columns. The stress concentration ratio was 
greater than unity for column reinforced models. Furthermore, the experimental and 
numerical results showed good agreement. The stress-settlement curves achieved 
from both experimental and numerical models followed the same pattern.  
Preliminary design charts were produced from the relationship between load-carrying 
capacity and area replacement ratios for different length to diameter ratios of bottom 
ash, cement bottom ash and geopolymer columns. The design charts will help the 
construction industry in designing bottom ash, cement bottom ash and geopolymer 
columns. 
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ABSTRAK 

Apabila tambakan hendak dibina di atas tanah yang terlalu lemah dan mudah 
termampat untuk menyokong tambakan dengan baik, tiang daripada bahan yang 
keras boleh dipasang dalam tanah lembut untuk memberikan sokongan sepatutnya 
dengan memindahkan beban tambakan ke stratum yang sangat keras. Prosedur ini 
disebut sebagai tambakan yang disokong tiang/lajur. Terdapat dua tujuan utama 
untuk menggunakan tambakan yang disokong tiang: a) pembinaan yang dipercepat 
berbanding dengan teknik pembinaan tradisional seperti pembinaan berperingkat 
atau untuk pra-ujikaji aliran menegak, b) perlindungan kemudahan berdekatan 
daripada kecemasan, seperti mendakan pada jalan raya sedia ada apabila membuat 
penambahan lebuhraya. Walaupun penggunaannya yang meluas dalam industri 
pembinaan, keadaan teknologi saat ini menunjukkan bahawa penyelidikan lebih 
lanjut diperlukan untuk memberikan pemahaman yang lebih mendalam mengenai 
teknologi tersebut dengan merujuk pada bahan lestari yang digunakan dalam 
tiang/lajur, prestasi dan mekanisme kegagalan lajur di bawah tambakan. Dalam 
kajian ini, prestasi sekumpulan tiang/lajur abu dasar, simen-abu dasar dan tiang 
geopolimer dalam meningkatkan daya galas tanah lembut di bawah tambakan telah 
diselidik. Satu siri ujian model fizikal makmal telah dilakukan untuk memeriksa 
kelakuan tanah komposit di bawah tambakan yang dikenakan beban secara regangan 
seragam. Pengaruh parameter utama seperti bahan lajur, panjang lajur dan nisbah 
penggantian kawasan terhadap prestasi penambahbaikan tanah disiasat dengan 
jumlah keseluruhan 13 model ujian. Pemboleh ubah kajian merangkumi dua panjang 
tiang iaitu 150 mm (terapung) dan 200 mm (kedalaman penuh), tiga nisbah 
penggantian kawasan iaitu 11%, 16% dan 22%, tiga bahan tiang abu dasar (lajur 
batu), simen–abu dasar dan geopolimer (tiang tegar). Di samping itu, analisis 
berangka dilakukan selari dengan ujian model makmal dengan menggunakan 
perisian Plaxis 3D. Ini terbukti dari hasil kajian bahawa daya galas tanah komposit di 
bawah tambakan meningkat dengan ketara dengan pemasangan tiang. Kapasiti beban 
bagi tiang abu dasar sebagai pengukuhan tanah clay terhadap nisbah penggantian 
kawasan 11%, 16% dan 22% meningkat sehingga 24.31%, 39.09% dan 63.35% 
untuk tiang terapung dan juga 27.49%, 42.63% and 83.60% untuk tiang penuh 
seperti yang dibandingkan dengan tanah yang tiada pengukuhan. Bagi tiang simen-
abu dasar dengan nisbah penggantian kawasan 16% dan 22% meningkatkan kapasiti 
tanggungan beban sehingga 19.53% dan 69.39% untuk tiang terapung, dan 53.00% 
dan 78.24% untuk tiang penuh seperti yang dibandingkan dengan tanah tiada 
pengukuhan. Manakala untuk tiang geopolymer dengan nisbah penggantian kawasan 
sebanyak 16% meningkatkan kapasiti tanggungan beban, masing-masing sebanyak 
64.47% dan 83.48% untuk tiang terapung dan tiang penuh. Hasil kajian 
menunjukkan bahawa nisbah penggantian kawasan dan kedalaman penembusan tiang 
mempunyai pengaruh terhadap prestasi pengukuhan tanah. Kapasiti tanggungan 
beban dan kekukuhan asas tanah di bawah tambakan dapat dipertingkatkan dengan 
penambahan nisbah penggantian luas dan panjang tiang. Tambahan lagi, pengukuhan 
tanah tiang abu dasar menunjukkan kegagalan kelakuan plastik dengan sempurna, 
sementara pengukuhan dengan tiang simen dan geopolimer di bawah tambakan 
mempunyai kegagalan kelakuan mulur. Pembonjolan adalah mod kegagalan yang 
berlaku di tiang/lajur abu dasar, manakala kecondongan dan penembusan tiang/lajur 
diperhatikan untuk tiang abu dasar dan tiang geopolimer. Nisbah tumpuan tekanan 
adalah lebih besar untuk model pengukuhan tiang. Di samping keputusan eksperimen 
dan numerik yang menunjukkan keselarian yang baik. Lengkung tekanan – 
mendakan juga tercapai daripada kedua-dua model eksperimen dan numerik juga 
menunjukkan bentuk yang sama. Carta rekabentuk asal dihasilkan daripada 
hubungan di antara kapasiti tanggungan beban dan nisbah penggantian kawasan bagi 
nisbah panjang kepada diameter abu dasar yang berbeza, simen-abu dasar dan tiang 
geopolimer.Carta rekabentuk tersebut akan membantu industri pembinaan dalam 
rekabentuk abu dasar, simen-abu dasar dan tiang geopolimer. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

In the twentieth century, advances in the industrial revolution have led to an 

increase in socio-economic growth setting up new employment opportunities and 

successive scientific development in a short time frame. As a result, the entail for 

infrastructural development in large-scale projects like airport, dams, and harbours 

etc. and small range projects like railways, dwellings and roads have been 

extensively increased on inadequate soil. This scenario has driven the construction to 

be carried out on soft ground and marshy sites due to the unavailability of adequate 

soil.  

Soft ground possesses higher compressibility and insufficient undrained shear 

strength (lower than 25 kPa) like silt, loose sand, peat and clay deposits (Flodin and 

Broms, 1981; Rashid, 2011). Soft soils have anisotropic behaviour by virtue of their 

accumulation history. The properties of soil in conjunction with conditions like 

variations in stress history and pore pressure distributions depend on the clay 

particles orientation during the deposition stage. Clay consists of intermittently 

organized particles assembled to make an anisotropic structure. The interaction 

between the particles destroys gradually as a result of an increase in plastic strain due 

to loading (Rouainia and Muir Wood, 2000). Besides this, clays possess a viscous 

behaviour approach to persisting deformation. 

When highways pass through a low-lying ground, then embankments have to 

be constructed to carry the roadways toward serviceable elevation. These 

embankments may encounter stability issues and will provoke settlement for a long 

duration if built on extremely compressible soft clays. In recent years, the demand 

for constructing such embankments increased rapidly due to the expansion of the 
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traffic network. However, the prevention of embankment failure and controlling 

subsoil deformation within the permissible limit is challenging job for geotechnical 

engineers. 

Column supported embankments (CSE) are usually built on soft soil to 

enhance the stability of embankment, expedite construction, limit the differential and 

residual settlements, and provide protection to the nearby amenities (Filz et al., 2012; 

Smith, 2005; Stewart and Filz, 2005). The column supported embankments have 

proven as an effective solution compared to the conventional geotechnical methods 

for construction over soft soil (Collin et al., 2005; Han, 2015). The columnar 

supports within the soft ground are classified as flexible columns (among which are 

lime columns and stone columns), semi-rigid columns (e.g; construction of soil-

cement and lime cement columns employing grouting or deep mixing method) and 

rigid pile (such as vibro-concrete piles, steel piles, timber piles and concrete piles) 

(Smith, 2005). The columns should be properly designed and supposed to be stronger 

and rigid than the available ground, which may impede the supported embankment's 

excessive settlement. The column supported embankment would be a suitable 

engineering solution if protection of adjoining existing amenities or rapid 

construction is essential. CSE is mostly adopted in the United Kingdom, Japan, 

Malaysia, Poland, Scandinavia and also getting more attention in other countries. 

CSE method has great applicability at various soft ground location, comprising 

coastal sites where new embankments have to be constructed or widening of existing 

embankments are needed. 

Nowadays the recycled industrial by-products drawing attention as 

construction material (Hansson, 2008). The uncontrolled usage of natural materials 

like; sand, gravel, rock, steel, concrete, timber, and residual products generated from 

industrial operations directly influence environmental sustainability. The utilization 

of recycled materials like pulverized fly ash, bottom ash, shredded waste tyres and 

steel slag instead of natural materials is one of the possible solutions to achieve long 

term development in ground stabilization (Zukri and Nazir, 2018). 
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In Malaysia, coal is a major source for electricity generation in coal-fired 

power plants, and coal consumption follows a 9.7% raise each year (Jamaludin, 

2009). Baruya (2010) stated that the coal requirement is greater than 30 million 

tonnes per year (Mt/y) in Malaysia. The fuel demand for electricity production in 

Peninsular Malaysia is shown in Figure 1.1 from PMESILO-2017 (Peninsular 

Malaysia Electricity Supply Industry Outlook 2017). It is evident from the 

comparison of various sources for fuel consumption, coal is a vital resource for 

power generation. 

 

 Figure 1.1 Fuel consumption for power generation in Peninsular Malaysia 
(Peninsular Malaysia Electricity Supply Industry Outlook 2017) 

As stated in the PMESILO-2017, that the utilisation of gas is expected to be 

reduced by approximately 12% and coal would be used as an alternative due to low 

price and easily manageable as compared to the other fuel sources (Jamaludin, 2009). 

Table 1.1 describes the coal consumption for power generation at various electricity 

units. The growing demand for electricity generation resulted in a huge amount of 

surpluses and waste by-products, which are discarded as a landfill and causes a threat 

to environmental sustainability (Ramzi et al., 2016). 
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Table 1.1 Coal demand for different coal-burnt power plants from 2014 to 2016 
in million tonnes per year (PMESILO, 2017) 

Year 2014 2015 2016 

Tanjung Bin 4.9 6.5 7.6 

Jimah 3.2 4.1 4.3 

Manjung 7.1 10.4 9.6 

Kapar 3.5 3.7 4.1 

Total (Mt/y) 18.7 24.6 25.4 

The raw product of coal burning in coal-operated thermal power stations 

contains coal ashes (Singh and Siddique, 2013). The coal by-product generated 

during the combustion of coal in the coal-fired units mostly composed of bottom ash, 

fly ash and boiler ash (Feuerborn, 2005). Fly ash consists of lighter particles 

accumulated from the Cotrell precipitator and contributes 75-80% to the total mass 

of coal ash. While bottom ash (BA) comprised of heavy and large coal particles 

which are assembled in a hopper at the lower section of the furnace. BA generally 

composed of porous coarser ash particle and makes 20-25% of the overall generated 

coal ashes (Maliki et al., 2017; Mukhtar et al., 2003; Singh and Siddique, 2013). 

Although in developed countries, a certain portion of these coal ashes is effectively 

recycled, but still large proportion of coal ashes are directly disposed of as a landfill 

in the developing countries, as the disposal cost has been less than the utilization cost 

(Kim and Lee, 2015). However, the deposition of coal ashes has recently become a 

complex issue due to several reasons. The cost of dumping is increasing due to the 

insufficient capacity of existing ash ponds, which resulted in the construction of new 

sites far from the power stations and increasing the threat to environmental 

sustainability (Jang, 2010). In response to these challenges, many researchers have 

focused on techniques to optimize the application of coal ashes with the aims to 

decrease their dumping and rehabilitation.  

In general, most researchers have concentrated on the utilization of fly ash 

and concluded that fly ash possesses appropriate properties for usage in different 

construction fields. Conversely, limited studies are reported on the application of 

bottom ash as a construction material. Bottom ash possesses higher permeability and 

low density (Kim and Lee, 2015), higher shear strength and lower compressibility 
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(Lynn et al., 2017; Maliki et al., 2017). BA indicated a resemblance of properties to 

that of granular aggregate particles (Kumar and Stewart, 2003; Marto et al., 2010). 

BA is frequently used aggregate as a substitute for gravel and sand (ACAA, 2014). 

Other major usage includes, as an ingredient in concrete and mortar due to its coarser 

particles and alternative for natural soils and gravel in geotechnical engineering fills 

and embankments. According to the American Coal Ash Association (2006) report 

on bottom ash utilization, more than 45% of all bottom ash generated is mostly 

utilized in transportation and geotechnical applications such as road base material 

and structural fills. Figure 1.2 show the general applications of bottom ash in the 

United States.  

 

Figure 1.2 Application of bottom ash in the United States as a percentage of entire 
re-used (ACAA, 2006) 

Due to irregular particle shape and higher permeability, BA can be used as a 

geotechnical drainage material (Kim and Lee, 2015). Lee (2008) and Kim (2009) 

conducted a study on the usage of bottom ash as a vertical sand drainage material and 

horizontal sand mat respectively. According to the findings achieved from both 

studies, BA is considered a suitable material for drainage purposes, given the fact 
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that consolidation time decreased with the application of BA in comparison to the 

usual sand drain. Lee et al. (2010) concluded that bottom ash piles have offered 

better drainage capacity and more clogging resistance as compared to the ordinary 

aggregate piles. In ordinary aggregate piles, silt and clay particles from the 

surrounding soil penetrate the voids of crushed gravel piles and tend to reduce the 

drainage capacity. In addition to these characteristics, BA is widely used as a mineral 

addition and artificial aggregate in cementitious composites (Toraldo et al., 2013). 

Previous studies suggested that utilization of bottom ash in concrete/mortar proved 

good pozzolanic reactivity, increased compressive strength and heat of hydration 

(Kim, 2015; Kim et al., 2014). 

1.2 Problem Statement 

The construction of new roadway embankments on the soft ground with low 

undrained shear strength is increasing due to the rapid evolution of the traffic system. 

Embankments construction on soft soil is an extremely challenging job for 

geotechnical engineers due to excessive settlement and probable bearing failure of 

embankment and foundation soil. Over the last few decades, embankments failure 

over soft soils created substantial uncertainty in stability analysis. When 

embankment over soft soil is subjected to repeated heavy traffic loads, then 

deformation will occur in the embankment by chasing the foundation soil movement. 

The consequence impacts of soil movement are settlement, sliding due to insufficient 

shear strength and embankment failures. However, various techniques are adopted to 

mitigate the settlement and increase the load-carrying capacity. One method is to 

establish columnar supports in the foundation soil such as stone columns, rigid 

columns etc. 

Most of the studies have been performed on the performance of stone 

columns under the embankment loading, but each of them focused on the natural 

stone aggregates or primary aggregate (Das and Deb, 2018; Serridge and Synac, 

2007; Xu et al., 2021; Yoo, 2010). However, growing awareness for sustainable 

development in ground improvement is leading to a larger desire to utilize recycled 
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aggregates and secondary aggregates (industrial by-products) (Jefferson et al., 2010; 

Serridge, 2005). Bottom ash is an industrial by-product generated in power stations 

for electricity production. Since the acceptance of bottom ash usage rises in the 

developed countries, these markets have the possibility to reuse all the bottom ash 

generated annually. Bottom ash possesses good drainage capacity and resistance to 

clogging (Lee et al., 2010; Lee, 2008), and has proven good pozzolanic reactivity 

and increase in compressive strength of mortar/concrete (Kim et al., 2014; Kim and 

Lee, 2015). As a part of attaining environmental sustainability in ground 

improvement, there is a growing desire to utilize the bottom ash in stone column 

technique. Several researchers have successfully applied uncased and geotextile 

encased bottom ash columns for reinforcing soft soil under rigid footing to increase 

the bearing capacity and reduce the settlement (Marto et al., 2016; Moradi et al., 

2019; Moradi et al., 2018). The geotextile encasement is provided to increase the 

tensile strength of the columns but is still weak in compression when installed in soil 

with low undrained shear strength. Therefore, rigid columns are installed in weak 

soil to increase the bearing capacity due to their higher rigidity. Therefore, a 

comprehensive understanding is needed to investigate the behaviour of soft 

foundation soil reinforced with a group of bottom ash columns (stone column) and 

cement bottom ash and geopolymer columns (rigid column) under the embankment. 

The utilization of bottom ash as columns material under embankment will help to 

solve the dumping issue, reduce the project cost, and will bring sustainability in 

ground improvement. 

In addition to experimental study, numerical analyses must be carried out 

concurrently to model the stress-settlement behaviour of columns supported 

embankments by considering the influencing factor such as area replacement ratios 

and Column length. Thus, numerical simulation of the physical model facilitates in 

carrying out the parametric study to understand the actual behaviour of embankment 

resting on columns reinforced soil. 
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1.3 Aim and Objectives 

The aim of this research is to investigate the load-carrying capacity 

performance of bottom ash, cement-bottom ash and geopolymer columns reinforced 

foundation soil under embankment subjected to constant strain loading. A series of 

instrumented small-scale laboratory model tests will be carried out on the columns 

reinforced soil under embankment loading. This research will focus on the following 

objectives to be achieved. 

(a) To examine the properties of untreated and treated bottom ash by carrying out 

a series of laboratory tests. 

(b) To quantify the load-carrying capacity improvement of soft foundation soil 

reinforced with bottom ash, cement bottom ash and geopolymer columns 

under embankment subjected to constant strain loading. 

(c) To evaluate the effect of governing factors such as area replacement ratios 

and column length on the performance of reinforced ground subjected to 

constant strain loading. 

(d) To predict the load-carrying capacity of treated and untreated bottom ash 

columns supported embankment on soft soil through numerical simulations. 

(e) To produce preliminary design charts on the usage of bottom ash, cement 

bottom ash and geopolymer columns as soil improvement methods to support 

embankment using numerical simulations. 

1.4 Scope of the Study 

This research was carried out to examine the performance of soft foundation 

soil improved with a group of bottom ash, cement bottom ash and geopolymer 

columns (floating and end bearing columns) under the embankment subjected to 

constant strain loading. This study was carried out using three approaches; (a) basic 

properties tests were performed for kaolin, residual soil, bottom ash, cement bottom 
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ash and geopolymer, (b) instrumented small-sized laboratory physical model was 

carried out to investigate the behaviour of treated and untreated bottom ash columns 

supported embankment, (c) 3D modelling was performed to simulate the behaviour 

of treated and untreated bottom ash columns reinforced soil underneath embankment. 

The bottom ash was obtained from the Tanjung Bin power plant located at 

Pontian, Johor. The size of the granular material used in the bottom ash, cement 

bottom ash columns was less than 2 mm. The brown kaolin powder was obtained 

from the Kaolin (M) Sdn Bhd in Selangor, Malaysia. The residual soil for the 

embankment was collected from a site inside Universiti Teknologi Malaysia, Johor 

Bahru. 

To determine the mechanical and physical properties of bottom ash and 

kaolin clay, various tests were performed following the specifications of the 

American Society of Testing and Material (ASTM) and British Standard (BS). A 

series of tests including a specific gravity test, laser scattering particle size test, 

relative density test, standard compaction test and constant head permeability test 

was conducted on the bottom ash. While, laser scattering particle size test, falling 

head permeability test, vane shear test, Atterberg limit test, and one-dimensional 

consolidation test were performed for kaolin. In addition, the residual soil was 

subjected to laser scattering particle size test, specific gravity, plasticity limits and 

compaction test. 

Instrumented small-sized laboratory physical model was carried out to 

investigate the behaviour of treated and untreated bottom ash columns supported 

embankment. The brown kaolin slurry was used to represent the soft ground model 

and inserted into the rectangular experimental chamber. The embankment was 

prepared from the residual soil passed through a 2 mm sieve. A gradient of 1:2 

(vertical: horizontal) was provided to the embankment slope. The experimental 

model test for unreinforced kaolin under embankment was selected as a benchmark 

model. The remaining tests were divided into three groups, such as clay reinforced 

with bottom ash columns, cement bottom ash columns and geopolymer columns. 

Two columns length of 150 mm (floating columns) and 200 mm (end bearing 
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columns) and three area replacement ratios of 11%, 16% and 22% were selected to 

improve the foundation soil. For area improvement ratio 11%, 16% and 22%, the 

number of columns were 12, 16 and 24, respectively. 

The finite element based commercial software program “Plaxis 3D 

Foundation” was employed to model the behaviour of treated and untreated bottom 

ash columns supported embankment on soft soil and stress-settlement results 

obtained from the experimental and numerical models were compared. 

1.5 Significance of Research 

In recent decades, the engineering society has suggested various substitute 

methods to strengthen soft soils. These techniques need to be more practical, cost-

effective, easy to accomplish and time-saving. In order to preserve non-recurring 

natural material in equilibrium, the construction industry sought an alternative 

approach to replace the primary aggregate with recycled or secondary aggregates. 

The goal of this study was to examine the load-carrying capacity of embankment 

rested on soft ground reinforced with bottom ash, cement bottom ash and 

geopolymer columns. The utilization of industrial by-product bottom ash in ground 

stabilization will also help to maintain environmental sustainability. The emphasis of 

this study considers the followings: 

(a) This study proposed the bottom ash, cement bottom ash and geopolymer 

columns as soil stabilization methods to improve the foundation of soft soil 

under the embankment. This technique is practical in enhancing the load-

carrying capacity of soft ground. The re-use of bottom ash in place of stone 

aggregate in stone columns and cement bottom ash and geopolymer columns 

in rigid columns can assist in recycling the coal waste product. The utilization 

of bottom ash contributes to environmental sustainability despite being 

available in large proportion and economical. 
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(b) Furthermore, the study provides an enhanced understanding of the reinforced 

foundation subjected to embankment loading by changing the area 

replacement ratio and columns length (End bearing and floating columns). 

The parametric investigation of this research can offer improved knowledge 

to engineers and researchers regarding the effect of significant variables on 

the stress settlement behaviour and load-carrying capacity of columns 

supported embankment. 

(c) The 3D modelling adopted in this research could be applied as a design tool 

for the construction of embankment over soft soil. 

This study has focused on the substitution of bottom ash as a natural stone 

aggregate in stone columns to strengthen the soft ground under the embankment. 

Cement bottom ash and geopolymer were used as an alternative material to 

conventional mortar in rigid columns. This research has multiple contributions in the 

field of sustainable ground improvement in terms of economy and sustainability. As 

a sustainable ground improvement, this study investigated the factors influencing the 

performance of stone columns and rigid columns. Furthermore, bottom ash, cement 

bottom ash and geopolymer provided a new method for enhancing the load-carrying 

capacity of soft soil underneath embankment. Preliminary design charts were 

developed to help the construction industry in designing bottom, cement bottom ash 

and geopolymer columns under the embankment. This research will help to resolve 

the dumping or landfill issue of coal bottom ash by utilizing the bottom ash as a 

substitute for natural aggregates such as natural stone aggregate and sand, which will 

be a good step toward sustainability. The research relates the economic challenges of 

a project through which the cost of construction could be reduced due to the usage of 

industrial by-products in the columns. 
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1.6 Thesis Overview 

This thesis addressed the behaviour of embankment over unreinforced clay 

and columns reinforced clay and divided it into seven chapters. The description of 

each chapter is outlined below. 

Chapter 1 provides an introduction and background to the columns supported 

embankment technology. This chapter also consists of a problem statement, aim and 

objective, scope, and significance of the research. 

Chapter 2 consist review of the literature regarding ground improvement 

methods, stone columns, rigid columns, and related work to the columns supported 

embankment. In chapter 2 some aspects related to stone columns and rigid columns 

are presented which including introduction, installation methods and their suitability. 

Besides this, introduction to column supported embankment method, feasibility 

assessment, case histories and some terms like stress concentration ratio, stress 

reduction ratio and column stress ratio are addressed. This chapter also discuss the 

bottom ash properties and its application as column material. 

Chapter 3 explained the methodology adopted to carry out this research. This 

chapter briefly discussed the materials testing and equipment used in physical 

modelling. Details on the equipment calibration, specimen preparation, overall 

procedure for physical model tests and numerical modelling details are explained in 

chapter 3.  

Chapter 4 discussed the basic properties test results for the materials used in 

this research, which involves basic properties test of kaolin, residual soil, bottom ash 

together with other supplementary tests. Unconfined compressive strength, 

morphological and micrographs results for cement bottom ash and geopolymer are 

also explained in chapter 4. The unreinforced embankment model results are also 

discussed in this chapter. 
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Chapter 5 present the result and discussion of the physical model tests. In this 

chapter, the stress-settlement relationship, the ultimate load-carrying capacity of clay 

reinforced with columns group, failure pattern of columns under embankment 

loading, stress at surrounding soil, stress at column top and bottom, stress 

concentration ratio and effect of area replacement ratio and column penetration are 

briefly discussed. 

Chapter 6 include the output of numerical modelling. In chapter 6, numerical 

modelling results and comparison of experimental and numerical results are 

explained and summarized. 

Finally, the key conclusions obtained from the findings of this research as 

well as suggestions and recommendations for future work are provided in chapter 7. 
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