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ABSTRACT 

Optical network serves as a core network with huge capacity and a multitude 

of high-speed data transmission. Natural disasters and physical attacks showed 

significant impacts on the optical networks such as damages the network nodes and 

optical links. This thesis aims to investigate and develop algorithms for the 

provisioning of risk-averse lightpaths to combat disastrous events or intentional 

attacks. Generally, network survivability is obtained by computing the backup path 

such that the nodes and the lightpaths are disjoint without considering how optical 

fiber cables are deployed within the physical plane. In contrast to many previous 

works, this research work has considered lightpaths, established over the fiber cables, 

as a series of line segments and not just a single line segment because real-world 

fiber paths are not always laid out as direct paths between cities or countries or even 

across the oceans. In this work, two novel disaster-resilient heuristic algorithms are 

proposed. First algorithm finds a pair of lightpaths with a maximum value of 

minimum spatial distance in order to enhance network survivability against spatial-

based concurrent fiber failures, while second algorithm finds a pair of lightpaths in 

which length of primary lightpath is minimized but constrained by minimum spatial 

distance. Capacity exhaustion problem in post-disaster scenario is also addressed as a 

reactive compensation. In this regard, another novel congestion-aware lightpath 

routing algorithm is developed to tackle the provisioning and restoration of disrupted 

lightpaths in a post-disaster scenario. Selection of alternative lightpath is based on a 

criteria parameter for a lightpath to be least loaded and constrained by either the 

length or the spatial distance between primary and alternative lightpaths. The spatial 

distance between lightpaths enables to re-establish the disrupted connection request 

away from disaster proximity. Extensive simulations are performed to evaluate our 

proposed algorithms for several parameters like blocking probability, network 

resource utilization, connection success rate and minimum spatial distance, and 

compared with existing techniques proposed in the literature. Simulation results of 

proposed algorithms show an improvement through 50% reduced computation time 

by lowering blocking probabilities of lightpaths up to 10% and 3% to 21% enhanced 

capacity utilization. Moreover, 100% connection success rate is achieved for modest 

network load. 
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ABSTRAK 

Rangkaian optik bertindak sebagai rangkaian teras dengan kapasiti yang besar 

dan pelbagai penghantaran data berkelajuan tinggi. Bencana alam dan serangan 

fizikal memberi kesan yang ketara pada rangkaian optik iaitu dengan merosakkan 

nod rangkaian dan pautan optik. Tesis ini bertujuan untuk menyiasat dan 

membangunkan algoritma untuk penyediaan jalur cahaya berisiko rendah dalam 

mengatasi kejadian bencana atau serangan yang disengajakan. Secara amnya, 

keselamatan rangkaian diperolehi dengan mengira laluan sandaran sehinggakan nod 

dan jalur cahaya terpisah tanpa mengambil kira bagaimana kabel fiber optik 

digunakan dalam satah fizikal. Berbeza dengan kerja sebelum ini, penyelidikan ini 

menganggap bahawa jalur cahaya, dihasilkan melalui kabel gentian yang dianggap 

sebagai satu siri daripada segmen garisan dan bukan hanya satu segmen garisan 

tunggal kerana laluan fiber dalam dunia sebenar adalah tidak sentiasa diletakkan 

sebagai satu laluan terus antara bandar atau negara mahupun merentasi lautan. Dalam 

kerja ini, dua algoritma heuristik berdaya tahan bencana yang baharu telah 

dicadangkan. Algoritma pertama menemukan sepasang jalur cahaya dengan nilai 

maksima bagi jarak ruang yang minima bertujuan meningkatkan rangkaian 

keselamatan terhadap kegagalan berasaskan ruang gentian serentak, manakala 

algoritma yang kedua menemukan sepasang jalur cahaya dengan panjang yang 

minima tetapi dihalang oleh jarak ruang yang minima. Masalah kekurangan 

keupayaan dalam situasi pasca bencana juga ditangani sebagai pampasan yang 

reaktif. Dalam hal ini, satu lagi algoritma jalur cahaya baharu yang mempunyai 

keupayaan mengesan kesesakan dibangunkan untuk mengatasi masalah pembekalan 

dan pemulihan jalur cahaya yang terjejas dalam senario pasca bencana. Pemilihan 

jalur cahaya secara alternatif adalah berdasarkan kepada parameter kriteria untuk 

jalur cahaya iaitu kurang beban muatan dan kekangan oleh panjang atau jarak ruang 

antara jalur cahaya utama dan alternatif. Jarak ruang antara satu jalur cahaya dengan 

jalur cahaya yang lain membolehkan pembentukan semula sambungan yang 

terganggu jauh dari kawasan bencana. Simulasi yang ekstensif dilakukan untuk 

menilai algoritma yang dicadangkan bagi beberapa parameter seperti menyekat 

kebarangkalian, penggunaan sumber rangkaian, kadar kejayaan sambungan dan jarak 

ruang yang minima dan dibandingkan dengan teknik-teknik sedia ada yang 

dicadangkan dalam literatur. Hasil simulasi algoritma yang dicadangkan 

menunjukkan penambahbaikan dengan mengurangkan masa pengiraan sebanyak 

50% dengan mengurangkan kebarangkalian jalur cahaya disekat sehingga 10% dan 

3% hingga 21% seterusnya meningkatkan kapasiti pengeluaran. Selain itu, kadar 

kejayaan sambungan mencapai 100% bagi rangkaian yang mempunyai beban 

sederhana. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Optical networks serve as backhaul to all modern telecommunication 

networks and offer reliable transmission of data in huge volumes over long distances. 

Optical networks are much faster with low attenuation compared to other 

technologies like copper-based digital subscriber line (DSL) and wireless networks. 

Figure 1.1 shows the map of undersea optical fiber cable network that traverses 

through the globe and comprises of 366 cables with 1.2 million kilometres length and 

1,006 landing stations [1]. These cables provide nationwide connectivity between the 

dense wavelength division multiplexing (DWDM) gateway nodes over very long 

distances such as the Asia-America gateway (AAG) cable system is 20,000 kilometer 

long [2]. The shortest link is 131 kilometer long i.e. the CeltixConnect connecting 

UK and Ireland [3]. These optical links carry huge amount of traffic especially the 

newer cables (made of new fiber materials installed with newly developed 

amplifiers) can carry Tbps of data as compared to older cables. For instance a 

MAREA cable [4] can carry 160 Tbps. It is  estimated that about 99% of the 

international internet traffic is carried by these cables [5] which includes voice and 

data. Due to enormous increase in internet traffic and mobile subscriptions, the 

International traffic carried by these under-sea optical cables is continuously 

increasing as shown in Figure 1.2. According to IEEE comprehensive report 

bandwidth demand is growing at a very fast pace compared to its delivering capacity  

[6], which will lead to further expansion of under-sea network.  
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Figure 1.1 International Undersea Optical Fiber Map [1] 

 

Figure 1.2 International Traffic Growth, Source: Cisco VNI, 2017 

The main drivers of this rapid growth in worldwide connectivity and the 

proliferation of Internet-connected devices are the increasing trends of cloud 

computing and emerging social IT needs e.g. social media apps, video streaming, 

changing business conducts etc. This revolution has led to the immense growth of 

global IP traffic. Forecasted global IP traffic growth [7] from 2016 to 2021 is shown 
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in Figure 1.2. It is estimated that annual global IP traffic will be 3.3 ZB at a 

Compound Annual Growth Rate (CAGR) of 24% from 2016 to 2021 which is nearly 

threefold in five years. Projected values of the world population that will be using 

internet and monthly internet traffic data per user will be 58% and 61 GB 

respectively by 2021. It is anticipated that eighty percent of the internet traffic will be 

video streaming with average broadband speed of 53 Mbps. 

 

Figure 1.3 Types of Network Failures 

The wide span and huge traffic carrying capacity of the optical networks 

significantly increases the operational importance of the optical links. The cause of 

the failure of an optical link is not only limited to a physical cable cut or damage. An 

optical link comprises of many interconnected hardware components such as routers 

and switches. Any failure of a hardware component may also cause a network failure 

and may lead to severe service outages. The time period for which a network fails to 

provide its services, is known as network downtime. Network failure could be 

complete or partial failure of any number of network components. When a network 

attempts to deliver uninterrupted services in case of a network failure, it is called 

network survivability. Network survivability requires physical redundancy and 

restoration protocols. The degree of survivability can be defined from the capability 

of a network to be resilient against single or multiple failures. Figure 1.3 shows 

several types of network failures usually occur within the network. 
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Statistics implicating cable damage for smaller outages that occur nationwide 

are not exactly available. However, hundreds of cables cut related network outage 

notifications will be returned if a phrase "cable cut" is searched through any internet 

search engine. Network outages due to fiber cut reported to Federal Communications 

Commission (FCC) from 1993 to 2001 were estimated to be 386 or 25% of all 

network outages. The outage for 30 minutes or more may affect over 30,000 

customers [8]. Optical fiber cables, where each cable may carry hundreds of fiber 

strands made of doped glass, are enfolded with multiple layers of insulations. Fiber 

cables are laid down in bundles swathed by a duct between nodes (i.e. network 

equipment or part of equipment which serve different functions such as routing, 

switching and traffic grooming). Fiber cut occurs when a duct is cut due to fishing, 

anchoring, mudslide, earthquakes etc. All the lightpaths that traverse a failed fiber 

will be disrupted. A fiber cut or a duct cut can lead to tremendous data loss. 

To meet the challenges posed by the ever-increasing demands for bandwidth, 

the accessible bandwidth on a fiber is divided into multiple channels of non-

overlapping wavelengths. Each channel may have a capacity of 100 Gigabits per 

second or higher and collectively turns in Terabits per second data rate over these 

channels [9]. Channel failures are caused by the failure of transmitting/receiving 

devices operating on the channel in dense wavelength division multiplexing 

(DWDM) networks. Channel failure can be handled either by prompt switching to 

another idle channel or by treating it as a link failure in absence of idle channel [10]. 

A catastrophic event such as fire or flood can fail the central offices where 

Optical Cross-Connects (OXCs) are located. This can be referred to as node failure. 

Node failures are rare as compared to other types of failures described above but 

impose devastating impacts on the network. Node failures can also be referred to as 

router’s experience when it suddenly losses its connectivity while other connecting 

devices are working properly. This could be the result of bad port or port failure. The 

remedy of this problem is to try another port or replace the router. 
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Disaster-based failures may devastatingly impact the physical topology of an 

optical network by making its services unavailable [11]. Disasters can be natural 

(adverse events resulting from natural processes of the earth) or intentional (man-

made or technological). Examples of natural disasters may include hurricanes & 

tropical storms, tornadoes, earthquakes, landslides, avalanches, tsunamis, floods, 

wildfires, animal bites etc., and power service disruption & blackouts, human 

negligence or errors, anchor drag/drops, electromagnetic pulse (EMP) attacks, 

nuclear explosion, sabotage, anti-corporate attacks, cyber-attacks, terrorist attacks or 

vandalism may be known as man-made or technological disasters. 

 Figure 1.4 shows the statistics for the year of 2016 of top ten countries with 

natural disasters categorized by type [12]. Total economic losses which also include 

network outage from natural and man-made disasters in 2017 are estimated to be a 

total of 306 billion USD which exceeds 63% of loss value of 2016 and far higher 

than average over the last 10 years [13]. Some disasters may be forecasted before 

their occurrence by assessing their atmospheric and environmental characteristics 

using modern scientific techniques, known as predictable disasters. Earthquakes and 

power outages due to technical faults are examples of unpredictable disasters. A 

large-scale disaster could affect multiple nodes and links, which do not only affect 

the optical layer but could also cause failure in the upper layers. Disaster-based 

failures can be correlated or cascading and can trigger the failures horizontally or 

vertically within the network [11]. For example, optical layer in WDM networks 

provides services to the upper layers (e.g., ATM, SONET-SDH, MPLS, IP), and lack 

restoration of optical layer may vertically disrupt the services of the upper layers. 

Today’s intelligent networks are managed through software designs. The complexity 

level of these software designs is increasing over the time. Software bugs could lead 

to unstable network states. For example, in 2012, a routine update of load balancing 

software on a Gmail server caused a partial loss of 40% of services for 18 minutes 

[14] because this update contained a faulty logic. A single node was fully updated to 

recover this cascading error instead of partially updating all failed nodes at a time. 
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Figure 1.4 Ten Countries with Natural Disaster by Type in 2016 [12] 

Provision of network services are supposed to be continuous even during a 

crisis, which can be achieved by making nodes and interconnecting survivable links. 

Network components (nodes and links) eventually malfunctioned and cease to 

function, particularly in disaster occurrence regardless of the preventative protection 

measures taken. Natural disasters and intentional attacks show that optical fibers are 

vulnerable to failures and affect many applications and services supported by the 

optical layer. Hence, it is essential to recognize the exposure of fiber networks to 

disasters so that survivable light path routing is made possible. 

1.2 Motivation 

Modern telecommunication networks are running on top of optical network to 

provide high-speed network services to their consumers. Government, academic and 

research institutions, cellular network operators, Telecom companies, multinational 

corporations and service providers all rely on optical networks to send data around 

the world. Cable faults are very common, 100 per year on average as shown in 

Figure 1.5, but rarely noticed because most of the companies reserve backup cables 
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so that network runs without interruption even if one cable is broken or cut [15]. 

Natural disasters are critical threats to submarine cables. For example, Taiwan 

earthquake of magnitude-7.1 in 2006 catastrophically disrupted the internet services 

between China, South East Asia and Hong Kong by damaging eight submarine 

cables [16]. A more recent incident of an earthquake of magnitude 7.1 struck central 

Mexico on 19 September 2017, causing 355 fatalities, 6100 injuries and collapsed 

nearly 44000 buildings. It also severely damaged the underground optical fiber and 

telecom infrastructure [17]. Network damages caused by Intentional attacks could be 

physical and effect the neighboring components as well. Motivations of intentional 

attacks cannot be discerned easily. Other than that, an occurrence at the bank of 

Egypt in March 2013, three men went scuba diving down  to cut off the undersea 

optical fiber [18]. This incident slowed down 60% of internet speed. Many 

specialists feel that deliberate damage of submarine cables is unrealistic or 

impossible. However, undersea-cable bottlenecks have the potential for serious 

interruptions is causing network providers to search for the alternative paths to 

connect the continents. Similarly, in 2015, an attacker tries to slice a series of cables 

which carry billions of bits of data [19]. A brief summary of network damages due to 

disasters and intentional attacks are given Table 1.1. 

  

Figure 1.5 Cable Faults [15] 
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Table 1.1 Network Damages Caused by Recent Disasters 

Year Nature of Disaster Damage & Network Availability Reference 

2017 
Mexico Earthquake of 

magnitude 7.1 

Caused 355 fatalities, 6100 injuries 

and collapsed nearly 44000 

buildings. It also severely damaged 

the underground optical fiber and 

telecom infrastructure. 

[17] 

2015 

Earthquake-affected the 

Rural Information and 

Communication 

Technology (ICT) 

Infrastructure and Services 

in Nepal 

Collapsing the houses, schools, ICT 

access centres, BTS, transmission 

towers, fiber backhaul, microwave 

links were damaged. 

[20, 21] 

2013 
Cutting off fiber cables at 

the bank of Egypt 
Slowed down 60% of internet speed  [18] 

2011 

Mainshock and 

aftershocks of Great East 

Japan Earthquake & 

Tsunami 

1,500 telecom buildings by the main 

shock & 700 telecom buildings 

experienced power outages 

[22] 

2008 
Mediterranean Sea Fiber 

Cuts by Ship Anchors 

Loss of 70% of Egypt's connection 

to the outside world and 50% to 

60% of India's network outbound 

connectivity on the westbound route. 

[23] 

2008 
Sichuan Province 

Earthquake 

Around 30,000 km of optical fiber 

cable & 4,000 telecom offices were 

damaged. 

[24] 

2006 

Earthquake in Taiwan cut 

fibers connecting Asia and 

North America. 

Reduced Hong Kong and China 

internet capacity by 100% to 74% 

respectively. 

[16] 

2005 
Hurricane Katrina struck 

United States Gulf Coast 

Power outage and floods reduced 

telecom network availability from 

99% to 85%. 

[25] 
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Overloading of network resources is known as network congestion. It means 

available capacity of the network cannot fulfil the total demand or connection 

requests. Congestion occurs due to several reasons like low bandwidth, multicasting, 

bad configuration, too many hosts in the broadcast domain or broadcast storm (can 

be a busy day for e-commerce or Black Friday sales) etc. Generally, congestion can 

be avoided by network segmentation, backpressure routing and prioritizing the 

network traffic. Congestion control techniques reduce or ease capacity overloading. 

The critical issue which is also in focus is the traffic congestion due to re-routing 

after a disaster. Generally, optical networks have some unused capacity to exploit 

traffic fluctuations and capacity exhaustion problem [26]. The main reason behind 

the capacity exhaustion problem is post-disaster traffic floods. Most of the people use 

applications and services to investigate what is happening during disasters, as 

indicated in [27], which shows that two out of every three people use social media 

during a disaster and post-disaster. During a large-scale disaster, user behaviour is 

critically observed in [28] and authors showed that 76% of users post information on 

social media and 95% of users make phone calls. Furthermore, warnings and 

precautions are broadcasted through social media, government websites and news 

agencies which are also visited by the people. Sudden rise of real-time video traffic 

(TV breaking news) and user generated videos can also be observed [29]. Optical 

network serves as middleware between the access and the data centres and is 

responsible for delivering the data between them. In order to follow the Service 

Level Agreement (SLA), it is the core responsibility of these networks to provide 

continuous and uninterrupted services even in case of crisis. Since capacity of the 

network cannot be upgraded or enhanced by instantly installing new fibers, new 

techniques are required to handle such situations. 

1.3 Problem Statement 

Optical networks provide higher grade of service in terms of speed and data 

volumes in all telecommunication networks (wired or wireless) as the backbone 

network. The network survivability is mostly relying on the survivability of the 
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nodes and links. Any failure of links and/or nodes within a network may cause 

connection failures, data losses, service outage, service downtime, and revenue 

losses. Even a single fiber failure can be disastrous to the network operation [30]. It 

has been assessed in [31] that losses due to service downtime can range between 25–

150 thousand dollars per hour. The work had served as a guidance for network 

operators to identify network vulnerability (possibility of disruption) to disasters and 

design appropriate countermeasures. The ever-growing demand for bandwidth and 

high transmission speeds for mission-critical applications, as expected to realize in 

5G [32, 33], can only be fulfilled through backhaul optical networks. Therefore, it is 

essential to investigate such techniques which make networks more reliable and as 

robust as possible in case of a disaster occurrence. From the discussion above, the 

following gaps are identified and opening new directions of research. 

 

i. The occurrence of large-scale disasters may simultaneously damage multiple 

disjoint but spatially close lightpaths between two network nodes which leads 

to communication failure. 

ii. After the event of a disaster, re-routing in the network may cause traffic 

congestion due to the inefficient utilization of network resources by the 

routing scheme, and the unavailability of multiple network components. 

Hence, disaster-aware network resilience is a critical issue to future society. 

The focus of the research is to propose techniques and algorithms for network 

connections with most risk-averse reliable paths separated by maximum spatial 

distance and tackling the resulting network congestion. This research emphasizes the 

network survivability by handling single as well as multiple nodes and link failures 

using topologies of real-life networks and proposes a preventive as well as a reactive 

approach to enhance the network resilience against disasters. 
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1.4 Scope of Work 

Disasters are inevitable and show effects on physical layout of optical fiber 

networks. For end-to-end communication, digital data is encoded into light pulses 

carried by optical fibers moving along specified nodes and links until reaching the 

destination. Formerly specified nodes and links carrying the light pulses was able to 

establish connections requests known as lightpaths. In case of a disaster, some nodes 

or links or both may be damaged and stop functioning which can be referred to as 

network outage. Maintaining connectivity and services provided by the network in 

the event of disaster is more important and critical to achieve network survivability. 

Techniques to assess and survive from disaster-based failures are categorized in 

Figure 1.6. 

 

 

Figure 1.6 Modelling & Combating Disaster Survivability 
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Modelling disaster refers to estimating losses caused by a disaster 

incorporating disaster characteristics into computational risk model. It is implicitly 

account for the uncertainty associated with various model components and 

depending upon deterministic and probabilistic risk estimates. Disaster-based failures 

are considered as multiple failures which might be correlated or uncorrelated. 

Disaster failures could cause multi-domain multi-layer failures that span several 

network domains. For such failures, multi-layer modelling is used to assess the 

impacts of disasters. A disaster covering a large geographic area could interrupt the 

functioning of multiple nodes and links, which could result in multi-layer failures. To 

combat this type of failures, most existing works of disaster survivability focused on 

intelligent network provisioning to restore services with higher priority (i.e. 

connection recovery) and network recovery after failures. Generally, approaches for 

connection recovery falls into proactive prevention and reaction compensation 

considering the routing and capacity assignments. Protection of connections can be 

done either by proactively provisioning backups or by re-provisioning connections 

reactively after failure (path-based restoration).  

The focus of this work is the survivable multipath routing because protecting 

a connection over multiple disjoint paths has the advantage of better fault tolerance. 

It is also emphasized on congestion control service provisioning (a basic reactive 

procedure) in which capacity is re-arranged and re-provisioned for existing 

connections during network operation. As this method adapts to dynamic network 

events, it can handle concurrent, cascading failures. Through reactive compensation, 

limited network resources can re-allocate (re-provision) multiple times for most 

effective usage. 

1.5 Research Objectives 

After an event of disaster, when some network components are failed, 

blocked or interrupted, traffic is re-routed on disjoint lightpaths to provide 

continuous services. However, provisioned disjoint lightpath for re-routing of such 
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traffic may exist within the disaster proximity. Furthermore, re-routing may overload 

the capacity resource on the provisioned disjoint lightpath. Therefore, this work 

focusses on (1) developing routing algorithms for network survivability and (2) 

proposing the techniques to control the network congestion after re-routing in the 

event of a disaster. From above, clear objectives of this research study are as follows: 

 

i. To develop a heuristic algorithm for provisioning the disjoint lightpaths 

between any two network nodes with maximized spatial distance between 

them, so that network survivability can be achieved. 

ii. To propose a heuristic algorithm for re-provisioning the disrupted lightpaths 

after the event of disaster with minimal network congestion. 

iii. To verify the proposed algorithms using real life network topologies through 

simulation. 

The results of this research could serve as a guide to the network 

administrators to identify network vulnerability (possibility of disruption) of optical 

backbone networks to disasters and design appropriate countermeasures. Since 

proposed techniques include the geographical information of nodes and links, which 

make these algorithms practically adaptable by the network operators with no 

conversion or transformation. 

1.6 Thesis Organization 

Due to the importance of optical networks, this thesis mainly focusses on two 

research problems regarding disaster-aware routing techniques with controlled 

congestion. This chapter delivers the necessary background on what optical networks 

are and how disaster impacts them the chapter continues with the motivation of the 

research work, while providing corresponding problem statement, scope and research 

objectives. The chapter ends with thesis organization. 
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Chapter 2 builds a foundation for readers to understand routing, types of 

routing and elastic optical networking their role in disaster survivability. Chapter also 

provides a glimpse into the related work of disaster-aware routing with several 

perspectives. Separate reviews of related studies on disaster-aware lightpath routing 

and congestion-aware lightpath routing are presented. Finally, close comparison of 

the related work is given to identify the research gaps.   

In Chapter 3, the research methodology is presented. First, the overall 

methodology to achieve the research objectives is described. Then the methodology 

and simulation setups to achieve the specific objective are explained in detail. 

Chapter 4 starts with the introduction of spatially-close fibers and the 

scenarios in which optical fibers may be specially-close. As lightpaths are 

established over these fiber cables which redeem to spatially-disjoint lightpath 

routing for network survivability described in problem formulation Section. Then 

two polynomial-time algorithms are proposed as solution to this problem. At the end 

of the Chapter, simulation of proposed algorithms and illustrative results are 

discussed with the comparison of existing technique. 

Chapter 5 starts with the discussion of capacity constraint for optical network 

which is huge but finite and may fluctuate drastically during a disastrous event. Then 

concept of least congested lightpath routing is addressed to mitigate the problem of 

network congestion in post-disaster scenarios. A capacity-constrained algorithm is 

proposed to provision optimal lightpaths for post-disaster routing. Illustrative 

simulation results describe the working of proposed technique with benchmarked 

technique. 

Finally, in Chapter 6, concluding remarks and recommendations for future 

prospects of this work are given and the publications made during this research work 

are listed. 
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