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ABSTRACT

Like all other semiconductor devices, photovoltaic (PV) panels are sensitive 

to temperature. High temperature reduces the bandgap of a semiconductor, thereby 

increasing the energy of the electrons in the material. The panels’ temperature can 

be reduced using phase change material (PCM), which works as a passive cooling 

material to absorb heat at a low tilt angle. To further improve the panel’s temperature, 

copper foam matrix (CFM) can be used as an additive to the PCM to enhance its 

thermal conductivity. The compound’s thermal performance can be further enhanced 

by adding high thermal conductivity materials such as Multi-Walled Carbon Nano

Tubes (MWCNT), however, no report has been published in the literature. Therefore, 

this study aimed to investigate the effects of the PCM/CFM materials on PV panel 

temperatures and their electrical performance. The study consisted of two parts, 

numerical analysis and experiments. The numerical analysis was carried out using 

ANSYS FLUENT 15.0 to predict and simulate the convection heat transfer mechanism 

inside the passive cooling container. The experimental part was investigated the 

unpredictable measurements, such as the enhancements in the electrical efficiency 

of the PV panels made of the proposed passive cooling materials. Temperature of 

the panel was measured to validate the numerical simulation. Based on the findings, 

when the PCM was used, decreasing the PV tilt angle from 90° to 0° will increase 

the PV cell’s temperature from 0.4% to 12%. It also decreases the corresponding 

cell’s electrical efficiency from 5% to 0.2%. Whereas, when the CFM was added to the 

PCM, the PV cell’s temperature was reduced further by 10.43%, and increased the cell’s 

electrical efficiency from 1.79% to 4.5% at a tilt angle of 30°. When MWCNT with a 

weight concentration ratio of 0.20% was added in the PCM, it further improved the PV 

cell’s temperature and the electrical efficiency by 2.86% and 5.68%, respectively, due 

to the enhancement of the PCM’s thermal conductivity. The improved PV panel was 

verified by experimental works under actual weather conditions, and it was found that 

the PV panel electrical efficiency improved by 21%. These findings indicate that using 

CFM with 0.2% of MWCNT additives within PCM, is an efficient method for electrical 

performance improvement in PV panel applications passively at low tilt angles.
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ABSTRAK

Seperti semua peranti semikonduktor lain, panel fotovolta (PV) sensitif 

terhadap suhu. Suhu tinggi mengurangkan jurang jalur semikonduktor, dengan 

itu meningkatkan tenaga elektron dalam bahan. Suhu panel dapat dikurangkan 

menggunakan bahan perubahan fasa (PCM), yang berfungsi sebagai bahan pendingin 

pasif untuk menyerap panas pada sudut kemiringan rendah. Untuk peningkatan suhu 

panel, matriks busa tembaga (CFM) dapat digunakan sebagai bahan tambahan PCM 

untuk meningkatkan kekonduksian termal. Prestasi haba kompaun dapat ditingkatkan 

dengan menambahkan bahan kekonduksian terma yang tinggi seperti Tiub Nano Karbon 

Berbilang Tembok (MWCNT), namun, tiada lapuran diterbitkan dalam literatur. Oleh 

itu, kajian ini bertujuan untuk mengesan bahan PCM / CFM pada suhu panel PV dan 

prestasi elektriknya. Kajian ini terdiri daripada dua bahagian, analisis berangka dan 

eksperimen. Analisis berangka telah dilakukan menggunakan ANSYS FLUENT 15.0 

untuk meramalkan dan mensimulasikan mekanisme pemindahan haba perolakan di 

dalam bekas penyejuk pasif. Bahagian eksperimen telah dilakukan untuk menyelidiki 

pengukuran yang tidak dapat diramalkan, seperti peningkatan dalam kecekapan elektrik 

panel PV akibat penggunaan bahan pendingin pasif yang dicadangkan. Pengukuran 

suhu telah dilakukan untuk mengesahkan simulasi berangka. Berdasarkan penemuan, 

ketika PCM digunakan, penurunan sudut kecondongan PV dari 90° hingga 0° telah 

meningkatkan suhu sel PV dari 0.4% menjadi 12%. Ia mengurangkan kecekapan 

elektrik sel yang sesuai dari 5% hingga 0.2%. Manakala, ketika CFM ditambahkan 

ke PCM, suhu sel PV telah menurun lebih jauh sebanyak 10.43%, dan meningkatkan 

kecekapan elektrik sel dari 1.79% menjadi 4.5% pada sudut kemiringan 30°. Apabila 

MWCNT dengan nisbah kepekatan berat 0.20% ditambahkan dalam PCM, ia telah 

meningkatkan lagi suhu sel PV dan kecekapan elektrik masing-masing sebanyak 2.86% 

dan 5.68%, kerana peningkatan kekonduksian terma PCM. Panel PV yang diperbaiki 

disahkan dengan melakukan kerja eksperimen di dalam keadaan cuaca sebenar, dan 

didapati bahawa kecekapan elektrik panel PV meningkat sebanyak 21%. Penemuan 

ini menunjukkan bahawa menggunakan CFM dengan 0.2% bahan tambah MWCNT 

dalam PCM, adalah kaedah yang berkesan untuk peningkatan prestasi elektrik dalam 

aplikasi panel PV secara pasif pada sudut kecondongan rendah.
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CHAPTER 1

INTRODUCTION

1.1 Background

Renewable energy option, such as solar energy, is one of the free energy 

resources, making it an attractive and useful alternative energy choice. Photovoltaic 

(PV) is the process of converting sunlight directly into electricity using solar cells. 

PV cells are one of the most popular alternative technologies to generate electricity. 

PV panels utilizing the photovoltaic effect exhibited by semiconducting materials to 

generate electricity from sunlight. This electricity generation method is clean and 

without greenhouse gaseous or particulate emissions that caused pollution [1,2]. In 

these day’s, the use of PV panel is a fast-growing trend in a different aspect of life, and 

this has led to producing solar panels with higher efficiency for commercial use than 

before and more variety of PV panels [3]. Due to the growing interest of manufacturers, 

businesses, and consumers, the PV cell can be considered as a good choice for the 

renewable energy source. Countries around the world start to seek renewable energy 

sources due to the effects of using fossil fuel reserves on the atmosphere. Increases in the 

consumption of fossil fuels have a negative impact on the environment, such as global 

warming by the increasing emissions of carbon dioxide (CO2) into the atmosphere has 

led to global concerns about climate change and environmental sustainability for future 

generation [4]. Around the world, a lot more household started to own PV panels and 

use it to produce their home’s electricity supply.

As the PV technology has become more mature, so has the interest which has 

spurred researchers even more. The motivation for using these resources started in 

many countries such as in Sweden, where the government started awarding grants 

for people who installed the panels on their home roofs amounting about 30 % the 

price of the panels [5]. For private consumers, this has made it more attractive and 

thanks to China overtaking the rest of the world in sheer production of the cells, thus
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pushing the price down on production costs, the cells are now cheaper than ever before 

[1]. According to the summary made by the International Energy Agency (IEA) [1], 

there are numerous different types of solar panels where crystalline silicon (C-Si), the 

single crystalline (Sc-Si) and multi-crystalline (MC-Si) modules make up about 90% 

of the industry. The thin film (TF) PV panels which existed today in many forms, only 

stands for about 10% of the market. The third largest variable are the concentrating 

photovoltaics (CPV), which makes up about less than 1% of the market. However, with 

these current PV panels, the electrical efficiency of the solar cells are only between 

10% to 16% whereby the rest of the solar radiation failed to be converted into electrical 

power. This is because the PV silicon cells attached to form a solar panel can only 

transform to electricity at a specific range of light frequencies. The remaining solar 

irradiance levels were unused and converted to heat and raised the temperature of the 

PV panel resulting in the reduction of the performance of the PV panel performance. 

Like all other semiconductor devices, solar cells are sensitive to temperature. Increases 

in temperature reduce the band gap of a semiconductor, thereby lead to increasing the 

energy of the electrons in the material. Due to the temperature-dependent strength of 

crystalline silicon cells, the coefficient reduces between the range of 0.4 % /K to 0.65 

%/ K [6-8], hence, decreasing the operating temperature of the PV panel will results in 

a significantly improvement of the electrical output.

So, the main problem for the current PV cells is that they heat up above their 

optimal working temperature and lose out on their power generation capacity which in 

turn reduces their efficiency. There is an urgent needs for a new method of cooling the 

silicon-based solar cells and further research is needed to explore this area.

1.2 Research Motivation

If the used cooling approach in PV systems without economic losses, it would be 

a good resource for electrical power generation. Different methods of thermal control 

of PV panels have been developed, to prevent the fall in PV panel’s electrical power 

production capacity caused by the raising of its temperature. These cooling methods 

can be classified into passive or active cooling methods as shown in Figure 1.1.
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Figure 1.1: Cooling methods in PV

Passive cooling methods usually depend on the free (natural) convection of 

heat transfer by air circulation in the open space behind the PV panels (no energy 

consumption), while the active methods of cooling require energy to pump the working 

fluids on the back layer of the PV panels [9].

Using phase change materials (PCMs) as heat sink materials or as passive 

cooling materials is an important technology that has gained the attention of many 

researchers. Some applications of these materials are as photovoltaic panel systems 

[10], building applications [11], solar water heating [12], greenhouse heating [13], 

microelectronics [14], space applications [15], and etc., where they have benefited 

from PCM’s latent heat power to cool the equipment. The prediction of the change in 

heat transfer of the PCM phase during the melting and freezing process was the key 

to the optimal PCM system design as shown in Figure 1.2 [16]. The PCM is therefore 

capable of absorbing waste heat from the panel by switching its phase, so the PV panel 

should be kept at a near-constant temperature and the temperature of the PV panel 

should also be regulated [17].

tem perature tem perature

Figure 1.2: The process of PCM’s melting and solidification
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One of the limitations of using these materials as passive cooling materials is 

that these materials possess low thermal conductivity, which provides higher thermal 

resistance which acts as a barrier to the efficient use of PCM in the transit cooling 

solution. An attempt to improve the thermal conductivity of PCMs is by an integration 

with a higher thermal conductivity of porous materials such as fins, foams and heat 

sinks within the PCM.

However, the constraint of using the porous insert for a particular PCM 

application is that it reduces the PCM efficient volume for latent heat storage due 

to the solid porous matrix addition that acts as a natural convection barrier for fluid 

movement. Therefore, the usage of foam material with high open porosity can be seen 

as an alternative to avoid the PCM volume reduction due to these inserts and maintain 

the desired thermal conductivity of PCM/Foam matrix for convection and conduction 

heat transfer performance [18-21]. The local thermal equilibrium between them is 

still a problem due to the high thermal resistance between the PCM inside the pore 

and the metal structure of porous material. In order to reduce the thermal resistance, 

a highly conductive nanoparticles can be dispersed into base PCM for an additional 

enhancement of the rate of PCM melting and freezing within a porous medium. The 

addition of the nanoparticles within the PCM must be in a particular ratio to avoid 

the adverse effect of the Nano-PCM thermal performance with porous media such as 

sedimentation, heavier fluid, etc [22-25].

Most of the researches that utilizing a phase change materials for temperature 

regulation of PV panels in order to enhance its performance are currently only focusing 

on the usage of PCM, PCM with fins or PCM with nanoparticles. The performance 

enhancement of PV panels using PCM along with porous media and porous media with 

nanoparticles to increase the heat absorption from its surface isn’t to be investigated yet. 

Therefore, the current study focuses on the application of phase change material (PCM) 

as a passive cooling material for PV panels with the combination of nanoparticles and 

porous media as a heat transfer enhancer for better thermal performance in PV panels 

to enhance its electrical performance.
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1.3 Problem Statem ent

Utilizing the PCM’s latent heat of fusion is considered an essential solution to 

regulate the PV panel’s temperature passively to improve its electrical efficiency because 

of its ability to absorb the heat energy from the PV panels. But the major problem using 

these materials, it has less efficient for absorbing heat at low tilt angles of PV panels, 

which contributes to temperature rises of the PV panels. Therefore, the need arises on 

how to improve the thermal properties of PCM so that they can be effectively used as 

a passive cooling material to regulate the temperature of PV panels to improve their 

electrical performance at low tilt angles. This study aims to examine the effects of PV 

/ PCM system tilt angles on the PCM melting time and the electrical efficiency of the 

PV panels. A high conductive porous metal, specifically CFM together with PCM, and 

high conductive nanoparticles MWCNT additive was used as a passive cooling system 

to improve the electrical efficiency at low tilt angles. The incorporation of CFM within 

PCM will manage to impede the internal convection inside the PCM, hence increasing 

the PCM melting process rate due to increasing the effective thermal conductivity of the 

PCM inside the passive cooling container. While, the inclusion of MWCNT additives 

within PCM/CFM contributes to increasing the PCM’s effective thermal conductivity 

even further, due to the effect of the tangled tubes’ bundles of this type of nanoparticles 

within PCM inside the CFM pore. To achieve the research goal, the study was carried 

out firstly numerically to show convection streams and temperature distribution inside 

the passive cooling material cavity at different tilt angles with the effects of including 

CFM and MWCNT additives. Secondly, the experimental investigation was carried 

out to show the effect of using the proposed passive cooling materials on the electrical 

performance enhancement of the used PV panel. The low thermal performance of PCM 

as a passive cooling material at a low tilt angle of PV panels contributes to temperature 

rises of the PV panels, and then reduces the electrical power generated. So, using CFM 

and MWCNT additives together with PCM is the solution to achieve the enhancement 

in the thermal performance of the PCM at low tilt angles, due to increasing the effective 

thermal conductivity of the PCM inside the passive cooling container of PV panels.
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1.4 Research Objectives

The study aims to examine the effects of PV / PCM system tilt angles on the

PCM melting time and the electrical efficiency of the PV panels. The research aim was

achieved through the following objectives:

1. To evaluate the effects of PV panels furnished with metal foams (copper foam 

matrix) and PCM as a passive cooling system on the PCM melting time, panel 

temperature, and electrical performance at low tilt angles, experimentally.

2. To evaluate the effect of adding in a high thermal conductivity nanoparticle 

MWCNT in the compound PCM/CFM material on the PV panel temperature 

and electrical performance numerically.

3. To assess the improved PV panel in objective 2 on the electrical performance 

under actual outdoor conditions.

1.5 Research Scope

In this research work,

1. The new passive cooling material is combined with a PV panel, their electrical 

performance will be tested and compared with the alone PV panel.

2. This study involved numerical (CFD) analysis and the indoor tests for all 

different cases of the proposed passive cooling materials, to evaluate the thermal 

performance of the used materials.

3. To assess the validity of using these materials on real weather, the outdoor 

experimental processes were done on large modules of PV panels, under the 

Baghdad-Iraq governorate climate for all proposed materials.

4. limitations: the thermal diffusivity of the used nanoparticles within PCM is not 

considered in this study.
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1.6 Significance of the Research

The unique point of this work is the integration of dispersed nanoparticles within 

PCM and porous materials as a new passive cooling technique in PV panel systems. The 

integration of these materials together will be improving the PCM thermal specification 

as a thermal regulation technique in PV panel systems. This research will be dedicated 

to improving the electrical output of the PV system by decreasing the PV panel surface 

temperature, which is directly related to PV quality.

1.7 Thesis’s S tructure

Specifically, this research examines how to improve the thermal performance of 

PCM as a passive cooling material, which can be utilized to maintain the output power 

of the PV panel. The thesis contains five chapters.

1. Chapter One introduces the context and background of the research and 

elaborates on the advantages that can be obtained from the integration of passive 

cooling materials in the PV system. It also reviews the motivation of the research 

which is to reduce energy losses by utilizing these materials, with a summary of 

the main problem statement of this work and the research objectives. Moreover, 

the research scopes and procedures and significance of the research are discuss 

in this chapter, and the chapter ends with a description of the thesis structure.

2. Chapter Two provides a technology review of the effect of temperature on the 

efficiency of PV cells with the ways of the PV panels temperature regulation 

applied, and presents the different methods of improving the PCM thermal 

conductivity as passive cooling materials. In addition, this chapter presents the 

research gap and the proposed work.

3. Chapter Three describes the research methodology of the proposed work, which 

carried out in two parts, numerical analysis, and experimental investigation. 

Also presented in this chapter are the materials, laboratory equipment, and 

testing procedures applied in this study.
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4. Chapter Four presents and discusses the numerical and experimental results 

which carried out throughout this study.

5. Chapter Five provides the main conclusions from this work and some of the 

recommendations for future work based on the findings of this study.
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