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ABSTRACT 

Designing integrated circuits (ICs) has become more challenging when 

fabrication technology scales down.  Overheating has been acknowledged as a major 

issue in testing due to high power consumption of a chip during test. A direct 

consequence of the increasing power density is the increasing junction temperature 

that poses several problems such as aging issue. Therefore, thermal estimation needs 

to be considered during test scheduling to avoid exceeding temperature limit of the 

System-on-Chips under test. This thesis proposes a new thermal model that considers 

metal layer effects of SoC, and thermal safe test scheduling with dynamic voltage and 

frequency scaling (DVFS) technique. The difference in estimated temperature is over 

10 °C if the effect of metal interconnect is neglected. In DVFS, the energy savings 

obtained by eliminating the global clock are, in many cases, offset by the additional 

power consumed due to longer execution time. The thermal safe test scheduling 

problem is formulated as a combination optimization problem, and the integer logic 

programming is used to find the optimal solution of test schedule for a given SoC under 

thermal constraint. The proposed thermal model is a necessary tool for rapid thermal 

analysis of the system which is exposed to non-uniform substrate temperature including 

thermal effect from metal interconnects. This thermal model will be used to estimate 

temperature during test scheduling in order to optimize total test time under thermal 

constraint. Results on different benchmark SoCs have shown the effectiveness of the 

proposed technique which produces shorter testing time. Total test time reduction by 

using the proposed technique is 46% compared to conventional existing techniques. 

Overall, the proposed technique produced more effective thermal aware test 

scheduling. 
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ABSTRAK 

Mereka bentuk litar bersepadu (IC) telah menjadi lebih mencabar apabila 

teknologi fabrikasi berskala rendah.  Pemanasan lebih telah diakui sebagai isu utama 

dalam pengujian kerana penggunaan kuasa yang tinggi semasa cip melalui pengujian.  

Akibat langsung daripada ketumpatan kuasa yang semakin meningkat seterusnya 

meningkatkan suhu simpang akan menimbulkan beberapa masalah seperti isu 

penuaan.  Oleh itu, anggaran terma perlu diambilkira semasa penjadualan ujian untuk 

mengelakkan dari melebihi had suhu daripada sistem-atas-cip (SoC) yang diuji. Tesis 

ini mencadangkan satu model terma baharu yang mempertimbangkan kesan-kesan 

lapisan logam di dalam SoC, dan ujian penjadualan terma-selamat dengan 

menggunakan teknik penskalaan voltan dan frekuensi dinamik (DVFS). Perbezaan 

suhu anggaran mencecah 10 °C jika lapisan logam saling hubung diabaikan. Masalah 

penjadualan ujian terma-selamat ini dirumuskan sebagai masalah pengoptimuman 

gabungan, dan pengaturcaraan logik dengan kekangan digunakan untuk mencari 

penyelesaian jadual ujian yang memberikan jumlah masa yang optimum bagi SoC 

dengan diberikan kekangan terma ke atasnya.  Model terma yang dicadangkan 

diperlukan untuk analisis terma aras sistem yang pantas, yang mana pendedahan 

kepada suhu substrat yang tidak sekata adalah salah satu kesan daripada lapisan logam 

saling hubung.  Model terma ini akan digunakan untuk menganggarkan suhu semasa 

penjadualan untuk mengoptimumkan jumlah masa ujian di bawah kekangan terma. 

Keputusan ke atas litar tanda aras SoC yang berbeza menunjukan teknik yang 

dicadangkan memberikan masa ujian yang lebih pendek. Jumlah masa pengujian dapat 

dikurangkan sehingga 46% berbanding dengan kaedah konvensional yang sedia ada. 

Pada keseluruhannya, teknik yang dicadangkan ini memberikan kesan yang lebih 

efektif dalam penjadualan ujian sedar terma. 
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CHAPTER 1  

INTRODUCTION 

This chapter describes the background and the importance of temperature 

aware testing methodology.  This is followed by research objectives, scope, and 

contribution.  After that, research methodology and thesis organization are also 

described is this chapter. 

1.1 Overview  

Knowing temperature during testing is very essential because some 

temperature –dependent defects become more easily tested when tests are applied [1]   

at specified temperature or within a given temperature range.  To alleviate issues of 

long test time, test access mechanism and test wrapper for System-on-Chip (SoC) a 

core-based have been introduced to enable parallel testing of multiple cores [2].  

However, the trade-off is the increasing power consumption that leads to crosstalk, 

voltage drop (also known as IR drop) and reliability issues.  Besides, increasing 

power density, which is the amount of power per unit area also implies higher 

temperature and heat dissipation.  This is because the heat generated continuously 

which directly increases the temperature on the SoC.  The increases in power 

consumption due to process scaling, combined with high switching and poor cooling 

environment during testing have the potential to result in high temperature. The core-

based designs are usually tested after assembly.  A major challenge in testing SoC is 

test scheduling that determines the orders in which various cores are tested.  Therefore, 

if the test scheduling is provided with temperature awareness, parallel testing of 

multiple cores will not encounter overheating issues. 
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1.2 Background 

Advances in VLSI technology have allowed billions of transistors to be 

integrated into a single chip.  This has led to the advent of System-on-Chip (SoC) 

design, which implements all major system components on a single chip to achieve 

both lower fabrication cost and higher speed performance.  However, the increased 

complexity in such large and high performance systems has posed challenges to 

design, production and test.  When the shrinking feature size of transistor enables 

implementation of SoC on nanometer regime, testing cost becomes more expensive 

because test time that involves multiple cores in the system is critical for time-to-

market. In fact, testing cost is approximately 50% of manufacturing cost as reported 

in [3].   

Power consumption and thermal issues are major concerns in design and 

fabrication of VLSI circuits.  The increasing number of transistors in SoC and the 

operation frequency in SoC will directly exacerbate these issues.  Furthermore, testing 

SoC results in excessive power consumption compared to normal mode because 

testing typically involves large number of switching activities [1].  Power consumption 

in SoC is converted directly into dissipated heat and this increases the temperature in 

SoC  [4]. This is because a high temperature leads to reduced performance of devices 

with decreasing carrier mobility and increasing interconnect resistivity [1].  This leads 

to degradation of reliability because high temperature during testing exacerbates aging 

effects on the system.  In the worst case, it could damage cores in the SoC.  The impact 

of temperature on power consumption is firstly reflected by that leakage power 

increases rapidly with the increase of temperature [4]. As leakage power grows 

significantly in relation to dynamic power with the deep submicron technology, due to 

the reduction of threshold voltage, channel length, and gate oxide thickness, the total 

power consumption of a circuit grows rapidly also with the increase of temperature, 

which in turn will further increase the temperature [5]. This positive feedback may 

even lead to thermal runaway and burn the chip. Therefore, it is important to reduce 

the temperature of a chip in order to decrease the leakage power. As a result, several 

recent papers have addressed the problem of test scheduling in such a way that 
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resource, power, and thermal constraints are satisfied. The details for the problem 

addressed by previous researcher on test scheduling are discussed in Chapter 2. 

Heat transfer during test session and normal mode can be transferred away 

from the core through its lateral neighbourhood and vertically to the heat sink.  There 

is a real need to formulate and address power problems and temperature problems early 

in the design flow such as in Register Transfer Level (RTL) stage to speed up time-to-

market, which indirectly contributes to reducing the design productivity gap.  

Referring to International Roadmap Semiconductor published in 2015 (ITRS’15) [6], 

even though the transistor count has kept on increasing and transistors are able to 

operate with each new technology generation at higher frequency than before, it has 

become practically impossible to keep on conjunctly increasing both of these factors 

due to physical limitations on power consumption that has to level off in order to make 

the integrated circuits (ICs) capable to operate under practical thermal conditions. 

Thermal effect may represent a limiting factor in the development of integrated circuit 

because hotspot may degrade circuit performance and reliability, and increase leakage 

power.  Therefore, nowadays, thermal management module is included to regulate the 

temperature in the SoC during operation mode.  In designing an efficient thermal 

management module, thermal simulation is necessary to perform thermal analysis.  

Besides regulating temperature for normal operation, temperature regulation during 

testing is equally important to avoid cores undergoing high temperature.   When test 

scheduling is planned, some cores in the SoC could be firm cores or soft cores whereby 

accurate temperature is not yet known.  For these cores, RTL thermal model which is 

temperature estimation model at early stage of design can be used to estimate their 

temperature.  The existing thermal models, [4], [7]–[9] consider thermal effect of 

substrate and package only.  However, the metal interconnect should be considered as 

well for causing heat transfer from core to core and heat transfer between metal and 

substrate due to temperature differences among these cores. 
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1.3 Problem Statement  

Testing a core-based SoC with several modules integrated together is 

challenging. With test access time (TAM) and test wrapper, test scheduling is performed 

such that test patterns for each core are ordered to reduce the test time.  However, the 

increased complexity of SoC results in huge test patterns. Similarly, increase of the 

patterns indicates higher power consumption in SoC.  Even assuming tester memory 

size will be doubled every three years and more advanced test data compression 

techniques have been employed, test data reduction will remain a serious issue that 

must be tackled to control power consumption [2].  Test scheduling is typically carried 

out under power constraints since multiple cores are tested in parallel.  This is because 

power-aware test scheduling has been introduced to overcome overheating of SoC 

during testing but soon it was reported in [10] that power-aware test scheduling cannot 

resolve hotspot issue in SoC.   Instead, power density should be considered because it 

subsequently forms hotspots and increases the temperature in the system. This is 

because power density continuously causes heat dissipation among the cores in the 

SoC; thus, it increases the temperature on the cores and leads to thermal problem. 

Moreover, delay increases approximately 5% for every 10° C increase of temperature 

and the leakage current increases exponentially with temperature increase [11].  

Therefore, thermal aware test scheduling is needed to cover hotspot issues in SoC 

especially during testing due to more power dissipation. 

To deliver test time minimization for core-based SoC that considers 

temperature of each core to avoid hotspots, first, an efficient yet accurate thermal 

simulator needs to be developed to simulate temperature for each core in SoC when 

test patterns are pumped into the SoC.  Information of temperature generated by the 

simulator is important to produce test schedule that has safe thermal ranges.  Most of 

the recent thermal-aware test scheduling provides detailed temperature distribution, 

which is a resource and time-consuming task.  However, thermal simulation can be 

performed at higher level such as architecture level or RTL.  Therefore, it allows earlier 

detection of hotspot in SoC. Compact thermal modelling is one of the methods used to 

simulate temperature at architectural level using Resistance-Capacitance (RC) thermal 

model.   
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The temperature for any particular core does not only depend on its own power 

density, but also on the power densities of the adjacent cores.  At first glance, it may 

seem that heat is mainly redistributed in the substrate layer and the contribution of 

interconnect is marginal [12].  The initial perception fails to take into account 

interconnect effects on temperature in the system.   Since the cross sectional area of 

interconnect is generally smaller than that of the substrate, it may raise a concern that 

the resultant higher current density in interconnect may generate significant heat 

because the density of interconnect in the core increases with the number of transistors.  

Since VLSI circuits continue to be scaled aggressively, rapid increase in functional 

density has resulted in a steady increase in chip size.  This has resulted in an increasing 

number of interconnect levels in order to realize all the inter-device and inter-block 

communications.  The number of interconnect metal levels are increased from six 

levels at the 180 nm node to nine levels at the 45 nm node [13].  Furthermore, thermal 

conductivities of interconnect is higher than substrate.  So, it is envisioned that thermal 

effects in interconnect can potentially become another serious design constraint. 

Therefore, this is the research gap on the thermal modelling. 

Hotspots in metal layers are exacerbated by increasing current density and self-

heating power consumptions on interconnect.  Hot interconnect is becoming a serious 

problem when metal interconnect defects pass  a speed test at nominal temperature, 

but fail at a higher temperature for the same test.  This means that delay tests, such as 

maximum frequency test and transition delay test, should be applied at a higher 

temperature level in order to detect these temperature-dependent defects [5]. 

Therefore, metal layer must be modelled in thermal modelling in order to avoid under-

estimation of the temperature.   Continued scaling and the introduction of low dielectric 

in the back-end process technology on metal interconnect also affect hot interconnect. 

This is true because the rate of interconnect electro-migration is dependent on 

temperature exponentially [14].  According to [15], the interconnect temperature will 

be approaching 400-900 K at 22 nm technology node if the thermal challenge on 

interconnect is not properly dealt with along the road.  Thus, thermal simulation that 

considers metal interconnect effect at architectural level could be a better solution to 

estimate temperature of each core in SoC test scheduling.  This can be achieved by 

scheduling the tests with the aid of thermal simulation as heat is evenly distributed 

over the chip to reduce hotspots.   
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Temperature is a concern during testing due to the potential increased power 

consumption resulting from high switching activity. High temperature leads to 

performance degradation, which is due to reduced carrier mobility and driving current 

as well as increased interconnect delay. A recent study has shown that the maximal 

clock frequency has to be reduced by 23% when the temperature of a circuit is raised 

from 50° C to 110° C, when the circuit is operated at 1.1 V [5]. This clock frequency 

and temperature dependency should be carefully analyzed when developing frequency 

scaling technique to control temperature during testing in terms of timing. One method 

to reduce the power dissipation in CMOS circuits is to reduce the supply voltage, Vdd. 

However reducing Vdd has an inverse relation with gate delay where the gate delay 

increases as the voltage is reduced. In order to reduce the test time, the clock frequency 

must be increased. However, operating at higher frequency will drag the SoC into high 

power dissipations, leading to thermal issue. So, dependency between voltage, 

frequency and temperature requires a study when considering voltage and frequency 

scaling technique to overcome thermal issues during testing. 

1.4 Research Objectives 

 
 The goal of this thesis is to develop an efficient thermally safe test 

scheduling algorithm with dynamic voltage frequency scaling (DVFS) for core based 

SoC.  To accomplish the goal, two objectives are devised as follows: 

Objective 1: To develop a new thermal model for SoC with consideration of 

interconnects effect. 

 To develop a thermal model of SoC with capability for calculating heat 

transfer among the cores and interconnect effect to the SoC within reasonable 

computation time, the simplified model was designed to represent the thermal 

behaviour of the chip to perform a quick thermal analysis with the improved accuracy 

in system design process.  To accomplish this objective, the thermal model, in general, 

must estimate system temperatures, heat loads, and powers involved in the system. 
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Objective 2: To develop thermal safe test scheduling platform for SoC testing 

with DVFS. 

 The main objective of this research is to develop a test planning 

platform/framework in the aim to minimize total testing time under thermal 

constraints.  This research will apply DVFS algorithm to solve the test scheduling 

problem.  This algorithm considers DVFS technique under constraint of temperature 

limit in order to minimize the test time.   

1.5 Scope of Study  

  

 

 

 

 

 

 

Figure 1.1 Scope of study of thermal aware test scheduling 

In order to achieve the objective of the research, the following research scope 

has been outlined.  The proposed thermal aware test scheduling platform consists of 

two stages as illustrated in Figure 1.1.For this thesis, SoC benchmark circuits are used 

to prove the effectiveness of the proposed methods.  The first stage consists of the 

proposed thermal model at architectural level.  The model requires reading SoC 

floorplan and power profile to estimate the temperature.  SoC floorplan is provided by 

 
Thermal Aware Test Scheduling for SoC 

 
 

Proposed Thermal Model for SoC  

SoC  Floorplan Power Profile 

Proposed Test Scheduling using DVFS technique 

Thermal Profile 

SoC Test Schedule 

Generate TCS under temperature constraint   
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the SoC benchmark and it was generated by the chip estimator tool [16].  Power profile 

consists of average power for each core in the SoC and is also provided by Millican 

and Salaju in [17].  Assumption for metal area is 50% of the die area [18].  Based on 

all these information, the cycle-accurate temperature for each core in SoC will be 

generated using the proposed thermal model. 

For the second stage, the proposed SoC test scheduling consists of two major 

steps.  First, test sessions are derived based on test compatibility graph (TCG).  Second, 

test scheduling algorithm is developed to schedule the test sessions under the given 

temperature constraints with DVFS technique such that total test time is minimized.  

All the test sessions are dedicated with particular voltage and frequency specifications 

resulted from DVFS. 

1.6 Organization of Thesis 

The thesis is organized into seven chapters. Chapter 1 discusses the 

introduction, research problems, research scope and research objectives related to the 

development of thermal aware test scheduling on SoC using DVFS technique. In this 

chapter, we address the research problems and several research gaps which provide a 

motivation in our research. This research is intended to fill the research gap on thermal 

model and test scheduling algorithm’s performance in terms of test time and 

temperature modelling.  

Chapter 2 provides literature review prior to engaging the mentioned scope of 

work.  Several topics related to this research are reviewed to give an overall picture of 

the background knowledge involved.  Summary of the literature review is given to 

clarify the research rationale. The literature review covers the previous significant 

researches for thermal model and test scheduling techniques 

Chapter 3 discusses research process on developing the proposed thermal 

model with metal interconnect and test scheduling technique with thermal constraint 

using DVFS technique which are the two main core algorithms in this thesis. The first 
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part covers the proposed thermal model technique that has been implemented in test 

scheduling. This proposed algorithm is adopted in test scheduling as thermal simulator. 

The second part discusses the methodology of our proposed test scheduling technique 

using DVFS with temperature constraint. 

Chapters 4 presents thermal model with metal interconnect effect by enhancing 

the well known thermal model HotSpot. Moreover, this thermal model allows both 

steady-state simulation and transient simulation. MATLAB programming is used to 

develop the thermal model. 

Chapter 5 presents proposed DVFS technique to be employed on the test 

scheduling.  It starts with the explanation on ideas of DVFS and demonstrates how 

DVFS performed frequency scaling up and frequency scaling down.  This chapter also 

demonstrates the flow chart of the test scheduling algorithm.  This test scheduling 

implements DVFS technique and estimate the temperature by thermal model with 

metal interconnects effect considerations. 

Chapter 6 presents the experimental result and analysis of thermal aware test 

scheduling using DVFS technique. Besides, to validate the accuracy of proposed 

thermal model, comparison between established thermal model (HotSpot) and finite 

element software (ANYS) are presented. The effectiveness of the proposed test 

scheduling that is equipped with DVFS technique is also demonstrated. Finally, the 

performance comparisons in terms of test time and temperature on SoCs have been 

done between the proposed technique and other established methods. 

In the final chapter of the thesis, the research work is summarized and 

deliverables of the research are stated.  Suggestions for potential extensions and 

improvements to the research topic are also given. 
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