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ABSTRACT

Laser induced breakdown spectroscopy (LIBS) is an analytical technique 

used for identification of elements by analysing the emission line spectrum produced 

by a sample. LIBS is implemented as analytical technique for this study because it 

requires minimal sample preparation, fast result and non-destructive technique 

compared to other commercial detection techniques such as gas chromatography- 

mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), 

Raman spectroscopy, and inductively coupled plasma (ICP) that need long 

experimental process, complicated sample preparation, and destructive to sample. In 

this research, LIBS technique was deployed for determination of presence pesticides 

on guava fruit. The experimental setup consists of Q-switched Nd:YAG laser 

operating at 1064 nm (139 mJ per pulse) and fiber optical cable was connected with 

HR4000 spectrometer in order to collect the atomic emission light. Different 

pesticide concentrations (1, 10, 100, and 1000 ppm) were prepared for calibration 

curve analysis in determination of limit of detection (LOD) and limit of 

quantification (LOQ). LIBS technique was able to detect the pesticide elements on 

guava sample such as phosphorus at wavelength of 253.56 nm and 255.33 nm. The 

different pesticide concentrations resulted to the proportional changes of pesticide 

element intensity such as phosphorus and carbon. LOD and LOQ were also 

measured with minimum value of 0.7 and 1.4 mg/L, respectively. Principal 

component analysis (PCA) implemented in the study was able to classify the group 

of pesticide at different concentrations with variance 95%. In conclusion, the 

combination of LIBS and PCA method has potential for detection of pesticides at 

different concentrations.
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ABSTRAK

Spektroskopi leraian aruhan laser (LIBS) adalah teknik analisis yang 

digunakan untuk mengenalpasti unsur-unsur dengan menganalisis spektrum garis 

pancaran yang dihasilkan oleh suatu sampel. LIBS dilaksanakan sebagai teknik 

analisis untuk kajian ini kerana ia memerlukan penyediaan sampel yang minimum, 

dapatan yang cepat, dan teknik tidak-musnah berbanding teknik-teknik pengesanan 

yang lain seperti kromatografi gas-spektrometer jisim (GC-MS), kromatografi cecair 

prestasi tinggi (HPLC), spektroskopi Raman, dan plasma gandingan aruhan (ICP) 

yang memerlukan proses eksperimen yang panjang, penyediaan sampel yang rumit, 

dan pemusnahan sampel. Dalam kajian ini, teknik LIBS digunakan untuk 

mengenalpasti kehadiran racun serangga pada buah jambu batu. Peralatan 

eksperimen terdiri daripada laser Nd:YAG bersuis-Q beroperasi pada 1064 nm (139 

mJ per denyut) dan kabel gentian optik disambungkan dengan spektrometer HR4000 

untuk mengumpulkan cahaya pancaran atom. Pelbagai kepekatan racun serangga (1, 

10, 100, dan 1000 ppm) disediakan untuk analisis lengkung penentukuran dalam 

menentukan had pengesanan (LOD) dan had kuantifikasi (LOQ). Teknik LIBS 

berupaya untuk mengesan unsur-unsur racun serangga seperti fosforus pada panjang 

gelombang 253.56 nm dan 255.33 nm. Pelbagai kepekatan racun serangga 

menghasilkan perubahan yang berkadar terus dengan keamatan unsur racun serangga 

seperti fosforus dan karbon. LOD dan LOQ masing-masing diukur dengan nilai 

minimum adalah 0.7 dan 1.4 mg/L. Analisis komponen utama (PCA) yang 

digunakan dalam kajian ini berupaya untuk klasifikasi kumpulan racun serangga 

pada pelbagai kepekatan dengan varians 95%. Sebagai kesimpulan, penggabungan 

LIBS dan kaedah PCA mempunyai keupayaan untuk mengesan racun serangga pada 

pelbagai kepekatan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The application of a pesticide in agriculture has been introduced since ancient 

time to kill and control any unwanted pest species from destroying the plants. The 

first generation of pesticide formulated with petroleum oil, heavy metals, and 

fumigant hydrogen cyanide was used liberally until nineteen-sixties [1]. Acute in 

toxicity that caused an adverse effect to human health and animals, and polluted the 

environment are the reasons of this pesticide is banned. Due to that case, the 

scientist has reformulated the pesticide using an active ingredient from synthetic 

organic compound which is less toxic than the previous pesticide. Dichloro- 

diphenyl-trichloroethane (DDT) was the example of synthetic organic pesticide that 

synthesized by a German scientist, Ziedler. Although it is less in toxic, but having 

long degradation process had forbidden DDT pesticide to be used in many countries 

to overcome the environmental pollution, crop damage, and diseases to humans and 

animals [2]. As a result, pesticide had re-improved its formula and reproduced back 

to meet the safety and quality requirements. Pesticide acts as chemical and 

biological agent to protect the plants from pest infestation at the beginning plantation 

process until the storage. Low in cost and provide fourfold return money, and 

resulting in high crop production and quality have indirectly increased the pesticide 

demand for agriculture around the world including Malaysia.
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A Swiss physician and alchemist, Paracelsus (1493-1541) had said that all 

chemical substances are safe when a right dose is applied. The authorities such as 

Food and Agriculture Organization (FAO), World Health Organization (WHO), 

Food Safety Authority (FSA), Food and Drug Administration (FDA), and more, has 

developed a close working contact with food agencies around the world to 

implement food control system to provide consumer protection and ensure that all 

food through the processing methods and stages are safe, wholesome and fit for 

human consumption. Food safety and quality are referring to all-hazard caused by 

food that injures the health of the consumer either chronic or acute, and the 

nutritional and product values of the food, respectively. The examples of those 

hazards are diarrhea, excessive sweating, and any kinds of abnormal body behavior 

after consumption or even death. The food quality has both positive and negative 

attributes. Positive attributes consist of product origin, color, flavor, texture, and 

processing food methods, while, food spoilage, contamination of filth and chemicals, 

discoloration, and off-odors are the example of negative attributes [3]. In fact, 

consumers are tends to look food in terms of color, flavor, and texture without 

realized the food is safe to be consumed or not. Therefore, a food code which is a 

collection of standards, guidelines, and codes of practice, was introduced by Codex 

Alimentarius Commission to be implemented by the government, industries, and 

farmers for fair trade, food safety and quality, and to control the residual pesticide 

contents. Integrated pest management (IPM) or integrated pest control (IPC) is a 

proper guideline for pesticide use. Maximum residue level (MRL) and acceptable 

daily intake (ADI) are introduced for measurement of the safe amount of residual 

pesticide on food products, and the specific amount of pesticide residue that can be 

ingested by the humans in daily basis over a lifetime without health risk, 

respectively.

Even though the pesticide safety precautions were explained to industries and 

workers, but there are few industries and workers whose still ignore the importance 

of food safety and only think about to earn more profits and reduced the production 

costs. A small mistake such as improper agricultural practices, poor hygiene at all 

processing and preparation stages, misused of pesticides, inadequate or improper 

storage, and harvest before pesticide degradation ends, can cause food contamination
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of high residual pesticide. On May 2016, J. D. Heyes reported in Natural News 

about the contamination of apple juice with herbicide due to misuse of banned 

pesticide. Such herbicide that is persistent caused the adverse effects to consumers 

and the environment. Another article from the Associated Press on January 13, 2012 

has written about the pollution of contaminated orange juice products from the 

polluted orange fruits with Carbendazim. It shows that pesticide chemicals can occur 

in chain, described as farm-to-table continuum, and may continuously affect the 

consumer. This may be due to the food cleaning process being overlooked or not 

done by industries or unprofessional pesticide handling which are the major reasons 

of pesticide-related illness never stop taking place around the world in every year 

[4,5].

Pesticide residue is the pesticide that remaining on food products after pluck 

out process. The amount of residue is depending on the physicochemical properties 

of the pesticide and crop, the rate of pesticide application, the pre-harvest intervals, 

and the plant cultivation methods [6]. Human and animals are easily get affected by 

pesticide residue because of its characteristics that transparent and odourless to all 

senses. High amount of pesticide residue are harmful to be consumed and may cause 

food hazard issues. Malaysia besides of other countries like China, Cambodia, India, 

and so forth also experienced the pesticide-food hazard issues. In March 2016, 

pesticide-food hazard case is reported by Sinar Newspaper in Malaysia about the 

poisoning of organophosphate pesticide to a few stall eaters at Siputeh, Ipoh which 

happen due to the improper pesticide handling. The incident poisoned almost a 

hundred consumers with symptoms such as dizziness, vomiting, diarrhoea, excessive 

sweating, and excessive salivation. One patient has reported death due to the 

inability of the brain to receive the oxygen. Hence, a fast detector tools for detection 

of pesticide residue on food products to assure the consumer health from the dangers 

of pesticide chemical is indispensable.

Determination of residual pesticide on any materials is not a new thing and 

had been first studied in 1933 of measuring the residue of rotenone [7]. Detection 

technique evolved in the following years starting from gas chromatography (GC), to
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mass spectrometry (MS), gas chromatography-mass spectrometry (GC-MS), high 

performance liquid chromatography (HPLC), Raman spectroscopy, and next, 

inductively coupled plasma (ICP) [8,9]. Those are multi-residue methods that are 

commonly used in industrial and laboratories for identification of toxic elements in 

food materials. Intricate sample preparations, destructive the sample, lots of 

experimental process and expensive experimental costs are the cons of these 

techniques.

Fast, reliable, and in-situ detection techniques are imperative for laboratory 

and field use. Laser-induced breakdown spectroscopy or known as LIBS is a type of 

detection system that fulfil the criteria of little sample preparation, simple manual 

handling, non-demanding experiment conditions, micro-destructive technique, 

portable for field use and low experimental cost. In previous years, LIBS is rarely 

used for analysis of complex samples like blood plasma, food, drugs, and even 

pesticide due to sample matrices and lack of understanding the plasma properties. 

Currently, improvement in LIBS has deployed it to many field area such as 

archaeology, medical, geology and much more. The examples of analysis of these 

fields are as follows; analysis of age of archaeological ceramic and metal artefacts 

[10], determination of Wilson’s disease through human liver analysis [11], 

identification of the abundant minerals on the surface of rocks [12], and so on [13­

18].

An analytical LIBS signal is produced by the interaction of laser and sample. 

The LIBS signal is suitable for both qualitative and quantitative analysis by 

eliminating the instrumental interferences, the retention time for shift correction, 

selectivity, and chromatographic separation abilities. However, the data coming 

from such analytical techniques are very complex and difficult to resolve and 

interpret [19]. Therefore, the contribution of mathematical and statistical approach 

such as Principal Component Analysis (PCA) is helpful for better qualitative and 

quantitative analysis.
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In this project, LIBS is deployed as fast pesticide residue detection system 

onto food products since the application of LIBS for pesticide detection is still new 

and become a great interest to many researchers. A psidium guajava or well known 

as guava is a food product that will be used in this study due to its nutritional 

benefits, flavour, and popularity among Malaysians. Malathion and Chlorpyrifos 

pesticide are chosen because they are the type of pesticide that commonly used by 

local farmers. Chemometrics method which is PCA will be implement in LIBS 

analysis to improve the separation quality of the complex sample and provide a 

powerful approach in a pattern of recognition and classification. A study by Zhao X. 

et al. had successfully demonstrated the potential of chemometrics technique in 

classification of various concentrations of detergent residues on food utensils [20].

1.2 Problem Statement

The determination of pesticide on fresh fruit may seem difficult for 

commercial detection techniques due to the weakness of these techniques. GC-MS, 

HPLC, Raman Spectroscopy, and ICP are those commercial analytical techniques 

that required long and complex experimental procedures, consumed high 

experimental costs, destructive to sample and produced much waste. Therefore, 

application of simple analytical technique for pesticide determination had become a 

great interest in this study.

The spectral lines produced by LIBS signal are able to classify the pesticide 

samples by comparing the intensity level of each pesticide elements. However, 

classifying the pesticide samples for many data may seem complex because of high 

noise contribution. Hence, combination of LIBS and chemometrics analysis may 

provide great potential in identification and classification of pesticide samples.
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1.3 Research Question

The fast, in-situ, simple and micro-destructive detection technique is suitable 

for laboratories and field use. The technique can reduce the experimental costs and 

pollution to environment because required least equipment and minimal experimental 

process which consists of three experimental steps; 1) sample preparations, 2) 

detection and 3) analysis. Furthermore, the diameter of a laser beam for LIBS which 

is about 1-2 mm will cause micro damage to the sample with no side effect if eaten 

by a person. Studies by M. Dell'Aglio et al. had unveiled the potential of LIBS in 

monitoring the heavy metals with accuracy is acceptable for analytical method [21]. 

Hence, LIBS technique is deployed in this study to achieve the goals of the study.

Introducing the mathematical and statistical approach, or chemometrics 

analysis in LIBS helps reducing the noise interception as well as enhance the 

accuracy of LIBS. A study by Rahul Agrawal et al. had suggested for LIBS to 

couple with chemometrics analysis for better discrimination and classification of the 

adulterated and non-adulterated sample [22]. Hu et al. had proved that the 

combination of LIBS with chemometrics method may be an instant diagnostic tool to 

discriminate samples with different matrixes such as different concentrations of 

copper in food products [23]. Thus, principal component analysis (PCA) is deployed 

in this study for coupling with LIBS technique to discriminate between four different 

concentrations of pesticide ratios (1:1, 1:10, 1:100, and 1:1000) on fruit sample.

1.4 Objectives

In this study, a plasma generates on a sample surface is developed by the 

interaction of laser with the sample. The objectives of the study are:

1. To trace the elements of Chlorpyrifos and Malathion pesticide and element

of guava using LIBS technique.
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2. To determine the limit of detection (LOD) and limit of quantification (LOQ) 

of LIBS technique.

3. To classify the clean and treated guava at different pesticide concentrations 

through PCA method.

1.5 Research Scope

Q-switched Nd: YAG pulsed laser is deployed to induce the sample 

breakdown and generate a plasma on the sample surface. The experimental setup 

consists of the laser system, optical emission spectrometer (OES), a light collector, 

and guava sample. Lights emitted from plasma contained important information for 

elemental analysis. Laser characteristics such as beam laser (1.0 ± 0 . 1  mm), 

wavelength (1064 nm), and laser energy (139 ± 1 mJ), spectrometer gate window 

(40^s), and focal point from lens to sample (9.6 ±0 . 1  cm) were adjusted for 

optimized plasma formation. The focused study is dealing with guava sample treated 

with four different pesticide concentration ratios (1:1, 1:10, 1:100, and 1:1000) for 

determination of limit of detection (LOD) and limit of quantification (LOQ). In 

addition to discriminate between treated guava and clean guava through PCA 

method. The spectral lines are observed and collected from the wavelength range of 

200 nm to 650 nm regarding to the spectrometer used. However, there is limit for 

LIBS in which it is not suitable for detection of small element concentration.

1.6 Research Significance

The outcome of this study is important in introducing a fast, simple, and non­

destructive technique in determination of pesticide residues on fresh food sample. 

Generally, there been efforts made to demonstrate the potential of LIBS in 

determination of pesticide residues on fresh food sample. However, the methods still 

have their limitations. Thus, introducing a guava fruit as a sample in LIBS will 

become a new features for LIBS technique. Combination of LIBS technique with 

PCA method will provide an automatic discrimination between uncontaminated and 

contaminated food.
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Fast, in-situ, micro-destructive, easy for laboratory and field used, and less 

production of chemical waste in LIBS technique can become a new interest for the 

research industries in Malaysia.

1.7 Thesis Outline

Chapter one presents a brief background on the subject matter and overview 

of techniques used for detection of pesticide residues on matter of study as well the 

significance of laser-induced breakdown spectroscopy (LIBS). Chapter two provides 

a comprehensive literature review and theoretical background of the matter of study 

such as guava fruit and Malathion and Chlorpyrifos pesticide. The chemical and 

physical characteristics, and degradation factors of pesticides were also discussed in 

this chapter. The basic principle and mechanism of LIBS method is also presented in 

this chapter. Chapter three presents in detail the research methodology, which 

comprises the experimental set up, sample preparation methods for a substrate and 

pesticide solutions for different concentrations, and method for application of 

pesticide on guava skin. Furthermore, steps for principle component analysis (PCA) 

method is also present in such chapter. Chapter four highlight the result between the 

spectrum lines of clean guava sample and pesticide-treated guava sample. 

Afterward, the effect on the intensity levels for elemental line is reported as the 

pesticide concentration changes. The chemical and physical properties, and 

degradation factors of the pesticide are required for the changes that occurred. In 

addition, the result for classification of treated guava at different concentrations 

using PCA method were presented in this chapter. Chapter five concludes the thesis 

with deduction inferred from the results.
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