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ABSTRACT 

 

 

 

Oxide-based thermoelectric (TE) materials are considered as one of the most 

eco-friendly materials for power generation applications. They seem more stable and 

less toxic compared to the conventionally used metals and semiconductors such as 

PbTe. Among the TE materials, the p-type Ca3Co4O9 is the most commonly 

investigated due to its high potential to be used in high temperature power generation. 

Many attempts have been carried out to further increase the generating power of this 

TE material which includes doping and co-doping with other elements. However, most 

of the literature reported that their figure of merit (ZT) is still lower than 0.12. This 

research aimed to enhance the thermoelectric properties of Ca3Co4O9 via doping and 

co-doping with metal elements and increasing its bulk porosity. The stoichiometric 

mixtures of Ca(NO3)2.4H2O, Co(NO3)2.6H2O and starch were first dissolved in the 

distilled water. The resultant gel was decomposed at temperature 673K until it changed 

into a black precursor. The black precursor was then calcined in the furnace at 773, 

873, 973, and 1073 K for 4, 6, 8, 10, 12 and 14 h to obtain Ca3Co4O9 powder. The 

Ca3Co4O9 pellet was prepared using a 5 tons hydraulic press, then sintered in air at 

1173K for 20h. The best properties of Ca3Co4O9 powder was then doped with 

Aluminum (Al). The amount of doping was varied at x = 0.1, 0.2, 0.3 and 0.4 on Ca3- 

xAlxCo4O9 powder. The figure of merit, ZT values were measured on doped Ca3Co4O9 

powders and compared. The highest ZT value of the doped Ca3Co4O9 was selected for 

the next co-doping with Nickel (Ni) varied at y = 0.05, 0.1, 0.15 and 0.2. The highest 

ZT value obtained from Ni co-doped powder was selected and then their porosity was 

varied by adding starch at different weight percentages of 3, 5 and 7 wt%. Ca3Co4O9 

synthesis and treatments were analyzed using a thermogravimetric analyzer (TGA), 

scanning electron microscope equipped with energy dispersive spectrometry (SEM- 

EDS), x-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and 

transmission electron microscope (TEM). The changes in thermoelectric properties 

were measured from 300 to 700K. The calcination process that produced the best 

lattice parameters (b1/b2 = 1.613) and crystal size (458 ˚A) were observed at 12h. The 

highest ZT for Al-doped was 0.139 for x = 0.1 at 700 K. While the highest ZT for Ca3- 

xAlxCo4-yNiyO9 was 0.145 at x = 0.1 and y = 0.05. An investigation was conducted on 

the increasing structure porosity with Al-Ni co-doping. The highest figure of merit ZT 

was 0.161 at 700K, for the Al-Ni co-doped sample with 5wt%. The results revealed 

that the doping elements have a significant effect on the microstructure properties and 

morphology of polycrystalline of Ca3Co4O9, such as grain size reduction up to 1.76 
µm  for  the  best  co-doped.  These  changes  improve  the  overall  thermoelectric 

properties. 
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ABSTRAK 

 

 

 

Bahan termoelektrik (TE) berasaskan oksida dianggap sebagai salah satu 

bahan yang paling mesra alam sekitar untuk aplikasi penjanaan kuasa. Ia didapati 

lebih stabil dan kurang bertoksik jika dibandingkan dengan logam dan 

semikonduktor yang digunakan secara konvensional, seperti PbTe. Dari kalangan 

bahan TE, bahan jenis-p Ca3Co4O9 adalah yang paling banyak dikaji disebabkan 

ia mempunyai potensi yang tinggi untuk digunakan dalam penjanaan kuasa 

bersuhu tinggi. Banyak usaha telah dijalankan untuk meningkatkan lagi kuasa 

penjanaan bahan TE ini, termasuklah pengedopan dan pengedopan-bersama 

dengan unsur-unsur lain. Walau bagaimana pun, kebanyakan literatur telah 

melaporkan bahawa angka merit (ZT) bagi bahan ini masih rendah iaitu kurang 

daripada 0.12. Penyelidikan ini bertujuan untuk meningkatkan sifat 

thermoelektrik Ca3Co4O9 melalui  pengedopan  dan  pengedopan-bersama 

dengan unsur logam dan meningkatkan keliangan pukalnya. Campuran 

stoikiometri Ca(NO3)2.4H2O, Co(NO3)2.6H2O dan kanji dilarutkan terlebih 

dahulu dalam  air suling. Gel yang diperoleh  diurai pada suhu 673K sehingga   

ia bertukar kepada prapenanda hitam. Prapenanda hitam tadi kemudiannya 

dikalsin di dalam relau pada suhu 773, 873,  973,  dan 1073 K selama 4,  6,  8,  

10 12 dan 14 jam untuk menghasilkan serbuk Ca3Co4O9. Pelet Ca3Co4O9 telah 

disediakan dengan menggunakan sebuah penekan hidraulik 5 tan, kemudiannya 

ia disinter di udara pada 1173K selama 20 jam. Sifat terbaik serbuk Ca3Co4O9 

kemudiannya didop dengan unsur Aluminium (Al). Jumlah unsur dopan diubah 

pada x = 0.1, 0.2, 0.3 and 0.4 ke atas serbuk Ca3-xAlxCo4O9. Angka merit, ZT 

telah diukur ke atasserbuk Ca3Co4O9 dan dibandingkan. Nilai ZT tertinggi pada 

Ca3Co4O9 yangtelahdidopdipilihuntukpengedopan-bersama dengan Nikel (Ni) 

yang diubah pada y = 0.05, 0.1,0.15 dan 0.2. Nilai ZT tertinggi yang diperoleh 

daripada serbuk dop-bersama Ni dipilih dan setelah itu keliangannya diubah 

dengan menambah kanji pada peratusan berat yang berbeza, iaitu 3%, 5% dan 7%. 

Sintesis dan rawatan Ca3Co4O9 telah dianalisa dengan penganalisis permeteran 

graviti haba (TGA), mikroskop imbasan elektron yang dilengkapi dengan 

spektroskopi serakan tenaga (SEM-EDS), pembelauan sinar-X (XRD), 

spektroskopi fotoelektron sinar-X (XPS) dan mikroskop elektron transmisi 

(TEM). Perubahan dalam sifat termoelektrik telah diukur dari 300 hingga 700K. 

Proses kalsinasi yang menghasilkan parameter kekisi (b1/b2 = 1.613) dan saiz 

hablur (458 ˚A) yang terbaik telah diperhatikan pada 12 jam. ZT tertinggi untuk 

dop-Al adalah 0.139 untuk x = 0.1 pada 700K. Sementara ZT tertinggi untuk Ca3- 

xAlxCo4-yNiyO9 adalah 0.145 pada x = 0.1 dan y = 0.05. Kajian telah dilakukan 

terhadap peningkatan struktur keliangan dengan dop-bersama Al-Ni. Angka 

merit ZT yang tertinggi tercapai adalah 0.161 pada 700K, untuk sampel Al-Ni 

dop-bersama pada 5wt%. Keputusan menunjukkan bahawa unsur pengedopan 

mempunyai kesan yang signifikan terhadap sifat mikrostruktur dan morfologi 

polihablur Ca3Co4O9 seperti pengurangan saiz butir sehingga 1.76 µm untuk dop-

bersama yang terbaik. Perubahan ini telah  meningkatkan  sifat  termoelektrik 

secara keseluruhannya. 
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INTRODUCTION 

1.1 Introduction 

This chapter describes the concepts of thermoelectric materials with 

background development. It is followed by the problem statement that highlighting the 

research gaps and then the objectives and scopes of the study. Finally, it describes the 

significance of the research and thesis organization. 

1.2 Background of Research 

In the field of science and engineering, the thermoelectric devices are widely 

used for thermoelectric power generation (TEG) and thermoelectric cooling (TEC). 

The thermoelectric power generators produce electrical energy from the waste heat, 

thus provide an encouraging solution to the waste heat recovery, and self-powered 

systems [1-3]. Such devices can also perform Peltier cooling by the reverse process, 

i.e., generate a temperature gradient when current is applied [4]. These devices have 

several advantages compared to other energy technologies because they are compact 

and reliable without moving parts, long life, silent in operation and environmental 

friendly [5]. Since the inception of the Seebeck effect [6], intensive efforts have been 

made to get diverse applications of the thermoelectric devices in the technology of 

cooling and power generation [7].  

The mechanism of thermoelectric effect is based on the diffusive transport of 

the electrons or holes (called charge carriers) in the materials that is driven by an 

induced electrical potential difference because of the temperature drop between the hot 

and cold junction. The efficiency of a thermoelectric device depends upon the 

materials’ electrical resistivity (ρ), thermal conductivity (κ) and Seebeck coefficient 
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(S). These three parameters are related through a dimensionless quantity called the 

figure of merit (ZT). 

The thermoelectric effect was not fully developed until the second half of the 

twentieth century despite its discovery in the nineteenth century [8, 9]. Over the years, 

the thermoelectric power generation and cooling efficiency became feasible [10-12]. 

However, the low energy conversion efficiency and high capital cost of the 

thermoelectric technologies compared to their conventional counterparts are the main 

limitations for the wider applications which need to be resolved. In the Seebeck effect, 

due to an applied temperature gradient across a material, the more energetic charge 

carriers are diffused to a lower potential until an equilibrium electric field is 

established to impede the further flow of the carriers [13]. In fact, this potential 

difference is used to power an external load. Generally, the Seebeck coefficient is very 

low for metals (only a few V/K) but high for semiconductors (typically a few 100 

V/K). The opposite polarity of the thermo-electro-motive force (TMF) generated by 

the n-type and p-type semiconductors is responsible for doubling the voltage when 

combined. In practice, a semiconductor element (uncouple) is connected in series to 

assemble the thermoelectric modules wherein the direct conversion of heat to 

electricity is called thermoelectric conversion or thermoelectric power generation. To 

achieve thermoelectric modules with high efficiency, smart materials with large ZT 

remain demanding. Recent researches revealed that various nanostructured (pure or 

doped) materials can be the potential candidates for making these efficient 

thermoelectric devices. 

In the past, various alloys including SiGe and PbTeSe have served as the 

thermoelectric materials for automotive applications. Lately, some of the oxide-based 

materials have emerged as potential candidates for the waste heat conversion due to 

their promising thermoelectric traits as well as the excellent chemical and thermal 

stability at high temperatures, oxidation resistance, less toxicity and low cost [14-16]. 

Nevertheless, owing to their low carrier mobility these oxides were never considered 

earlier as prospective TE candidates until the high-performance NaxCo2O4 appeared 

[17]. Nowadays, the p-type cobalt-based oxides such as the Ca3Co4O9 and NaCo2O4, 

are utilized in the TE modulus [18]. Two specific compounds in the low-dimensional 
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structures of the Ca-Co-O cobaltite family (for example Ca3Co2O6 and Ca3Co4O9) 

became promising because of their distinct thermoelectric characteristics. In fact, 

misfit layered Ca3Co4O9 material in the single crystal phase reveals excellent 

thermoelectric performance with ZT ~ 0.3 at 700K [19]. Considering such unique 

thermoelectric traits of the calcium-cobalt-oxides, the present study intends to further 

improve their thermoelectric properties by Al/Ni doping in the nanostructured phases.   

Over the decades, several techniques have been developed to synthesize 

Ca3Co4O9 powder including the thermal hydro-decomposition [20], pechini [21], 

polymer solution synthesis [22], and solid-state reaction [23-27]. However, these 

methods operate at high reaction temperatures and need long time, producing materials 

with low chemical homogeneity [28]. Previous studies showed that the sol–gel method 

can produce high-quality Ca3Co4O9 powder with fine particles sizes and uniform 

distribution, leading to improve magnetic, electrical, and optical characteristics 

desirable for real applications [29-33]. Thus, it is worth to use the combined sol-gel 

and auto-combustion technique to produce high quality p-type Ca3Co4O9 powder with 

enhanced attributes useful for the thermoelectric applications. 

Dedicated attempts have been made to improve the thermoelectric properties 

of Ca3Co4O9 material including the electrical resistivity, thermal conductivity and 

Seebeck coefficient. Earlier, the polycrystalline Ca3Co4O9 samples were partially 

substituted by other atoms to improve their overall attributes. Theses substitution was 

added as single element doping such as Sr [34], Pr [35], Ga [36], Ba [25], B [37], Bi 

[38-40], Cd [41], Ce [42], Cr [43], Er [44, 45], Ho [44], Fe [2], Gd [46], Na [25, 47], 

Pd [48], Sm [49], Tb [23], Y [50] and Yb [51-53]. Several other studies present a 

detailed account of the effect of simultaneous substitution of two different elements as 

co-doping [42, 54, 55]. Despite the improvement in the electrical resistivity and 

Seebeck coefficient of Ca3Co4O9, for practical applications various other properties 

that remain poor still need enhancement. In addition, the porous Ca3Co4O9 samples 

were shown to have an excellent thermoelectric response [56]. Looking at the 

significant benefits of the newly emerged cleaner, cheaper, more compact and better 

electricity technologies compared to the existing ones (for example gasoline cells and 

lithium batteries) it is necessary to develop nanostructured Ca3Co4O9 materials based 
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on thermoelectric power generator systems to solve the waste heat problems 

efficiently. 

1.3 Problem Statement  

Several techniques have been developed to synthesize Ca3Co4O9 powder such 

as polymer solution synthesis [22], and solid-state reaction [23-27], while the sol-gel 

is considered as the most straightforward technique. Generally, the sol-gel synthesis 

technique uses citric acid and polyethylene glycol to polymerize the solution that 

produces carbonaceous xerogel and finally needs to be crushed to become powder [3, 

32, 41, 42, 57]. Most of the polymerizing agents used in the ceramic powder 

preparation are acid-based that require special care for handling. In the last 6 years, it 

was reported the starch can be used effectively as a fuel to produce Ca3Co4O9 powder 

using the sol-gel combustion method [58]. Starch is easy to prepare and environmental 

friendly. However, they did not evaluate the purity of Ca3Co4O9 powder prior to bulk 

pressing and sintering. The investigated thermoelectric properties were only limited to 

electrical resistivity and magnetic properties. It is also noticed that the purity of 

Ca3Co4O9 powder is seldom reported in the past literatures regardless of their 

properties methods, i.e. sol-gel [41, 59], sol-gel combustion method [58] and solid-

state [25, 48, 56, 60]. The preparation of bulk samples from these powders at different 

purity and crystallinity may be the reason causing large variations of ZT value reported 

in the literature. As a result, no standard reference can be made for comparison since 

the purity of Ca3Co4O9 powder is unknown. 

The TE performances of oxide materials can be improved by doping elements 

[61]. Some researchers doped Ca3Co4O9 material either in Ca site  like La [62] or in Co 

site such as Zr [60] as a single doping. Co-doping also has been used to increase ZT, 

such as Na at Ca site and W at Co site [63]. ZT improvement is a challenging task due 

to linked of thermoelectric properties to each other [61]. Therefore, the doped element 

should be selected accurately. In the case of Ca-site, many researchers reported their 

studies using ions oxidation state 3+, such as Sm 3+ [64], including rare earth elements 

like Ho [27]. Despite many studies of doping 3+ ions on Ca-site for Ca3Co4O9, there 
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is none reported using Al3+. Furthermore, aluminum has been reported in doping ZnO 

to reduce density [1] and particle size [65, 66]. The use of aluminum was able to 

improve thermoelectric properties [67, 68]. The ionic radius of Ca2+ and Al3+ are 1 Å 

[63, 69] and 0.53˚A [70], respectively. The difference of radius causes lattice 

deformation [71], which may have the potential for decreasing both carrier 

concentration and thermal conductivity [72] in Ca3Co4O9. On the other hand, Ni co-

doped with Lu [57] and Ce [42] element into Ca3Co4O9 material was reported able to 

improve the ZT value after doped at Co site. However, the Al doping in Ca-site, and 

co-doped Al- Ni (Ni at Co site) to Ca3Co4O9 samples have not been reported in the 

literature. Therefore, their doping effects on the thermoelectric properties performance 

are still unknown. It was acknowledged that the thermoelectric efficiency of the 

materials can also be enhanced by selecting suitable dopant elements and by 

controlling their porosity [73]. The increase of porosity reducing thermal conductivity 

[74] which subsequently increases ZT value. Starch has been successfully used to 

produce pores in bulk samples as porous alumina [75] and 3Y–ZrO2 [76]. The porous 

Ca3Co4O9 samples were synthesized using wood as a porous forming agent [56] which 

showed ultralow thermal conductivity and high ZT. The advantage of using starch 

instead of wood powder, it offers a low burning temperature (~673K [77] versus 

~773K for wood [56]), easily available and cheap. However, no published report 

presents the performance of starch as a porous forming agent to produce pores in 

Ca3Co4O9 bulk samples. 

The relationship of phonon scattering models to their respective material 

systems is complex and fraught with controversy. Interface and grain-boundaries have 

been reported to facilitate the scattering effect in the case of mid- and long-wavelength 

photons, while short-wavelength phonons can be scattered by atomic flaws (e.g. 

extrinsic dopants) [78]. Scale hierarchical structures were employed in another study 

to observe that the scattering of short-wavelength phonons occurred at point defects, 

including substitution atoms, the scattering of mid-wavelength phonons occurred at 

grain boundaries, displacements and lamellar/multilayer [79]. The electron and 

phonon path effecting by macroporous structure also modulated to understand the 

decreasing thermal conductivity after porosity increases [80]. However, there is no 

literature reported a combined model to represent the effect of grain boundaries, purity 

and impurity from one set of experiment using the same TE material. 
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The sol-gel auto-combustion technique was adopted in this study for 

synthesizing a high purity Ca3Co4O9 powder. This technique is much simpler to 

conduct as compared to polymer solution synthesis and solid-state reaction [64]. 

1.4 Objectives of the Research  

Based on the abovementioned problem statement, the following objectives 

were set: 

i. To evaluate the effect of temperature and heating time on the phase 

transformation and purity of synthesized Ca3Co4O9. 

ii. To compare the thermoelectric properties performance of pure, Al-doped, 

Al-Ni co-doped and porous Al-Ni co-doped of Ca3Co4O9 samples. 

iii. To propose a revised model for the phonon scattering mechanism in 

Ca3Co4O9 that considering porosity, grain boundary and impurity. 

1.5 Research Scopes 

The scopes of the research were as follows: 

i. Commercially available raw nitrite materials Co(NO3)2.6H2O and 

Ca(NO3)2.4H2O) were used for synthesizing p-type Ca3Co4O9 

thermoelectric material via the sol-gel auto-combustion method. 

ii. Starch [(C6H10O5)n] was used in preparing the slurry for thermoelectric 

materials and served as a pore-forming agent to produce porous Ca3Co4O9 

bulk material. 

iii. Ca3Co4O9 thermoelectric material was doped and co-doped with Al- and 

Al-Ni elements, respectively. The atomic number of Al doping element 
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was varied in the range between 0.1 to 0.4. While Ni element was varied in 

the range between 0.05 to 0.2. 

iv. The temperature range for evaluating thermoelectric properties of the bulk 

Ca3Co4O9 samples was limited from 300K (27 ˚C) to 700K (423 ˚C). This 

temperature suits with the temperature range in the automobile exhaust 

system. 

v. The porosity of the Al-Ni co-doped Ca3Co4O9 bulk samples was varied 

using starch at 3%, 5% and 7% wt. 

vi. Various analytical equipments were used to characterize the developed 

thermoelectric materials were characterized using various analytical 

equipment. These include thermogravimetry analyzer (TGA), particle size 

analysis, variable pressure scanning electron microscope (VP-SEM), 

focused ion beam – scanning electron microscope (FIB-SEM), 

transmission electron microscope (TEM), equipped with energy-dispersive 

x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), and x-

ray diffraction (XRD). 

vii. A five-tons uniaxial cold-pressing technique was used to prepare bulk size 

of sample i.e., 15155 mm. 

viii. Investigated thermoelectric properties were only limited to figure of merit 

(ZT), Seebeck, electrical resistivity and thermal conductivity. 

1.6 Significance of the Research 

Ceramic materials are known as non-toxic materials that can be synthesized 

and modified to become as thermoelectric materials. In this work, starch was used 

during synthesis as well as in preparing porous bulk Ca3Co4O9. It is not only 
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economical, easy to process but also more environmental friendly compare to many 

other synthesis methods which are toxic and posing safety issues during handily. The 

enhanced TE performance of Ca3Co4O9 is expected to increase the efficiency of waste 

heat conversion to useful energy which will directly benefit the society in many ways. 

The fundamental knowledge that generated from this study will provide valuable 

information on the control of the thermoelectric traits, morphology, and structure of 

the Ca3Co4O9 by adjusting the external parameters. 

1.7 Thesis Organization 

This thesis consists of five chapters. In the first chapter, the basics of 

thermoelectricity are introduced in the background and research problem statement 

explained with objectives as well as the scopes of the research. Chapter two overviews 

past research and recent developments that devoted to state of the art on thermoelectric 

oxides, focusing mainly on Ca3Co4O9. The experimental procedure, materials as well 

as analytical equipment used in this research are explained in Chapter 3. Chapter four 

presents the experimental and analysis of data between treatments. Statistical 

techniques are used to confirm the variations in the data. Finally, chapter five outlines 

the conclusions and recommendations of the research work.  
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