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ABSTRACT 

The formulation and numerical computation of the two-dimensional Stokes 
flow under the effect of a point source magnetic field are presented in this study. Stokes 
flow is also known as low Reynolds number, creeping flow, or non-inertial. Least-
squares finite element method (LSFEM) is successfully employed for the 
discretization of the Stokes equation. LSFEM has several advantages in terms of 
theory and computing, and it can create a symmetric and positive-definite algebraic 
system of equations that can be solved quickly and robustly using iterative approaches. 
However, LSFEM is having an issue where the low order nodal expansions tend to 
lock. Thus, the present study proposed the discretization of the problem domain using 
higher-order elements.  The source codes for the Stokes equation with and without the 
point source magnetic field effect have been developed and verified against the 
existing benchmark solutions. The verification achieved an excellent agreement. The 
solution of the Stokes flow in a lid-driven cavity and a straight rectangular channel 
subjected to the point source magnetic field are conducted. The results concerning 
velocity contour and streamlines pattern are analysed. Firstly, the streamlines pattern 
in the lid-driven cavity problem shows the development of a vortex at the bottom-left 
corner cavity. The new vortex appeared as the secondary flow in cavity. As the 
magnetic number grows, the primary flow separates from the secondary flow. 
Secondly, when the straight rectangular channel problem was solved, a single vortex 
HPHUJHG�DW�WKH�FKDQQHO¶V�ORZHU�ZDOO which is close to the point of the magnetic source. 
As the magnetic number increased, a new vortex appeared at the channel's upper wall. 
This shows that the point source magnetic field has a substantial impact on Stokes 
flow, as shown by the numerical simulation findings. Based on the current results, it 
can be concluded that the LSFEM can be used to solve Stokes flow problems with the 
effect of the point source magnetic field. 
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ABSTRAK 

Perumusan dan pengiraan berangka untuk aliran Stokes dua dimensi di bawah 

pengaruh titik sumber medan magnet dibentangkan dalam kajian ini. Aliran Stokes 

juga dikenali sebagai nombor Reynolds rendah, aliran menjalar, atau tidak inersia. 

Kaedah unsur terhingga kuasa dua terkecil (LSFEM) berjaya digunakan untuk 

pendiskretan persamaan Stokes. LSFEM mempunyai beberapa kelebihan dari sudut 

teori dan pengkomputeran, dan LSFEM dapat menghasilkan sistem persamaan algebra 

yang simetrik dan tentu positif yang dapat diselesaikan dengan cepat dan teguh 

menggunakan kaedah pelelaran. Namun, LSFEM menghadapi masalah di mana nod 

tambah peringkat rendah cenderung untuk terkunci. Oleh itu, kajian ini mencadangkan 

pendiskretan masalah domain menggunakan elemen peringkat tinggi. Kod program 

untuk persamaan Stokes dengan dan tanpa kesan titik sumber medan magnet telah 

dibangunkan dan disahkan dengan penyelesaian tanda aras yang sedia ada. Pengesahan 

ini mencapai persetujuan yang sangat baik. Penyelesaian aliran Stokes di dalam rongga 

yang tertutup dan saluran segi empat tepat lurus yang tertakluk kepada titik sumber 

medan magnet telah dijalankan. Hasil yang diperoleh untuk kontur halaju dan corak 

garis arus dianalisis. Pertama, hasil dari corak garis arus dalam masalah rongga yang 

tertutup menunjukkan bahawa vorteks berkembang berhampiran bawah sudut kiri 

rongga. Vorteks baharu itu muncul sebagai aliran kedua dalam rongga. Apabila nilai 

magnet bertambah, aliran utama terpisah dengan aliran kedua. Kedua, apabila masalah 

saluran segiempat tepat lurus diselesaikan, vorteks tunggal terbentuk di dinding bawah 

saluran yang berhampiran dengan titik sumber magnet. Apabila nilai magnet 

meningkat, vorteks baharu terbentuk di dinding atas saluran. Ini menunjukkan bahawa 

titik sumber medan magnet mempengaruhi aliran Stokes secara signifikan. 

Berdasarkan hasil dari kajian ini, boleh disimpulkan bahawa LSFEM boleh digunakan 

untuk menyelesaikan masalah aliran Stokes dengan kesan titik sumber medan magnet. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Problem Background 

A boundary value problem is a system of differential equations to be solved in 

a domain subject to the boundary conditions on the unknown function specified at two 

or more values of the independent variables (Ricardo, 2020). Fluid dynamics, 

magnetohydrodynamics, ferrohydrodynamics are the problems that can be modelled 

in terms of boundary value problems.  

Fluid dynamics is the study of fluids in motion where the pressure forces are 

considered. Fluid is a substance that continually flows when influenced by shear stress 

(force per unit area) of any magnitude such as liquid, gases, and plasmas (Munson et 

al., 2013). The application of fluid dynamics can be found in almost every area in our 

daily lives, such as the circulation of blood, hurricanes, airflow over planes and the 

flow of water in rivers or pipes. Fluid motion is usually influenced by the magnetic 

field and electromagnetic field and the interaction of the fluid with the magnetic field 

is made use of in MRI medical exams, nuclear fusion, transformer cooling, and more 

�ùHQHO�������. 

Ferrohydrodynamics (FHD) is a branch of fluid mechanics that study how 

magnetic polarisation affects fluid velocity. FHD deals with no electric current and 

considered that the flow is affected by the magnetization property of fluid in the 

magnetic field. While, magnetohydrodynamics (MHD) deals with the motion of an 

electrically conducting fluid in the presence of a magnetic field. The motion of 

conducting material across the magnetic lines of force creates potential differences 

which, in general, cause electric currents to flow. The body force in FHD is due to 

polarisation force, which in turn necessitates material magnetization when there are 

magnetic field gradients. In MHD, the flow of electric current across a magnetic field 
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is associated with a body force, which called Lorentz force, that influences the fluid 

(Rosensweig, 2013; Roberts, 1967). 

The fundamental governing equations of fluid dynamics consist of continuity, 

momentum, and energy equation which are expressed in terms of partial differential 

equations (PDE). These governing equations are upon three fundamental principles 

which are based on: (1) mass is conserved; (2) Newton's second law (F = ma); and (3) 

energy is conserved (Anderson and Wendt, 1995). These governing equations also 

required a numerical approach to obtain the solution since PDE cannot be solved 

analytically. Different kinds of discretization can be used to formulate a PDE 

approximation. Methods of discretization approximate the PDE utilizing numerical 

model equations, which may be solved numerically. 

Some essential characteristics of Stokes flow, such as negligibility of inertial 

forces, reversibility, and the minimal energy dissipation theorem. The nonlinear 

Navier-Stokes equation simplify to linear Stokes equation. The Navier-Stokes 

equation for an unsteady and viscous incompressible fluid are shown as 

ഥߩ�
തݑ߲
ҧݐ߲

 തݑҧሺߩ ή തݑሻ ൌ തݑଶҧߤ െ ҧ   ത�ǡܨ
    (1.1) 

 ή തݑ ൌ Ͳ�ǡ     (1.2) 

where ߩҧ is the fluid density, ݑത is the fluid velocity field, ߤҧ is the dynamic 

viscosity, ҧ is the pressure of fluid and ܨത is the external forces. Equation 1.1 has inertial 

forces on the left and viscous and pressure forces on the right, as well as any external 

body forces acting on the fluid element. This equation is predicated on the fluid 

elements incompressibility, which allows it to take on a simple form. It is necessary to 

utilise non-dimensionalisation to accurately depict the relative magnitude of forces. 

According to the Navier±Stokes equation, a dimensionless equation version is 

resulting as  

ܴ݁ ൬
ݑ߲
ݐ߲

 ݑ ή ൰ݑ ൌ ݑଶ െ    �ǡܨ
    (1.3) 
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where ܴ݁ is dimensionless Reynolds number, which defined as the ratio of inertial and 

viscous forces in a fluid. The left-hand side Equation (1.3) is the inertial force and the 

right-hand side Equation (1.3) is the viscous, pressure and body forces. 

When it comes to forces, the Stokes approximation occurs when viscous and 

pressure forces completely outweigh inertial forces. The Reynolds number can be used 

to determine whether or not Stokes approximation can be used to model fluids. As the 

ratio approaches 0, the Stokes approximation holds perfectly. As a result, Stokes flows 

are usually referred to as low Reynolds number, non-inertial, or viscous flows when 

discussing fluid dynamics. 

When ܴ݁ is approach to 0 in Equation (1.3), the dimensionless steady Stokes 

equation is obtained. While, in dimensional form, neglected external forces, sources, 

or sinks, the equations become 

തݑଶҧߤ െ ҧ ൌ Ͳ�ǡ     (1.4) 

������������ ή തݑ ൌ Ͳ�Ǥ     (1.5) 

Equation (1.4) depicts the balance of forces in a non-accelerating fluid, whereas 

Equation (1.5) depicts the mass conservation in incompressible fluids. For stiff walls 

and particle surfaces, the Stokes equation must be coupled with boundary conditions 

that are relevant to the physical environment. A surface, ܵ moves with local velocity, 

ഥݓ . The fluid velocity, ݑത has a no-slip boundary condition if on ܵ has 

ҧሻݎതሺݑ ൌ ҧݎ ҧሻ         forݎഥሺݓ א ܵ�Ǥ     (1.6) 

It is necessary to focus on no-slip boundary conditions when taking input from inertial 

forces, reversibility, and minimal energy dissipation. Since equations (1.4) and (1.5) 

are linear, classes of solutions may be created, such as for flow around a hard-sphere 

(Trombley and Ekiel-Jeewska, 2019). 

PDE numerical problems are often solved using methods such as the finite 

difference method (FDM), the finite volume method (FVM), the finite element method 

(FEM), and the boundary element method (BEM) (Venkateshan and Swaminathan, 

2013). Among these, the FEM is used to compute such approximations since FEM has 
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a benefit as it offers great freedom in the selection of discretization, both in the 

elements and in the basis function. Many possible finite element method formulations 

can be used for discretization such as Galerkin, weak-form Galerkin, least-squares, 

subdomain, and so on. Least-squares finite element method (LSFEM) has advantages 

over the Galerkin and weak-form Galerkin in several theoretical and computational for 

viscous incompressible flows. Equal-order interpolations may be accommodated using 

LSFEM based on velocity-vorticity formulation and the resulting matrices are always 

symmetric, positive, and definite. Discrete systems of equations may be solved using 

robust iterative techniques due to symmetric positive-definiteness (Reddy and 

Gartling, 2010). 

The present study is interested in solving the Stokes equation subjected to the 

point source magnetic field problem numerically by using LSFEM. 

1.2 Problem Statement 

The numerical approach method is frequently utilised to solve problems in a 

wide range of engineering and applied scientific disciplines. When the problems in 

real environments get more difficult and complex, new numerical techniques are 

needed. To relate with the real environmental problems, it is a must to also considered 

other effects and this usually results in coupled partial differential equations. Magnetic 

field effect has become one of the main interests in applications of medical sciences 

and bioengineering. Magnetic devices for cell separation, targeted medication 

delivery, magnetic cancer tumour therapy, bleeding reduction during surgery, and 

magnetic tracers are just a few of the new uses for magnets being developed. FEM is 

one numerical method that possible to obtain the solution of the problem that involves 

the magnetic field effect. Besides, FEM is a well-established and dependable 

numerical method for dealing with complex geometries, and it often achieves excellent 

accuracy with a coarser mesh than FDM and FVM. However, finite element 

formulation poses a stability issue in the presence of highly nonlinear body force. 

Based on the study by Abdullah et al. (2020), they are facing numerical instability 

when using the Galerkin weighted residual finite element method due to extremely 
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steep magnetic field gradient. In order to mitigate this issue, they introduced a 

stabilization term in their FEM formulation. Therefore, it presents a new challenge in 

finding other formulations that can be employed to obtain the solution. Among 

available formulations, LSFEM will be used since the numeric developments of this 

method has advantages that can always obtain symmetrical and defined positive 

algebraic system. The least-squares formulation is quite simple to use in the 

discretization of governing equations since these equations can be transformed to an 

equivalent first-order system. However, previous research emphasizes that the LSFEM 

has an issue where the low order nodal expansions tend to lock. Locking occurs in 

lower order elements because the elements kinematics are insufficient to represent the 

correct solution. It means the effect of a reduced rate of convergence in dependence of 

a parameter. Thus, the present study also needs to find a solution to solve this kind of 

issue. This is yet another attempt to solve the fluid flow with the effect of a point source 

magnetic field using such a formulation. 

1.3 Research Objectives 

The objectives of the research are: 

(a) to discretize the Stokes equation with point source magnetic field and the 

boundary conditions using least-squares finite element method (LSFEM) and 

to construct mesh for the case study problem using Gmsh software 

(b) to develop MATLAB code based on the numerical discretization that has been 

performed by using LSFEM model 

(c) to validate numerical formulation with benchmark problem 

(d) to analyse the effect of magnetic field in the lid-driven cavity and straight 

rectangular channel. 
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1.4 Scope of Study 

This research focused on numerical modelling of Stokes equation under a point 

source magnetic field. It is numerically done using the finite element method with 

least-squares formulations. In a lid-driven cavity and a straight rectangular channel 

problem, fluid flow is exposed to an external point source magnetic field. To introduce 

magnetic force into a flow, a spatially varying magnetic field is utilised. The flow is 

presumed to be two-dimensional, steady, Newtonian, electrically non-conducting, 

laminar and incompressible. The dimensional Navier-Stokes equation of the fluid flow 

under the effect of point source magnetic field are similar to those derived by 

Rosenweig (2013) and Senel and Tezer-Sezgin, (2016). While, the dimensionless 

Stokes equation for the problem study considered is the same as used by Senel and 

Tezer-Sezgin, (2016). The Stokes flow problem in the current study is extended from 

the study by Young and Yang (1996) with the addition of the point source magnetic 

field by referred to the study by Senel and Tezer-Sezgin (2016). 

The solution in this study is obtained using the least-squares finite element 

method (LSFEM). Least-squares formulations is used to discretize the governing 

equations and the boundary conditions. Two problem domains which are a lid-driven 

cavity and a straight rectangular channel are discretized using rectangular element. The 

meshing of the problem is constructed by using Gmsh software. Gmsh is an external 

mesh generator which can easily create geometries and meshes and it can export the 

mesh directly to MATLAB software by using post-processor. Then, MATLAB source 

code is developed in order to obtain the solution. Velocity contours and streamlines 

are used to represent the numerical results for various magnetic number. 

1.5 Significance of Research 

This study concerns the finite element formulations for the coupled problem of 

the fluid dynamics with influences of the magnetic field. The significance of this study 

would be on the first application of the LSFEM in the study of Stokes flow under the 
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effect of a point source magnetic field. With the approach of this study, it is hoped that 

an understanding of the behaviour of the flow, when subjected to an external point 

source magnetic field, can be obtained. Effects such as the disturbance in the velocity 

of the flow and the formation of the vortex can be used for practical purposes in 

medical and bioengineering. Furthermore, this study will serve as a springboard for 

future research into coupled fluid dynamics problems in finite element modelling. 

1.6 Overview of Thesis 

The present chapter gives a brief introduction to fluid dynamics and the 

numerical approach. There is a problem statement, followed by a research aim and 

objectives, that explains why the study is needed. The importance and scope of the 

study are also discussed at length at the end of this chapter. 

The rest of the thesis is divided into five chapters. A review of the literature is 

given in Chapter 2. The chapter begins with research on Stokes flow. An overview of 

coupled fluid dynamics and magnetic field effect problem is presented afterward 

emphasizing the FHD and MHD principles. Several numerical methods typically used 

for the solution of Stokes equation are presented with their advantages and 

disadvantages highlighted. Then, the LSFEM for the solution of the governing 

equations is discussed thoroughly. 

In Chapter 3, the Navier-Stokes equation under the magnetic field effect is 

presented in dimensional form. Then, the nondimensional variables are used to 

transform these equations into dimensionless form. After applied the conditions for the 

Stokes flow case, the Stokes equation subjected to the magnetic field are presented. 

Modelling of Stokes flow under magnetic field effect problem by the LSFEM is 

conducted. Then, the dimensionless Stokes equation are discretized using the least-

squares formulation.  

In Chapter 4, the finite element method numerical scheme is presented briefly.  

Mesh for the discretization of the domain is constructed by using Gmsh and the usage 
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of Gmsh is demonstrated step by step. The source code that has been developed is 

validated with the previous research and COMSOL Multiphysics 5.2 software. 

Chapter 5 focused on the results of the Stokes problem. Two problems in which 

the Stokes flow under magnetic field effect in the lid-driven cavity and straight 

rectangular channel are considered. This chapter presents the results on the effect of 

the applied magnetic field in both problems. The results concerning velocity and 

streamline are observed and discussed. 

Overall results from this study are provided in Chapter 6 of this thesis as a 

conclusion. The simulation's results are in, and many takeaways for further research 

are offered.
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