
 

LEAKAGE CURRENT BASED ONLINE CONDITION MONITORING OF 

METAL OXIDE SURGE ARRESTERS WITH HARMONICS  

COMPENSATION 

 

 

 

 

 

 

 

 

 

 

 

ABDULLAH MUNIR 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA



 

LEAKAGE CURRENT BASED ONLINE CONDITION MONITORING OF 

METAL OXIDE SURGE ARRESTERS WITH HARMONICS  

COMPENSATION  

 

 

 

 

 

 

 

ABDULLAH MUNR 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

School of Electrical Engineering 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

JUNE 2022 



iv 

ACKNOWLEDGEMENT 

All praises to Almighty ALLAH, countless thanks to HIM, who guides in 

darkness and helps in difficulties. 

My deepest appreciation is in debt to my experienced, kind and honorable 

supervisor, Prof. Dr. Zulkurnain Abdul-Malek, Institute of High Voltage & High 

Current (IVAT), School of Electrical Engineering, UTM, whose consistent 

encouragement, guidance and support at every step made it possible for me to 

successfully complete this research work. I want to express my deepest gratitude to 

my co-supervisor Dr. Zuraimy Bin Adziz, for providing some inspiring discussions 

and valuable comments.  

I would also express my gratitude to Assistant Engineers at IVAT including 

Mr. Hairoisyam Abd. Rani, Mr. Abd Mohsin Abd Razak, and Mr. Mohamad Syahrin 

Mohamad. They have helped me a lot to perform experiments in the laboratory. I 

would also like to thanks my fellow postgraduate students, who should also be 

recognized for their support.  

It is my privilege to thank my parents Mr & Mrs. Munir Alam. I cannot thank 

them ample for their unconditional affection, care, and prayers which lead me to 

Success. My siblings Zain Ul Abideen Baig, Safoorah and Maryam that gave me the 

forte to complete my PhD and to accomplish my goals. 

I would like to thanks my In-laws and exceptional credit to my wife, Ammara, 

without her cooperation and appreciative behavior it would be impossible for me to 

complete my PhD. I also appreciate her for giving me time. And last but not the least 

my loveliest kids Abeeha Fatima, Abdul Rahman, and Muhammad Huzaifa. Their 

innocent cheerful eyes and full of life smile gave strength as well as an inspiration to 

sum up my work. 

 

Thank you very much everyone! 

  



v 

ABSTRACT 

Metal oxide surge arresters (MOSA) are used as overvoltage limiting devices to 

protect the transmission and distribution system from high voltage surges caused by 

severe lightning and switching operations. Their health and hence condition monitoring 

are vital to ensure the reliability of the power system. Any deterioration of the non-linear 

properties of a MOSA is known to cause a corresponding increase in the resistive 

leakage current, especially the odd harmonic components of the resistive current. The 

arrester resistive leakage current level is a known and reliable indicator of MOSA 

deterioration, provided it can be successfully extracted from the arrester total leakage 

current. The currently available resistive leakage current extraction techniques are 

divided into either system voltage independent or system voltage dependent. Even 

though the extraction is made simpler by having a simultaneous arrester voltage signal, 

the voltage measurement is either difficult or prohibitive. Several previously proposed 

voltage independent extraction techniques suffer from inaccuracies. In addition, the 

presence of harmonics in the supply voltage also affects the accuracy of the extraction 

techniques. The research aims to improve the accuracy of the MOSA resistive leakage 

current extraction by means of a modified shifted current method-circuit based method 

(MSCM-CBM) hybrid technique, a thumb-rule based technique for compensating the 

effects of voltage’s harmonics, and a condition monitoring technique using the resistive 

fifth harmonic leakage current, IR5th, as an ageing indicator of MOSA. The MSCM-CBM 

hybrid method was developed and tested on Simulink software and then experimentally 

applied on 120 kV rated MOSAs. Results show that the resistive current extracted by 

the proposed hybrid method is 3.2 % more accurate than that for the modified shifted 

current method. The execution of the proposed thumb-rule technique is based on the 

determination of the total harmonic distortion of both the system voltage and the MOSA 

total leakage current. The proposed thumb-rule technique is at least 10.5 % more 

accurate than the existing compensation techniques. The condition monitoring technique 

of MOSA based on the resistive fifth harmonic is found to be less sensitive towards the 

voltage harmonics as compared to that using the third harmonic current. Results show 

that the proposed fifth harmonic-based ageing indicator of MOSA is 1.6 % more 

accurate than that for the existing third harmonic-based indicator. It is also found that 

the trend of IR5th variation with respect to the applied arrester terminal voltage and 

arrester ageing is similar to that of IR3rd. The performance of the proposed IR5th based 

condition monitoring of MOSA was also validated using the maximum temperature and 

power loss measurements. The improved accuracies provided by the MSCM-CBM 

based hybrid method, rule of thumb-based compensation and IR5th based condition 

monitoring may provide a solution for better and more efficient MOSA condition 

monitoring.   
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ABSTRAK 

Penangkap Pusuan Metal Oksida (MOSA) digunakan sebagai peranti 

pengehad voltan lampau untuk melindungi sistem penghantaran dan pengagihan 

daripada pusuan voltan tinggi yang disebabkan oleh kilat yang teruk dan operasi 

pensuisan. Kesihatan dan pemantauan keadaan peranti tersebut adalah penting untuk 

memastikan kebolehpercayaan sistem kuasa. Sebarang kemerosotan ciri tak linear 

MOSA memang diketahui menyebabkan peningkatan yang sepadan dalam arus bocor 

rintangan, terutamanya komponen harmonik ganjil arus rintangan. Paras arus bocor 

rintangan penangkap pusuan merupakan penunjuk kemerosotan MOSA yang 

diketahui dan boleh dipercayai, dengan syarat ia berjaya diekstrak daripada jumlah 

arus bocor penangkap. Teknik pengekstrakan arus bocor rintangan yang tersedia pada 

masa ini dibahagikan kepada sama ada bebas dari voltan sistem atau bergantung 

kepada voltan sistem. Walaupun pengekstrakan boleh dibuat lebih mudah jika pada 

masa yang sama ada isyarat voltan penangkap, pengukuran voltan pula adalah sama 

ada sukar atau terlarang. Beberapa teknik pengekstrakan bebas voltan yang 

dicadangkan sebelum ini mengalami ketidaktepatan. Selain itu, kehadiran harmonik 

dalam voltan bekalan juga mempengaruhi ketepatan teknik pengekstrakan. 

Penyelidikan ini bertujuan untuk meningkatkan ketepatan pengekstrakan arus bocor 

rintangan MOSA dengan teknik hibrid antara kaedah arus anjakan yang diubah suai 

dan kaedah berasaskan litar (MSCM-CBM), teknik berasaskan peraturan ibu jari untuk 

pampasan kesan harmonik voltan, dan satu teknik pemantauan keadaan menggunakan 

arus bocor rintangan harmonik kelima, IR5th, sebagai penunjuk penuaan MOSA. 

Kaedah hibrid MSCM-CBM telah dibangunkan dan diuji pada perisian Simulink dan 

kemudian digunakan secara ujikaji ke atas MOSA berkadar 120 kV. Keputusan 

menunjukkan bahawa arus rintangan yang diekstrak oleh kaedah hibrid yang 

dicadangkan adalah 3.2% lebih tepat daripada kaedah arus anjakan yang diubah suai. 

Pelaksanaan teknik peraturan ibu jari yang dicadangkan adalah berdasarkan penentuan 

jumlah herotan harmonik kedua-dua voltan sistem dan jumlah arus bocor MOSA. 

Teknik peraturan ibu jari yang dicadangkan adalah sekurang-kurangnya 10.5 % lebih 

tepat daripada teknik pampasan sedia ada. Teknik pemantauan keadaan MOSA 

dibangunkan berdasarkan harmonik kelima rintangan didapati kurang sensitif terhadap 

harmonik voltan berbanding dengan yang menggunakan arus harmonik ketiga. 

Keputusan menunjukkan bahawa penunjuk penuaan berasaskan harmonik kelima yang 

dicadangkan bagi MOSA adalah 1.6 % lebih tepat daripada penunjuk berasaskan 

harmonik ketiga yang sedia ada. Ia juga didapati bahawa arah aliran variasi IR5th 

dengan perubahan voltan terminal penangkap dan penuaan penangkap adalah serupa 

dengan IR3rd. Prestasi pemantauan keadaan berasaskan IR5th yang dicadangkan bagi 

MOSA juga telah disahkan dengan menggunakan pengukuran suhu dan kehilangan 

kuasa maksimum. Ketepatan yang lebih baik yang disediakan oleh kaedah hibrid 

berasaskan MSCM-CBM, pampasan berasaskan peraturan ibu jari dan pemantauan 

keadaan berasaskan IR5th mungkin menyediakan penyelesaian bagi pemantauan 

keadaan MOSA yang lebih baik dan cekap. 
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Metal Oxide Surge Arresters (MOSAs) act as overvoltage limiting devices to 

protect the transmission and distribution system from high voltage surges caused by 

severe lightning and switching operations [1, 2]. Any damage or malfunctioning in the 

arrester may disrupt the operation of other electrical equipment installed in the grid [3, 

4]. Therefore, the arrester condition monitoring is vital to ensure the reliability of the 

power system [5, 6].  

The most popular type of gapless MOSA contains zinc oxide elements due to 

its highly nonlinear voltage-current characteristic and faster conduction response for 

high voltage surges [7, 8]. As the non-linearity of zinc oxide is not ideal, in other 

words, its impedance cannot be designed to be infinite, it continuously draws leakage 

current when put in service at the standard operating voltage [9, 10]. Previous 

researchers have proposed numerous condition monitoring techniques of MOSA. By 

far, the leakage current based condition monitoring is the most widely employed 

technique to assess the ageing and degradation of MOSA [6, 11-15].  

The leakage current of a gapless arrester can be acquired in two ways; offline 

and online measurements [16, 17]. The offline method requires the disconnection of 

the arrester from the grid, while the online technique monitors the leakage current of 

on-site arresters [18-20] without any grid supply disruption. Hence, to avoid the power 

disruption from the grid stations to the consumers when carrying out condition 

monitoring of MOSA, measuring the arrester’s leakage current online is paramount 

[18, 21, 22].      



 

2 

The measured total arrester leakage current can be decomposed into the 

resistive and capacitive components [23, 24]. Clearly, the magnitude of the capacitive 

leakage current is linearly related to the applied voltage across the arrester terminals 

[25]. However, the resistive current has a non-linear relationship with the terminal 

voltage due to the non-linear zinc oxide characteristics [26-28]. More importantly, any 

deterioration in the non-linear properties of the MOSA is known to cause an increase 

in the resistive leakage current, particularly the odd harmonic components of the 

resistive current [29, 30]. In fact, the arrester resistive leakage current level is a known 

and reliable indicator of MOSA deterioration [5, 10, 19, 26-28, 31-33], provided it can 

be successfully extracted from the arrester total leakage current.  

Several techniques and algorithms have been developed to extract the resistive 

component from the total leakage current. These techniques and algorithms can be 

divided into two categories; (i) system voltage-independent and (ii) system voltage-

dependent categories [34, 35]. In the first category, the measurement of the system 

voltage is not required for successful implementation of the technique. On the contrary, 

the techniques in the system voltage dependent category (second category), the 

measurement of the system voltage is compulsory. Previously done research has 

shown that system voltage-independent techniques are easier to implement. On the 

contrary, system voltage-dependent techniques are rather difficult to execute because 

of the fact that recording system voltage profile using a high voltage probe is 

challenging for routine online MOSA condition monitoring. Examples of the system 

voltage-independent techniques (first category) are the Third Order Harmonic 

Analysis Method (TOHM) [17], Modified Shifted Current Method (MSCM) [36], 

Evolutionary Optimization Algorithm (EOA) [37], Orthogonal Vector Method (OVM) 

[38], and Circuit-based Analytical Method (CBM) [9]. While, the system voltage-

dependent techniques (second category) include the Voltage-peak or Conventional 

Method (CM) [39], Capacitive Current Compensation Method (CCCM) [40],  Field 

Probe Method (FPM) [41], Improved Capacitive Current Method (ICCM) [42], 

Improved Time Delay Method (ITDM) [43], Current Orthogonality Method (COM) 

[44], Least Square Method (LSM) [45], Multiple Linear Regression Method (MLRM) 

[46], and Genetic Algorithm (GA) [29].  
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It is noted that the system voltage-independent techniques are easier to 

implement due to the fact that the arrester terminal voltage measurement in an 

energised substation is quite challenging, especially during routine online 

measurements [47, 48]. Because of this difficulty, the arrester condition monitoring 

techniques based on the resistive leakage current from the first category are usually 

preferable. In particular, the modified shifted current method (MSCM) and the circuit-

based analytical method (CBM), both of which do not require the arrester voltage to 

be measured, are the two most commonly employed resistive leakage current 

extraction techniques [34, 49]. Nevertheless, the resistive current computation 

accuracy provided by both techniques can still be further improved so that a better 

arrester condition assessment that what are currently offered can be made. Among the 

ideas for the improvement include the use of a suitably chosen hybrid or combined 

form of available techniques.   

As previously mentioned, any deterioration of the non-linear properties of the 

metal oxide arrester is known to cause a corresponding increase in its resistive leakage 

current. The presence of harmonics in the system voltage may introduce errors in the 

resistive leakage current based condition monitoring technique of the metal oxide 

arrester. In a typical power system, harmonic components can be introduced into the 

system due to many causes such as from the load containing power electronics circuits. 

To maintain the arrester condition monitoring accuracy, the presence of such 

harmonics in the measured resistive leakage current must be eliminated or minimised. 

The authors in [32, 41, 42, 50-54] have studied and highlighted the effects and 

variations produced in the leakage current due to the system voltage harmonics. 

Several authors have introduced means to minimise the influence of voltage harmonics 

in the arrester condition monitoring techniques. Several of the reported elimination or 

minimisation techniques include CCCM [40], COM [44], and ITDM [43]. 

Unfortunately, most of these techniques seem to only suppress the harmonic 

components of the arrester capacitive leakage current [34] and are lack of any 

procedure to compensate for the variation in the arrester resistive leakage current due 

to the presence of harmonics in the supply voltage. Furthermore, these algorithms rely 

on the system voltage and the connection of the measurement system with the tested 

MOSA to extract its resistive leakage current. In addition, lengthy procedures are 

required to implement these techniques. An attempt to eliminate the effect of voltage 
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harmonics in the resistive leakage current had been made using FPM and ICCM [41]. 

The commercially available leakage current measurement devices use the field probe 

method to minimize influence of voltage harmonics. However, the accuracy of the 

results is limited to only 20%. Another attempt at solving the problem is by using 

ICCM [42]. However, the execution of ICCM involves rather complex steps, and its 

accuracy is also questionable. Hence it can be said that the existing methods to 

compensate for the effect of system harmonics on the extracted resistive leakage 

current are either too complicated or not accurate enough. Therefore, it is desired to 

simplify the voltage harmonics elimination method as well to improve its elimination 

accuracy, in particular, using the techniques in the voltage independent category.  

The sensitivity of leakage current increase to the deterioration of the non-linear 

properties is in fact more prevalent on the odd harmonic components of the resistive 

current. As previously noted, the measurement of odd harmonics of the resistive 

leakage current, especially the third harmonic component is a well-known metal oxide 

arrester condition monitoring technique. This is because the third harmonic resistive 

leakage current exhibits more sensitivity to ageing than that of the bulk resistive 

current [5, 22, 33, 55, 56]. Many researchers have proposed the resistive third 

harmonic current based condition monitoring techniques of MOSA such as leakage 

current method [33], flattop window algorithm [53], Prony analysis-Hilbert transform 

[32] and Fast Fourier transform method [50]. However, these techniques are less 

accurate in the presence of voltage harmonics. This is because the presence of odd 

harmonics in the system voltage increases the peak magnitude of the measured arrester 

resistive third harmonic current [27, 32, 33, 40, 42, 44, 50, 51, 53]. This increased 

magnitude of the third harmonic resistive current may result in a wrong assessment of 

the MOSA’s degradation status. For example, the presence of voltage harmonics has 

produced 10% and 39% errors in the extraction of the arrester resistive third harmonic 

current using the fast fourier transform and the leakage current method, respectively 

[33, 50]. Similarly, an error of 32-67% is introduced when neglecting the influence of 

voltage harmonics in the resistive third harmonic current, as reported in the flattop 

window-based of MOSA [53]. The prony analysis-Hilbert transformation method also 

reports an error of 40% in the resistive third harmonic current due to the presence of 

voltage harmonics [32]. Furthermore, the variation in odd harmonic components of the 

resistive leakage current produced by the voltage harmonics is still not studied. It can 
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therefore be concluded that the resistive third harmonic current based condition 

assessment of MOSA is particularly and badly affected by the voltage harmonics. 

Hence a new ageing indicator is highly needed for the condition monitoring of MOSA, 

to avoid the inaccurate assessment in the presence of voltage harmonics.  

1.2 Research Problem Statement  

Previous studies have shown that MSCM and CBM are the most widely used 

system-voltage independent techniques for the extraction of resistive leakage current. 

However, the approximation of capacitive leakage current and the use of a constant 

phase angle between the total leakage current and its capacitive component make the 

MSCM algorithm rather inaccurate. On the other hand, the CBM algorithm is based 

on producing a peak magnitude of the resistive component of the leakage current only, 

without even generating its corresponding complete waveform. Based on these 

arguments, it is concluded that the existing voltage-independent techniques should be 

further improved to increase the accuracy of the resistive leakage current extraction. 

Therefore, it is essential to propose an improved algorithm to extract the arrester 

resistive leakage current with more straightforward steps and improved accuracy than 

the existing methods. The distortion in the system or source voltage affects the 

accuracy of metal oxide arrester resistive leakage current extraction algorithms. The 

existing techniques employed to compensate the influence of system harmonics in the 

resistive leakage current only suppress the capacitive leakage current harmonics. 

Furthermore, the need for the system voltage, lengthy measurement and computational 

procedures and low accuracy are the major drawbacks of the techniques employed to 

extract resistive leakage current in the presence of voltage harmonics. Therefore, it is 

required to propose some techniques to compensate for the effects of voltage 

harmonics in the resistive leakage current without the need for measuring the system 

voltage. Previous research has shown that the resistive leakage current's third harmonic 

component is considered the most reliable ageing indicator of MOSA. However, the 

condition monitoring of MOSA based on the resistive third harmonic current is 

particularly and severely affected by voltage harmonics. Therefore, it is highly needed 
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to propose some alternative ageing indicators other than the resistive third harmonic 

current, which are less affected by the voltage harmonics.  

1.3 Research Objectives 

The objectives of the research are:  

(a) To develop a modified shifted current method-circuit based analytical method 

(MSCM-CBM) hybrid technique with an improved measurement accuracy for 

the metal oxide arrester resistive leakage current extraction technique.  

(b) To develop a thumb-rule based technique for compensating the effects of 

voltage harmonics in the extracted resistive leakage current of MOSA. 

(c) To develop a condition monitoring technique using the resistive fifth harmonic 

leakage current as an ageing indicator of MOSA. 

1.4 Research Scope 

The scopes and limitations of this work are listed to define the intended 

boundary in which the research is conducted. These are mentioned below:  

(a) Only the gapless polymeric housed 120 kV rated MOSAs were used for the 

experiments and validation of the proposed method, as they are most widely 

employed in the electrical grid.   

(b) Only one current sensor, ALCL-40D, was clamped on the ground wire to 

measure the total leakage current of MOSA.  

(c) The performance of the resistive fifth harmonic current as an ageing indicator 

is correlated with the surface temperature of MOSA in a laboratory 

environment. 
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1.5 Research Significance 

The significance of this research is listed as:  

In this research, a more straightforward and accurate method for extracting 

resistive leakage current of 120 kV rated MOSA has been proposed and verified 

experimentally. The implementation of this method is not dependent on the system 

voltage measurement. Also, the accuracy of results is not varied with the sensitivity of 

the leakage current measurement system.  

Furthermore, a method has also been proposed to compensate for the influence 

of voltage harmonics in the measured resistive leakage current of MOSA. The 

proposed technique can be implemented by determining the total harmonic distortion 

of system voltage and leakage current of MOSA only. This technique also provides 

the waveform of the compensated resistive leakage current.  

This research proposes the peak value of resistive fifth harmonic current as an 

ageing indicator of MOSA. The third harmonic component of the resistive leakage 

current varies more significantly with the voltage harmonics than the proposed index.   

However, the online condition monitoring of MOSA based on the proposed index 

proves to be more accurate than the resistive third harmonic current when the system 

voltage contains harmonics.  

1.6 Contributions of Research  

The following research contributions are listed: 

(a) MSCM-CBM hybrid algorithm for the extraction of resistive leakage 

current of MOSA: Several systems voltage-independent algorithms have been 

proposed to extract the resistive leakage current, including MSCM and CBM. 

However, the performance of MSCM is affected by assuming the 
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approximated magnitude of capacitive current and constant phase angle 

between the leakage current components at all levels of the source voltage. 

Likewise, CBM is not able to produce the resistive leakage current waveform. 

Furthermore, their results are erroneous in the presence of voltage harmonics. 

Therefore, this research proposes an algorithm based on the hybrid 

combination of MSCM and CBM to extract the resistive leakage current of 

online MOSAs and hence provides more straightforward computational steps. 

The MSCM-CBM hybrid method was developed and tested on Simulink 

software and then experimentally applied on 120kV rated MOSA. Results 

show that the resistive current extracted by the proposed hybrid method is 3.2 

% more accurate than the modified shifted current method. Based on findings, 

it is concluded that the accuracy of resistive leakage current based condition 

monitoring of MOSA is improved by implementing the proposed technique. 

Simpler computational steps and voltage independence are the key features of 

the proposed hybrid algorithm.   

(b) A rule of thumb technique for voltage harmonic compensation: Previous 

studies have shown that the resistive leakage current extraction techniques' 

accuracy decreases due to harmonic population in the system voltage. Some 

techniques have been proposed so far to consider the influence of voltage 

harmonics while extracting the peak magnitude of resistive leakage current, 

such as the CCCM, COM, and ITDM. But the measurement of system voltage, 

connection of hardware circuitry, lengthy and complex procedures are the 

major drawbacks of these techniques. In addition to this, the FPM is the most 

widely used technique for the compensation of harmonics. Corrective 

multipliers based on the applied and rated voltage ratio are used to compensate 

for the maximum magnitude of the resistive leakage current. But its results are 

less accurate to eliminate the variation in the resistive leakage current due to 

the voltage distortion. Therefore, the thumb rule technique has been proposed 

to eliminate the effects of voltage harmonics from the results of the hybrid 

method. The execution of the proposed technique is based on the measurement 

of THD of the system voltage and total leakage current only. This technique 

determines the magnitude of capacitive and resistive current harmonics 

induced by the voltage distortion. The performance of the proposed method is 

also validated by comparing its findings with the results of FPM. Based on the 
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results, it is concluded that the proposed technique is at least 10.5 % more 

accurate than the existing compensation technique to correct the peak 

magnitude of resistive leakage current from the effects of the harmonics.  

(c) A resistive fifth harmonic current based condition monitoring of MOSA: 

Literature review has shown that the resistive third harmonic current based 

condition monitoring of MOSA is affected due to the presence of harmonics in 

the system voltage. Many researchers have reported a significant error in the 

peak magnitude of the third harmonic current induced by the voltage distortion. 

Therefore, it is essential to determine the odd harmonic components of resistive 

leakage current as an ageing indicator of MOSA. This research proposes the 

peak magnitude of resistive fifth harmonic current as an ageing indicator of 

MOSA. Results have shown that the variation trend of IR5th with the applied 

voltage and ageing of the arrester is similar to that of IR3rd. The ageing 

classification of the tested MOSAs is verified experimentally by computing the 

% ratio of (IR3rd/IR) and (IR5th/IR) at the voltage levels from 70 to 120 kV. At the 

rated voltage level, the percentage ratio (IR3rd/IR) of all MOSA samples, 

namely, samples I to V, are determined to be 36.2, 40.6, 38.1, 39.2, and 35.0 

%, respectively. On the other hand, the ratio (IR5th/IR) for samples-I to V at the 

rated voltage is 19.3, 21.2, 19.8, 20.5, and 17.3 %, respectively. The proposed 

ageing index is validated by determining the surface temperature and power 

loss parameters of 120kV rated tested MOSAs. Based on the results, it is 

concluded that the proposed resistive fifth harmonic current based condition 

monitoring of MOSA is more accurate than the existing technique in the 

presence of voltage harmonics. 

1.7 Thesis Structure  

This thesis is divided into a total of five chapters. Chapter 1 discusses the 

background of the research domain, problem statement to conduct the research, 

designed objectives to accomplish the work, scope, significance and achievements of 

the research.  
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Chapter 2 deliberates a comprehensive critical review on the techniques 

employed for the online condition monitoring of MOSA. Leakage current based 

condition monitoring of arresters is the most commonly used technique from the 

reviewed articles. However, previous studies have also revealed that the resistive 

component of total leakage current exhibits more sensitivity towards ageing and 

degradation of the arrester. Therefore, this research reviews the methodology, 

implementation, advantages and disadvantages of the available techniques used to 

extract resistive leakage current. It is also reviewed that the effect of voltage harmonics 

from the resistive leakage current and its harmonics is not considered in the available 

literature. These shortcomings of the existing techniques can be overcome by 

implementing a resistive current extraction method and compensating the effect of 

voltage’s harmonics and it.  

Chapter 3 presents the methodology to implement the proposed method to 

extract the resistive leakage current of MOSA without measuring the applied voltage. 

Furthermore, the procedure to implement the thumb-rule based technique is also 

discussed to compensate voltage’s harmonics from the resistive leakage current. 

Moreover, the methodology to propose the resistive fifth harmonic current as a MOSA 

ageing indicator is also explained.  

Chapter 4 is assigned to discuss the results of the proposed method to measure 

the resistive leakage current of 120 kV rated MOSA. First, the performance of the 

proposed method is validated by comparing the simulation and experimental results. 

Then, the proposed method results are also compared with the existing techniques to 

determine its accuracy. Furthermore, the findings of the thumb rule technique to 

compensate for the influence of voltage harmonics from the resistive current are also 

illustrated. Moreover, the variation of peak magnitude of the fifth harmonic component 

of resistive current with the voltage harmonics is also deliberated.  

Chapter 5 concludes the thesis's significant findings and provides a future 

recommendation further to improve the accuracy of online condition monitoring of 

MOSA. 
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