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ABSTRACT 

Contemporary technological advancements drive the need for optimized Rare 
Earth Ions (REIs) host combination for lasing and thermoluminescence (TL) 
applications whereas the weak absorption cross-section of the REIs remains a 
challenge. Herein, a series of Sm3+ doped Barium-Sulfur-Telluro-Borate (BSTB) 
glass was prepared by the melt-quenching method. The role of Sm3+/Dy3+ co-doping 
and pure gold nanoparticles (AuNPs) embedment on the absorption cross-section of 
Sm3+ in the synthesized glasses was studied. The structural properties of the 
quenched glass samples were investigated using X-Ray Diffraction (XRD), Fourier 
Transform Infrared (FTIR) and Energy Dispersive X-ray (EDX) analyses. The 
Ultraviolet-Visible-Near-Infrared Spectroscopy (UV-Vis-NIR) spectra of the glasses 
exhibited characteristic absorption transitions of Sm3+. The photoluminescence (PL) 
spectra of the Sm3+-doped glasses showed four emission bands due to the 
4G5/2→

6H5/2, 
4G5/2→

6H7/2, 
4G5/2→

6H9/2 and 4G5/2→
6H11/2 transitions in Sm3+ with 

varying intensities. The glass made with Sm2O3 content of 1 mol% revealed 
maximum PL intensity and this composition was chosen for co-doping with Dy2O3. 
Moreover, the obtained lasing attributes were also considerably affected due to co-
doping factor. High branching ratio and emission cross-section of 93.12% and 
60.9910-23 cm2 were obtained, respectively. Energy transfer mechanism from the 
Dy3+ to Sm3+ was confirmed from PL decay analysis. This energy transfer induced 
the shift in the CIE coordinates of the glasses from the reddish-orange zone towards 
the white region. The obtained Transmission Electron Microscope (TEM) images of 
the AuNPs embedded glasses showed the presence of irregularly shaped AuNPs with 
an average diameter of 29 nm. The AuNPs Surface Plasmon Resonance (SPR) bands 
were found at 670 and 718 nm. The SPR mediation stimulated the shift in the 
chromaticity coordinates from white to yellowish-orange zone. While the Sm3+-
doped sample glasses did not show any TL response, the co-doped and AuNPs 
embedded glasses displayed TL response exhibiting a simple second-order glow 
curve with maximum intensity (Im) at 272 oC. The appearance of Im at high-
temperature region indicated the stability of the glass against fading effect. The 
activation energies of the optimum glass obtained using the peak shape, initial rise, 
whole glow curve and computerized glow curve deconvolution methods were 1.021, 
1.50, 1.537, and 1.369 eV, respectively. In conclusion, BSTBSmDyAu0.1 glass 
sample is best suited for lasing and thermoluminescence applications due to high 
branching ratio and emission cross-section approximately 55% and 111×1023 cm2, 
respectively, coupled with the exhibited simple TL glow curve. 
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ABSTRAK 

 Kemajuan teknologi sezaman mendorong perlunya penggabungan perumah 
ion nadir bumi (REIs) yang dioptimumkan untuk aplikasi laser dan 
termopendarcahaya (TL) sedangkan keratan rentas penyerapan REIs yang lemah 
kekal menjadi cabaran. Di sini, satu siri kaca Sm3+ terdop Barium-Sulfur-Telluro-
Borat (BSTB) telah disediakan dengan kaedah pelindapkejutan leburan. Peranan ko-
dopan Sm3+/Dy3+ dan nanopartikel emas tulen (AuNPs) pada keratan rentas 
penyerapan Sm3+ dalam kaca yang disintesis telah dikaji. Sifat struktur sampel kaca 
yang dilindapkan disiasat menggunakan analisis Pembelauan Sinar-X (XRD), 
InfraMerah Transformasi Fourier (FTIR) dan tenaga sinar-X terserak (EDX). 
Spektrum kaca spektroskopi Ultralembayung-Cahaya Nampak-Hampir-InfraMerah 
(UV-Vis-NIR) menunjukkan ciri peralihan penyerapan Sm3+. Spektrum 
kefotopendarcahayaan (PL) dari kaca terdop Sm3+ menunjukkan empat jalur 
pancaran disebabkan oleh peralihan dalam Sm3+ daripada 4G5/2→

6H5/2, 
4G5/2→

6H7/2, 
4G5/2→

6H9/2 dan 4G5/2→
6H11/2 dengan keamatan yang berbeza. Kaca yang dibuat 

dengan kandungan 1 mol% Sm2O3  menunjukkan keamatan PL yang maksimum dan 
komposisi ini dipilih sebagai ko-dopan dengan Dy2O3. Tambahan pula, atribut laser 
yang diperoleh juga dipengaruhi oleh faktor ko-dopan. Nisbah mencabang dan 
keratan rentas pancaran yang tinggi masing-masing berjumlah 93.12% dan  
60.99×10-23 cm2 telah diperolehi. Mekanisme pemindahan tenaga dari Dy3+ ke Sm3+ 
disahkan dari analisis pereputan PL. Pemindahan tenaga ini mendorong anjakan 
koordinat CIE kaca dari zon jingga-kemerahan ke kawasan putih. Imej mikroskop 
elektron hantaran (TEM) yang diperoleh dari kaca terbenam AuNP menunjukkan 
kehadiran AuNP berbentuk tidak seragam dengan diameter purata 29 nm. Jalur 
Resonans Plasma Permukaan (SPR) AuNPs ditemui pada 670 dan 718 nm. Penengah 
SPR meransang anjakan koordinat kromatisiti dari zon putih ke jingga-kekuningan. 
Walaupun sampel kaca terdop Sm3+ tidak menunjukkan sambutan TL, tetapi sampel 
kaca ko-dopan dan kaca AuNP terbenam menunjukkan sambutan TL yang 
mempamerkan lengkung bara aturan kedua yang ringkas dengan keamatan 
maksimum (Im) pada suhu 272 oC. Penampilan Im di kawasan suhu tinggi 
menunjukkan kestabilan kaca terhadap kesan pudaran. Tenaga pengaktifan kaca 
optimum yang diperoleh menggunakan kaedah bentuk puncak, kaedah kenaikan 
awal, kaedah lengkung bara penuh, dan kaedah penyahkonvolusi lengkung bara 
berkomputer masing-masing adalah 1.021, 1.50, 1.537, dan 1.369 eV. 
Kesimpulannya, sampel kaca BSTBSmDyAu0.1 paling sesuai untuk aplikasi laser 
dan termopendarcahaya disebabkan oleh nisbah mencabang yang tinggi dan keratan 
rentas pancaran masing-masing kira-kira 55% dan 111×10-23 cm2, ditambah dengan 
lengkung bara TL ringkas yang dipamerkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

This chapter describes the fundamental knowledge of the study. Thus, the 

chapter encompasses the research background, problem statement, research 

objectives, scope, the significance of the research, and the thesis outline. 

1.2 Research Background 

Rare-earth ions (REIs) doped glasses formed an integral part of the 

contemporary high technological advancements in the fields of solid-state lasers, 

radiation dosimetry, fibre optic transmission cables, astronomical science and 

quantum electronics1–3. Rare earth (RE) elements consist of the members of 

Lanthanides from Lanthanum to Lutetium. When embedded in a host matrix, RE 

usually exists in trivalent nature and also serves as a luminescence centre by 

substituting the host ions4. The luminescence property of REIs arises from the f-f 

electronic transition of the corresponding REIs5 and is being exploited in lasers for 

example. Technological advancement drives the need for developing novel and 

strategic optical materials with an optimized performance aimed at meeting the 

ensuing needs. In this regard, the selection of a suitable REIs-host combination to 

match a specific requirement remains challenging6, 7.  

Crystals and glasses are found to be excellent gain materials with minimal 

scattering loss and thereby emerged as the dominant REIs host8. While crystal-based 

hosts are characterized by narrow absorption bandwidth due to the settlement of the 

active REIs in an only specific site of the crystal lattice, glasses due
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 to their random atomic arrangements offer the advantage of having a broader 

absorption and emission bandwidths8 thanks to the occupation of many divergent 

sites by the REIs. Furthermore, the simplicity of fabrication, low cost coupled with 

uniform spectroscopic features of glasses makes them good hosts for REIs.  

The choice of a suitable REIs glass host for a particular application requires 

an in-depth analysis of the physical and spectroscopic properties aimed at obtaining 

vital information to be used in fabricating efficient materials for diverse 

applications9, 10. These properties are determined by the structure, composition, 

optical absorption, and optical emission of the REIs doped glass matrix. Among the 

different types of glasses, oxide glasses prove to be stable hosts for highly efficient 

spectral features of REIs11. Multi-component REIs doped oxide glass matrices such 

as telluro-borate are characterized by improved luminescence properties and are 

excellent optical materials for example with regards to low-loss solid-state lasers12. 

Borate being one of the best oxide glass formers10 receives much attention 

from researchers worldwide due to its unique physical and optical properties such as 

low melting temperature, excellent heat stability, good glass-forming ability and high 

optical transparency13, 14. However, borate-based glasses have very low chemical 

durability, highly hygroscopic, and large phonon energy (~1400 cm-1) which reduces 

the luminescence efficiency. Tellurite based glasses, on the other hand, have 

excellent REIs solubility, good chemical durability, wide optical transmission 

window, and low phonon energy (~700 cm-1) which reduces the non-radiative decay 

loss and in turn, improves the luminescence efficiency of the matrix15, 16. Thus, 

multi-component telluro-borate glasses are promising host matrices for REIs due to 

enhanced photoluminescence (PL) and thermoluminescence (TL) efficiencies.  

REIs doped tellurite and borate-based glasses are reported to have excellent 

thermoluminescence dosimetric features17–20. In a similar manner, BaSO4 was 

reported to exhibits good TL response21 and hence its introduction into telluroborate 

glass could improve the associated TL response. Thus, REIs doped barium-sulfur-

telluro-borate glass matrix is a potential thermoluminescence dosimetric material. TL 

process is the emission of light from an irradiated defects containing semiconductor 
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or insulator due to the influence of heat18. The emitted light is a function of both the 

trapping centers and the absorbed radiation. Among the diverse applications of TL is 

radiation dosimetry, which is used in monitoring the amount of radiation dose 

absorbed. The selection of dosimetric material depends on the quality of the 

derivable thermoluminescence kinetic (trapping) parameters which describe the 

nature of the trapping centers. Borate based glasses are characterized by good kinetic 

parameters and are, therefore, potential TL materials but certain drawbacks need to 

be addressed. 

In the quest of overcoming some of the drawbacks such as luminescence 

quenching which results from the low absorption cross-section associated with the 

REIs and which affects both the lasing and thermoluminescence potentials of REIs 

doped glasses, the co-doping technique is being applied. Co-doping simply refers to 

the presence of two or more species of REIs at an appropriate proportion in a single 

host matrix. This creates an energy transfer channel between the two active REIs 

which in turn enhances the associated absorption cross-section. Alternatively, the 

incorporation of metallic nanoparticles also augments the absorption cross-section of 

the REIs22. Nanoparticles are inorganic particles with a size in the range of 1 to 100 

nm. The luminescence enhancement by nanoparticles is as a result of their role in 

favouring localized surface plasmon resonance (LSPR) which is the resonant 

oscillation of the nanoparticles free electrons in the presence of light23. LSPR 

generates a strong electric field within the vicinity of the REIs and this results in the 

subsequent improvement in the spectroscopic properties of the glass matrix24. The 

enhancement may also be due to the energy transfer between the REIs and the 

nanoparticles. Nanoparticles possess the advantage of high surface area to volume 

ratio, large surface energy, and plasmon excitation23. 

1.3 Problem Statement 

The quest for an optimized REIs-host combination for a particular scientific 

and/or technological application is continuous and never-ending task25. 

Telluroborate-based glasses are prominent REIs hosts26, 27, However; the absorption 
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cross-section of REIs is too weak because the partially filled 4f shell is well screened 

by the filled 5s and 5p orbits leading to a weak interaction between the REIs and the 

host lattice, hence weak absorption cross-section which in turn leads to fluorescence 

intensity quenching effect in the presence of a higher concentration of REIs28. Thus, 

novel multi-component telluro-borate glass design with an efficient energy transfer 

mechanism through co-doping compositions of REIs is still needed. It is, therefore, 

intended to establish the effects of Sm3+/Dy3+ co-doping on the physical, structural, 

lasing, and TL properties of Barium-sulfur-telluro-borate glass in the present work.  

Furthermore, the witnessed nano-technological advancements have paved a 

way for intensive research on the incorporation of metallic nanoparticles into REIs 

doped glasses for scientific applications. Nevertheless, the incorporation of pure gold 

into these glasses in general and telluro-borate glasses in particular is still lacking as 

in most of the reported researches gold salt (AuCl3) was considered. The problem of 

using gold salts is that nanoparticles are formed by aggregation when heated, the 

heating process may lead to the growth of crystals within the glass matrix and thus 

causes unwanted light scattering which dampens the operational efficiency of gain 

materials such as laser22. Thus, in the present research, the influence of pure gold 

nanoparticles on the physical, structural, and lasing properties of the proposed 

glasses will be determined.  

The knowledge of the thermoluminescence kinetic parameters is necessary 

for defining the overall efficiency of a TL process. Meanwhile, metallic 

nanoparticles embedded multi-component REIs co-doped telluro-borate glass has 

some excellent latent thermoluminescence (TL) features, however; the role of pure 

AuNPs embedment on the TL kinetic parameters of Sm3+/Dy3+ co-doped systems are 

far from being explored. Thus, it is intended to determine the thermoluminescence 

kinetic parameters of pure gold embedded Barium-sulfur-telluro-borate glass co-

doped with different concentrations of Samarium and Dysprosium ions. 

The goal is to explore the lasing and thermoluminescence kinetic parameters 

of optimized multi-component REIs co-doped glasses embedded with pure gold 

nanoparticles. Thus, it is intended to explore the role of Sm3+/Dy3+ co-doping and 
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pure AuNPs embedment on structural, physical, optical, lasing, and 

thermoluminescence kinetic parameters of BaSO4-TeO2- B2O3-Sm2O3-Dy2O3-Au 

glass matrix. The research is an attempt to extend the existing knowledge of the 

principles of interaction between light and metals which is vital to the development 

of the glass industry.  

1.4 Research Objectives 

The main objective of the study is to synthesize a single material that will 

concurrently serve as efficient lasing and TL material. Thus, it is intended to explore 

the structural, physical, optical, lasing, and TL kinetic parameters of BaSO4-TeO2- 

B2O3-Sm2O3-Dy2O3-Au glass matrix. Specific objectives of the research are: 

(a) To synthesize Sm3+/Dy3+ co-doped barium-sulfur-telluro-borate glasses with 

and without pure gold nanoparticles at varying contents.  

(b) To determine the influence of Sm3+/Dy3+ co-doping on the structural, 

physical, optical, and lasing properties of the synthesized glasses. 

(c) To evaluate the role of AuNPs embedment on the structural, physical, optical, 

and lasing parameters of barium-sulfur-telluro-borate glass systems based on 

the framework of Judd-Ofelt analysis.  

(d) To evaluate the role of both Dy3+ co-doping and AuNPs embedment on the 

thermoluminescence kinetic parameters of the optimum glass samples upon 

exposure to ionizing radiation. 

1.5 Scope of the Study 

In this research, three series of barium-sulfur-telluro-borate glasses at varying 

constituent compositions were synthesized using the melt-quenching technique. The 

optimum un-doped composition was determined and analyzed through a differential 
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thermal analyzer (DTA) before being doped with the REIs. Using the obtained 

optimum composition, three series of barium-sulfur-telluro-borate glasses doped with 

different concentrations of Sm/Dy REIs and embedded with pure gold nanoparticles 

were then prepared by the melt-quenching technique. The densities of the prepared 

samples were calculated using the Archimedes principle with toluene as the standard 

liquid. The phases of the synthesized glasses were confirmed utilizing XRD 

measurements. Fourier Transform Infra-red (FTIR) analysis was employed in 

probing the structural adjustments in the prepared glass systems. The refractive 

indices of the samples were measured by an Abbe refractometer. To analyze the 

morphological structure of the samples, Energy Dispersive X-ray (EDX) mapping 

and High-Resolution Transmission Electron Microscope (HRTEM) analyses were 

employed. To determine the spectroscopic properties such as Bandgap energy, 

Urbach’s energy, molar refractivity, refractive index, and the dielectric constant of 

the samples, Uv-Vis-NIR absorption analysis was employed. The LSPR peak of the 

pure gold nanoparticles was obtained using Uv-Vis-NIR spectroscopy. 

Photoluminescence analysis was used in investigating the emission pattern of the 

glass samples. While the energy transfer processes were discussed using both 

photoluminescence and decay curve analyses, the luminescence colour adaptations of 

the synthesized glass samples were explored using CIE 1931 guidelines. 

Furthermore, the lasing parameters such as stimulated emission cross-section, 

branching ratio and optical gain were determined based on the framework of Judd-

Ofelt analysis. Irradiation of the samples was done using a 6 MV photons set up 

linear accelerator (LINAC) in the dose range of 0 to 4 Gy. The Thermoluminescence 

response were recorded using Harshaw 4500 thermoluminescence dosimeter (TLD) 

reader in the temperature range of 0 to 400 oC and optimum heating rate of 7 oC/s.  

1.6 Significance of the Study 

This research is an attempt to produce new and optimized REIs glass host in 

the form of barium-sulfur-telluro-borate with enhanced lasing and TL kinetic 

parameters suitable for applications in laser and radiation dosimetry. Samarium and 

Dysprosium ions were adopted for co-doping the newly developed glass host 
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whereas pure gold nanoparticles were chosen for embedment. The inquisition will 

establish the role of pure gold nanoparticles embedment in enhancing the structural, 

physical optical, lasing, and thermoluminescence properties of synthesized glasses. 

Briefly, the study aims to produce a single material capable of serving as both 

efficient lasing and TL material and thus pave way for several applications.  

1.7 Thesis Outlines 

This thesis is divided into five different chapters. Chapter 1 outlines the 

background of the research, problem statement, objective of the research, the 

significance of the research, and the thesis outlines. Chapter 2 presents the literature 

review of the spectroscopic and thermoluminescence behaviours of REIs in glasses 

in general and in telluro-borate glasses in particular which is our proposed material. 

Samarium and Dysprosium elements were reviewed; gold nanoparticles were also 

reviewed and linked to the proposed material. Different thermal, structural, 

spectroscopic, and thermoluminescence characterization techniques were also 

discussed. Chapter 3 highlights the adopted experimental techniques. This includes 

sample preparations, optimization of the base sample composition, and the details of 

the various sample characterization methodologies. Chapter 4 consists of two parts; 

Part I presents the structural, physical, optical, and lasing features of the prepared 

series I, II, and III glass systems. The lasing features were derived from the radiative 

properties based on the Judd-Ofelt analysis. Part II presents the thermoluminescence 

kinetic parameters obtained from different methods of glow curve analysis. These 

parameters were discussed and analyzed. Chapter 5 contains the final summary and 

conclusion of the findings of the study of Sm/Dy ions co-doped barium-sulfur-

telluro-borate glass system embedded with AuNPs. Suggestions for further study 

were also included. 
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