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ABSTRACT 

Laser induced breakdown spectroscopy (LIBS) is an atomic emission 

spectroscopy technique that determines elemental analysis of solid, liquid or gas 

sample. Although LIBS has provided excellent results in quantitative and qualitative 

analysis of solid samples, less attention has been given to analyse the inner portion of 

the liquid bulk or on its surface as liquid samples were often associated with strong 

splashing and shockwave. Hence, a pulse width modulation microcontroller-based 

thermoelectric cooler (TEC) system was proposed as a sample pre-treatment method 

to freeze liquid samples prior to LIBS analysis. The TEC system was built to provide 

a user-friendly graphical user interface (GUI) for freezing and monitoring the 

temperature of the sample. The construction of this system was explained. The 

calibration results during the freezing process and maintenance of the samples at its 

freezing phase demonstrated excellent performance of the developed system. The 

effect of incorporating the TEC system with LIBS was studied and the effectiveness 

and shortcomings of the TEC were highlighted. A Q-switched Nd:YAG laser (1064 

nm, 6 ns and 1 Hz) and a broad spectral range spectrometer LR1 were employed for 

laser induced breakdown spectroscopy study. Aqueous sodium chloride (NaCl) with 

different concentrations, and liquids categorized with different viscosities (44.07 to 

16965.80 mPa.s) and types (paste, cream, gel and oil), were utilized as studied 

materials. Initially, direct laser irradiation of liquid and frozen NaCl samples were 

analysed and later the study was focused on laser irradiation of the frozen NaCl under 

different temperatures (0 to -5°C). The direct irradiation on aqueous NaCl samples 

were carried out at concentrations ranging from 0.2 to 2.5 mol/L. The irradiation of 

the frozen NaCl showed a higher signal-to-noise ratio (SNR) (3x), and lower detection 

limit (2.5x), relative standard deviation (around 5%), maximum relative error (2% to 

9%) and root mean square error of prediction (0.04 mol/L) value. The analyses of the 

frozen NaCl with different temperatures led to the SNR optimisation as the 

temperature was kept constant at the freezing point of -1°C, -2°C and -3°C for 0.2, 0.5 

and 1.0 mol/L frozen samples, respectively. The next set of experiments was carried 

out using liquids with different viscosities and types. The analyses on sodium 

component of the samples by direct laser irradiation of frozen samples showed 

emission enhancement and higher SNR as compared to that of liquids. Frozen samples 

also showed smaller craters diameter and higher energy fluence. The principle 

component analysis (PCA) is used to compare the principle component score 

separation and clustering pattern between frozen and liquid samples. The frozen 

samples showed a more established separation and clustering as compared to those 

acquired from liquid samples. The spectral signal quality was also optimised when the 

temperature was at its freezing phase. This work showed that the TEC pre-treatment 

method had improved the LIBS measurement of the liquid samples by maintaining its 

freezing state, thereby proving its ability to be used as an alternative sample 

preparation method. This simple and easy-to-assemble system is also significant for 

real-time and in-situ analysis as it is able to simultaneously freeze the sample while 

monitoring its temperature.  
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ABSTRAK 

Spektroskopi runtuh aruhan laser (LIBS) adalah teknik spektroskopi 

pemancaran atom yang menentukan analisis unsur bagi sampel pepejal, cecair atau 

gas. Walaupun LIBS telah memberikan hasil yang sangat baik dalam analisis 

kuantitatif dan kualitatif sampel pepejal, kurang perhatian telah diberikan untuk 

menganalisis bahagian dalam cecair pukal atau pada permukaannya kerana sampel 

cecair sering dikaitkan dengan percikan kuat dan gelombang kejut. Oleh itu, sistem 

penyejukan termoelektrik (TEC) berasaskan mikropengawal modulasi lebar denyut 

dicadangkan sebagai kaedah pra-rawatan sampel untuk membekukan sampel cecair 

sebelum analisis LIBS. Sistem TEC dibangunkan untuk menyediakan antara muka 

pengguna grafik (GUI) yang mesra pengguna bagi membeku dan memantau suhu 

sampel. Pembinaan sistem turut dijelaskan. Hasil penentukuran semasa proses 

pembekuan dan pengekalan sampel pada fasa pembekuan menunjukkan prestasi 

cemerlang sistem yang dibangunkan. Kesan penggabungan sistem TEC dengan LIBS 

telah dikaji, sementara keberkesanan dan kekurangan TEC turut ditonjolkan. Laser Q-

suis Nd:YAG (1064 nm, 6 ns dan 1 Hz) dan spektrometer julat spektrum lebar LR1 

digunakan untuk kajian spektroskopi runtuh aruhan laser. Natrium klorida (NaCl) 

akueus dengan kepekatan berbeza, dan cecair yang dikategorikan dengan kelikatan 

(44.07 ke 16965.80 mPa.s) dan jenis (pes, krim, gel dan minyak) berlainan digunakan 

sebagai bahan kajian. Pada mulanya, penyinaran terus laser bagi cecair dan bekuan 

NaCl telah dianalisis dan kajian seterusnya telah difokuskan pada penyinaran laser 

bagi bekuan NaCl pada suhu yang berbeza (0 ke -5°C). Penyinaran terus pada larutan 

NaCl dilakukan pada kepekatan antara 0.2 hingga 2.5 mol / L. Penyinaran bagi bekuan 

NaCl menunjukkan nisbah isyarat-hingar (SNR) yang lebih tinggi (3x), dan nilai 

rendah bagi had pengesanan (2.5x), sisihan piawai relatif (sekitar 5%), ralat relatif 

maksimum (2% ke 9%) dan punca min ralat kuasa dua ramalan (0.04 mol/L). Analisis 

NaCl beku pada suhu yang berbeza membawa kepada SNR optimum apabila suhu 

ditetapkan pada titik beku -1°C, -2°C dan -3°C untuk masing-masing sampel beku 0.2, 

0.5 dan 1.0 mol/L. Eksperimen berikutnya dijalankan menggunakan cecair dengan 

kelikatan dan jenis berbeza. Analisis komponen natrium pada sampel dengan 

penyinaran terus laser bagi sampel beku menunjukkan peneguhan pemancaran dan 

SNR yang lebih tinggi berbanding dengan cecair. Sampel beku juga menunjukkan 

diameter kawah yang lebih kecil dan fluens tenaga yang lebih tinggi. Analisis 

komponen utama (PCA) digunakan untuk membandingkan pemisahan dan corak 

kluster bagi skor komponen utama antara sampel pepejal dengan cecair. Sampel beku 

menunjukkan pemisahan dan kluster yang lebih mantap berbanding dengan apa yang 

diperoleh daripada sampel cecair. Kualiti isyarat spektrum juga dioptimumkan apabila 

sampel berada dalam fasa beku. Kajian ini menunjukkan bahawa kaedah pra-rawatan 

TEC telah menambah baik pengukuran LIBS bagi sampel cecair dengan 

mengekalkannya dalam keadaan beku, lalu membuktikan keupayaannya untuk 

digunakan sebagai alternatif kaedah penyediaan sampel. Sistem yang ringkas dan 

mudah-untuk-dipasang ini juga penting untuk analisis masa-nyata dan in-situ kerana 

ia dapat membekukan sampel dan memantau suhunya secara serentak. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview  

Laser induced breakdown spectroscopy (LIBS) is an atomic emission 

spectroscopy technique that has drawn increasing attention in recent decades due to its 

ability to provide in-situ and rapid elemental determination [1]. The LIBS technique 

uses a pulsed laser beam to generate the plasma from the ablated sample mass [2]. The 

plasma spectrum emitted by the excited species provides a spectroscopic information 

of the chemical species in the target sample regardless of its physical state [3]. LIBS 

has proved useful in various research areas due to its ability to conduct real time data 

measurement, analysing diverse types of sample, adapting to various experimental 

surrounding and assessing remote material [2-4]. Recent LIBS applications have been 

many and range from aiding aluminium electrolysis industry [5], monitoring corrosion 

behaviour in molten metal [6], analysing gold- and silver-bearing mineral [7], 

diagnosing of human malignancies [8] and others. 

However, the LIBS technique still produces unfavourable analytical results for 

analysis inside the liquid bulk or on its surface compared to those provided by the solid 

samples [9]. Even though the other spectroscopic techniques including inductively 

coupled plasma mass spectroscopy (ICP-MS), inductively coupled plasma atomic 

emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS) could 

provide improved detection limit for the liquid sample analysis, the operational and 

functional cost of both ICP-MS and ICP-AES is higher, whereas the AAS method is 

more time consuming [10]. On the contrary, the laser based analytical method such as 

LIBS demonstrates simplicity, flexibility and reduction of measurement time, making 

it ideal for liquid samples [10]. 
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The most common causes of poorer sensitivity of liquid samples LIBS analysis 

are the complex matrix effect [11], lower ablation efficiency and shorter plasma decay 

lifetime [12]. Although LIBS has been established as an analytical technique that 

require no sample preparation method, this case may restrict its potential to compete 

with the other spectroscopy techniques. Regardless LIBS countless contributions, 

especially in providing measurements for solid samples, the future applications of 

LIBS can be further explored with the aid of sample preparation methods. These 

methods could help provide better experiment repeatability and analytical performance 

[13] .  

Thus, previous studies have shown the involvement of several experimental 

configurations (horizontal [14] and vertical [15-18] liquid jet system for laminar flow, 

and liquid to aerosol conversion [19-23] ) and sample preparation methods (liquid 

sample in droplet form [9, 21, 24, 25] and liquid to solid matrix layer conversion [26-

30]) for the purpose of solving the inherent drawbacks revolving around liquid 

samples. Unfortunately, some of these alternatives involved a more complex 

experimental configuration which is non practical for real time on site measurements 

and unsuitable for a limited or hazardous sample [31]. 

Meanwhile, liquids to solid phase conversion exploits the strengths usually 

linked with solid samples, thereby eliminating the problems related to liquids 

(splashing and shockwave) [31, 32]. The ablation of solids provides several benefits, 

including lower threshold of laser energy and higher sampling acquisition rate [31]. 

Several approaches of liquid to solid phase conversion involved converting liquid 

samples with various viscosities into ice [33, 34], layer [26, 27, 29, 30], pellet [35-38] 

and substrate (non-permeable [9, 39-42] and permeable [32, 43-49]). However, some 

of these approaches have a higher tendency to be time consuming and tedious, along 

with an increase contamination probability amid the sample preparation process [31].  

Among the physical state transformation techniques, liquid to solid phase 

conversion by freezing is a better option as it could maintain inherent homogeneity 

while reducing surface splashing, thereby providing improved LIBS measurements 

[31, 33]. To ensure higher LIBS measurement accuracy, it is also critical to maintain 
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the frozen sample temperature due to its influence on ablation rate and plasma intensity 

[31]. Since majority of the studies in previous literature preferred using liquid nitrogen 

for freezing purpose [33, 34, 50], difficulties in maintaining the sample temperature is 

unavoidable due to the influence of the ambient temperature.  

In response, this present work implemented a Thermoelectric Cooler (TEC) as 

a new freezing method to aid the LIBS analysis of different types of liquid samples. A 

Pulse Width Modulation (PWM) Microcontroller-based TEC controller system 

equipped with a user-friendly Graphical User Interface (GUI) is created to develop a 

sample pre-treatment approach that is based on the Arduino platform. The TEC is a 

thermoelectric energy conversion device that employs the Peltier effect by delivering 

heat energy from one side of the device (heat source) to the other side (heat sink) [51]. 

It is a noiseless, environmentally friendly and lightweight device that requires no 

maintenance or complex water distribution pipes [52]. On the other hand, Arduino is 

an inexpensive open source microcontroller based on the Atmega328P microprocessor 

that is developed to create control devices for various projects [53].  The goal of the 

TEC controller system was to provide a simple and easy-to-assemble system with the 

ability to simultaneously maintain the sample temperature and monitoring the 

temperature reading acquired from a temperature sensor.  

In this thesis, we have focused on proving the feasibility of using the TEC 

system to freeze liquid samples while maintaining its solid form at its freezing phase 

throughout LIBS measurement. This approach has allowed us to provide enhanced 

measurement accuracy and precision when the sample was frozen before LIBS 

analysis. This research also explained the optimum freezing temperature of the sample 

by investigating the relationship between the sample temperature and spectral signal 

quality. We conclude that these findings are important in revolutionizing the LIBS 

application of liquid sample analysis.  
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1.2 Problem Statement 

In the last decade, a number of studies have indicated LIBS as a highly 

potential technique for multi-elemental analysis of samples with various physical 

states [50, 54, 55]. Even though LIBS has contributed excellent results in the 

qualitative and quantitative analysis of solid samples, less attention has been given on 

liquid samples. This is because ablation on liquid samples tend to cause surface ripples, 

which lead to varied laser-to-sample distance and poorer figures-of-merit (FOM) [27, 

56, 57]. In response, this research could potentially provide a new alternative in 

overcoming these matters.  

The liquid to solid conversion by freezing is one of the simplest sample 

preparation methods that reduce surface splashing - a phenomenon usually linked to 

liquid sample. For liquid samples, only a small fragment of the laser energy is available 

for plasma excitation as most of the energy is used for liquid vaporization and 

splashing, thereby forming less efficient plasma. In contrast, enhanced emission 

intensity of the frozen samples was influenced by a more extensive plasma excitation 

[58, 59].  

Addressing these issues revolving around liquids LIBS analysis, to mitigate or 

ideally to eliminate them, will bring new attempt on developing a new sample pre-

treatment method to assist LIBS analysis. We propose an alternative freezing method 

which is a Pulse Width Modulation Microcontroller-Based Thermoelectric Cooler. 

This system can potentially reduce undesired interferences in the signal and improve 

the precision and accuracy of LIBS measurements. Additionally, this proposed method 

also involved other advantages, including less complicated laser or fiber coupling 

arrangement, unnecessary liquid optical transparency and is more practical to use [56].  
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1.3 Research Objectives 

The main objectives of this study are: 

(a) To analyse the performance of freezing liquid samples using the PWM 

microcontroller-based TEC system 

(b) To determine the LIBS signal and figures-of-merit of aqueous sodium chloride 

solutions and its frozen form.  

(c) To investigate the influence of sample temperature on spectral signal quality 

(d) To determine the clustering pattern of liquid samples with various viscosities 

using LIBS-PCA technique.  

 

1.4 Research Scope 

Due to the potential capabilities of LIBS, and problems associated with liquid 

samples, the present study had been taken up to construct the LIBS system integrated 

with a TEC controller system. This configuration was implemented for enhancing the 

performance of LIBS in analysing various liquid samples. The development, 

calibration and performance of the PWM microcontroller-based TEC system equipped 

with a GUI was also described.  

The most important precaution when dealing with frozen sample is controlling 

the sample temperature to ensure LIBS measurement accuracy [60]. Since freezing 

using liquid nitrogen is more preferable in most LIBS experiment [33, 34], melting 

could happen during data acquisition as it is harder to maintain constant contact 

between the sample and any cooling element for a longer period of time to ensure it is 

continuously frozen. The sample temperature is also quite difficult to control due to 

heat transfer during laser-sample interaction, and from the environment [33, 34, 50].  
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The PWM-microcontroller based TEC system with GUI was constructed to 

facilitate a more effective sample pre-treatment method for liquid samples. Its 

performance was evaluated by comparing the LIBS analysis of both frozen and liquid 

samples under similar experimental conditions. Since it is critical to maintain the 

frozen sample temperature due to its relationship with ablation rate and plasma 

intensity [59], the study of sample temperature influence on spectral signal quality was 

also one of our basic interests.  

LIBS is also associated with some other challenges, including the matrix 

effects, overlapped emission spectrum, lacked of proper calibration samples, and 

pulse-to-pulse spectral variations [61]. Since some of the spectra that belong to certain 

type of sample category are quite indistinguishable, we incorporated principle 

component analysis (PCA) with LIBS to demonstrate the comparison of the spectra 

clustering pattern between the liquid and solid samples. Additionally, a multivariate 

analysis such as the PCA is important in overcoming these challenges while also 

reducing the data dimensionality, developing a classification model and providing a 

better graphical representation of the LIBS spectra [56, 62-64].  

As for the LIBS instrumentation, it utilized a Q-switched Neodymium-Doped 

Yttrium Aluminium Garnet (Nd:YAG)  laser operated at the fundamental wavelength 

of 1064 nm. The optimised laser pulse energy adopted throughout the present 

measurements was 100 mJ with pulse duration of 6 ns and repetition rate of 1 Hz.  The 

laser source was focused on the sample surface so that it ablated the sample and thus 

creating plasma. The plasma was assumed to be in the thermodynamic equilibrium. 

Each element in plasma emits its characteristic spectral line that was collected by the 

spectrometer and analysed by comparing the spectrum with the National Institute of 

Standards and Technology (NIST) database.  

Experiment with two sets of samples were carried out. The first set of samples 

were prepared from 99.9% vacuum salt diluted in de-ionized water. Nine 

concentrations ranging from 0.2 to 2.5 mol/L were investigated. They were sorted in 

two categories for used as calibration and unknown samples.  This step was crucial to 

investigate the spectral analysis and FOM of LIBS. From these samples three different 
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concentrations (0.2, 0.5 and 1.0 mol/L) of frozen NaCl were used for LIBS analysis 

under different temperature ranging from -5 to 0°C. The second set of samples 

involved 17 liquid samples with different viscosities (44.07 to 16965.80 mPa.s) that 

belong in either paste, cream, gel or oil categories. These samples were chosen due to 

their ample contributions in pharmaceutical and cosmetic industries as they correspond 

to a wide range of products concerning our daily life [36]. The analyses of these 

samples were done using the LIBS-PCA technique. The comparison of craters 

diameter and energy fluence between frozen and liquid samples was investigated. The 

spectral signal quality analyses were also included. In essence, the purpose of these 

analyses was to prove the feasibility of incorporating TEC system with LIBS. 

1.5 Research Significance 

This study intended to introduce a new sample preparation method specifically 

developed for liquid samples LIBS analysis. A number of studies on freezing the 

samples prior to LIBS analysis were previously published [33, 34, 50]. However, to 

the best of our knowledge, there is none using TEC system as the cooling element in 

constantly freezing the sample.  

Therefore, this study focused on developing and constructing an open source 

TEC system for LIBS application, thereby verifying the compatibility of both elements 

in providing optimised LIBS measurements. A user-friendly GUI was developed in 

order to enhance the functioning of the PWM microcontroller-based TEC system in 

assisting LIBS analysis. This easy-to-assemble system was also equipped with other 

features including simple serial communication procedure, temperature measurement 

accuracy, real-time temperature reading display and plot, and data storage. Equally 

important, by integrating LIBS technique with TEC system, the spectral signal quality, 

the FOM and temperature influence analyses of this research could provide some 

comparison and references for future research purpose. The PCA analyses were also 

included to further prove the feasibility of integrating the TEC controller system on 

LIBS analysis of liquids with various viscosities. As an extension, this simple and 

easy-to-assemble system can become a new alternative in freezing liquids prior LIBS 
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analysis. Its application is not only restricted for laboratory use but also for real-time 

and in-situ experimental surrounding. This study also can be applied for a wide range 

of liquid samples from different fields such as pharmaceutical, food chemistry, 

biomedical, environmental and others. 

1.6 Thesis Overview 

This thesis investigates the potential of using an PWM microcontroller-based 

TEC system as a sample pre-treatment technique prior to elemental analysis of liquid 

samples by using LIBS. The outline of the thesis with a brief overview of each of the 

chapters is elaborated below. 

Chapter 1 described the motivations and challenges (problem statement) on 

pursuing this research, along with the research objectives, scope, and significance. 

Then, Chapter 2 gave a background review of the fundamentals of LIBS plasma. The 

key parameters that describe the LIBS plasma were discussed in detail. The basic 

principles of LIBS, LIBS instrumentation, LIBS application and LIBS performance 

analysis were described. The challenges of liquids LIBS analysis and methods on 

solving the challenges were reported. Brief explanation on components used in 

developing the TEC system and liquid samples analysed by LIBS a were also 

discussed. 

Chapter 3 explained the experimental methodologies used in developing the 

PWM microcontroller-based TEC system, incorporating the TEC system and LIBS 

experiment, sample pre-treatment procedure, and analysing the data (figures-of-merit, 

PCA and image analysis). Next, Chapter 4 elaborated the calibration and performance 

analysis of the PWM microcontroller-based TEC system, optimisation of the 

experimental parameters of the LIBS system, LIBS analyses of liquid and frozen NaCl 

samples, LIBS analyses of liquids with various viscosities and its frozen form, and 

LIBS analysis of frozen NaCl under different temperature. 
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Lastly, Chapter 5, which is the final chapter, summarized the results together 

with concluding remarks. The contributions of the thesis were highlighted and 

suggestions for future research were presented. 
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