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ABSTRACT

Presence of reactive dyes such as reactive black 5 (RB5) in wastewater severely 
interfere the photosynthetic function of plants due to low light penetration, leading to 
reduction in the concentration of dissolved oxygen used by aquatic organisms to 
breathe. This will also affect the quality of freshwater used in our everyday lives as 
reactive dyes are known to be toxic and carcinogenic to human if consumed in large 
quantity. One promising way to eliminate dyes in wastewater is by photocatalysis 
process by perovskite-like nanosized material such as lanthanum orthoferrite 
(LaFeO3). However, due to susceptibility of LaFeO3 to agglomerate because of high 
interparticle surface energy, scattering the nanoparticles onto a support material is 
believed to be an effective way. Thus, a new LaFeO3-chitosan nanocomposite, LC15 
was successfully fabricated in this work based on chemical precipitation methods. 
Characterization using X-Ray diffraction analysis showed that there was no change in 
crystallinity of LaFeO3 nanoparticles when integrated with chitosan, while the Fourier 
Transform Infrared Spectroscopy confirmed the formation of LaFeO3-chitosan 
nanocomposites by strong hydrogen bonding. Transmission electron microscopy 
verified the nanocrystalline structure of synthesized LaFeO3 while field emission 
scanning electron microscopy and energy dispersive X-Ray spectroscopy 
demonstrated good distribution of LaFeO3 on chitosan matrices along with changes in 
elemental composition of LC15 nanocomposites. Brunauer-Emmett-Teller and 
Barrett-Joiner Halenda analyses exhibited reduction in specific surface area and 
increased average pore radius of LC15 compared to pristine LaFeO3, while UV-vis 
diffuse reflectance spectroscopy revealed reduction of band gap value for LC15. Apart 
from that, both adsorption and photocatalytic activity LC15 were also studied by 
varying the pH of synthetic wastewater, loading of nanocomposites, and initial 
concentration of RB5 dye. These studies were important to understand the behaviour 
of the sample and to determine the optimal condition for maximum synergistic action 
of LaFeO3-chitosan nanocomposite onto RB5 dye. Following that, the reusability 
study was also performed in order to recognize the ability of LC15 nanocomposite to 
be used in real life application. Finally, the photocatalytic pathways for total removal 
of RB5 dye were also proposed based on species trapping experiment. Based on this 
study, LC15 nanocomposite showed the most prominent characteristics with high 
synergistic removal of RB5 dye at optimum conditions (pH 6, 2g/L loading and 30 
mg/L of initial RB5 dye concentration). Moreover, the reusability experiment 
confirmed the stability of the nanocomposite with no dramatic changes occurred to 
their chemical structure, while the involvement of reactive oxygen species and positive 
vacant holes were established in species trapping experiment.
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ABSTRAK

Kehadiran pencelup reaktif seperti hitam reaktif 5 (RB5) dalam air kumbahan 
mengganggu fungsi fotosintetik tumbuhan kerana penembusan cahaya yang rendah, 
menyebabkan pengurangan oksigen terlarut yang digunakan oleh organisma akuatik 
untuk bernafas. Ini juga akan mempengaruhi kualiti air tawar yang digunakan dalam 
kehidupan seharian kita kerana pencelup reaktif diketahui beracun dan karsinogenik 
kepada manusia jika terhadam dalam kuantiti yang banyak. Salah satu cara yang 
terbaik untuk menghapuskan pencelup dalam air sisa adalah dengan proses 
pemangkinan cahaya oleh bahan perovskit bersaiz nano seperti lanthanum ortoferit 
(LaFeO3). Walau bagaimanapun, disebabkan kecenderungan LaFeO3 untuk bergumpal 
kerana tenaga permukaan antara partikel yang tinggi, penyebaran partikel nano ke 
bahan sokongan dipercayai merupakan cara yang berkesan. Oleh itu, komposit nano 
LaFeO3-kitosan, LC15 telah berjaya dihasilkan dalam kajian ini berdasarkan kaedah 
pemendakan kimia. Pencirian menggunakan analisis pembelauan sinar-X 
menunjukkan bahawa tiada perubahan terhadap pengkristalan partikel nano LaFeO3 
apabila digabungkan dengan kitosan, manakala spektroskopi jelmaan inframerah 
Fourier mengesahkan pembentukan komposit nano LaFeO3-kitosan dengan ikatan 
hidrogen yang kuat. Seterusnya, mikroskopi elektron penghantaran mengesahkan 
struktur kristal nano LaFeO3 yang disintesis, manakala imej mikroskop elektron 
imbasan pancaran medan dan spektroskopi penyebaran tenaga sinar-X menunjukkan 
taburan LaFeO3 yang sekata pada matriks kitosan bersama dengan perubahan 
komposisi unsur komposit nano LC15. Analisis Brunauer -  Emmett -  Teller dan 
Barrett-Joiner Halenda menunjukkan pengurangan kawasan permukaan tertentu dan 
peningkatan radius purata LC15 berbanding LaFeO3, sementara spektroskopi refleksi 
serapan UV-Vis menentukan pengurangan nilai sela jalur untuk LC15. Selain itu, 
kedua-dua aktiviti penjerapan dan fotobermangkin LC15 juga dikaji dengan mengubah 
pH air sisa sintetik, muatan komposit nano, dan kepekatan awal pencelup RB5. Kajian- 
kajian ini penting untuk memahami sifat sampel dan untuk menentukan keadaan 
optimum untuk tindakan sinergi maksimum komposit nano LaFeO3-kitosan ke 
pencelup RB5. Setelah itu, kajian penggunaan semula juga dilakukan untuk mengenali 
kemampuan komposit nano LC15 untuk digunakan dalam aplikasi sebenar. Akhirnya, 
laluan fotobermangkin untuk penyingkiran pencelup RB5 juga dicadangkan 
berdasarkan eksperimen pemerangkapan spesies. Berdasarkan kajian ini, komposit 
nano LC15 telah menunjukkan ciri-ciri paling menonjol dengan penyingkiran 
pencelup RB5 yang tertinggi pada keadaan optimum (pH 6, muatan 2 g/L dan 30 mg/L 
kepekatan awal pencelup RB5). Tambahan lagi, eksperimen kebolehgunaan semula 
mengesahkan kestabilan komposit nano tanpa perubahan dramatik terhadap struktur 
kimianya, sementara penglibatan spesies oksigen reaktif dan lubang kosong positif 
dikenal pasti dalam eksperimen pemerangkapan spesies.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Textile industries normally use large amount of water in their processes, 

especially in drying and washing processes. Approximately 21 to 377 m3 of water is 

consumed for each tonne of textile product, while the chemical consumption made up 

between 10 to 100 percent of the weight of the clothes. Annually, it is estimated that 7 

x 105 tonnes of dyestuffs are produced, leading to 280,000 tonnes of textile effluents 

containing dyes discharged into the aquatics (Van Hoa et al., 2016; Asghar et al.,

2015). As a result, the large amount of coloured effluent having high level of Chemical 

Oxygen Demand (COD) (150-10,000 mg/L), Biological Oxygen Demand (BOD) 

(100-4000 mg/L) and instable pH discharged negatively impacted aquatic flora and 

fauna. This occurs as presence of dyes in wastewater severely interfered the 

photosynthetic function of plants due to low light penetration, thus reducing the 

concentration of dissolved oxygen used by aquatic organisms to breathe. Subsequently 

this will also affect the quality of freshwater used in our everyday lives as certain dyes 

are known to be toxic and carcinogenic to human if consumed in large quantity over 

period of times (Holkar et al., 2016).

Widely used in textile industries, reactive dyes are chosen due to their high 

stability with respect to washing. These water soluble and non-biodegradable 

compounds comprised of one or more azo bonds (-N=N-) proved to be difficult to be 

treated as they have low absorbability. Among them, Reactive Black 5 (RB5) dyes has 

been one of the most utilized dye, contributing to more than 50% of total reactive dyes 

demand (Semiz, 2019; Garg et al., 2016). As reactive dyes are designed to resist 

degradation, these aromatic and heterocyclic compounds need proper treatment 

strategies to meet the requirements set by the government, which in Malaysia is the 

Department of Environment (DOE) under Ministry of Energy, Science, Technology,



Environment and Climate Change. According to the Fifth Schedule of Acceptable 

Conditions for Discharge of Industrial Effluent for Mixed Effluent of Standard A and 

B from Environmental Quality (Industrial Effluents) Regulation 2009, the allowable 

limit for wastewater containing colorant or dyes were set at 100 to 200 ADMI with 

BOD5 at 20°C less than 40 mg/L.

According to Koyuncu and Guney (2013), there are two conventional methods 

for treatment of textile industry wastewaters, namely the end-of-pipe treatment and 

segregation methods. As the name applied, the end-of-pipe treatment is carried out at 

the end of the mixed wastewater stream, while the later is by segregating the 

wastewater streams and applying different treatment steps to each stream. Differ as 

they may be, both treatments comprised of either physical, chemical, biological or 

mixture of them in efficiently treat the wastewater. Methods such as adsorption, 

membrane separation/filtration, coagulation-flocculation, chemical oxidation, 

ozonation, ultraviolet (UV) treatment and use of bacteria are among commercially 

available methods (Semiz, 2019; Katheresan et al., 2018; £inar et al., 2017; Erdem et 

al., 2016; Wojnarovits and Takacs, 2008). Comes with sets of advantages and 

disadvantages that will be discussed in depth later, they are being improvised year after 

year by many researchers around the world to find the ultimate solution for efficient 

dye wastewater treatment.

Among that, a branch of chemical treatment known as advanced oxidation 

process, or simply known as AOPs is potentially to be one of the best treatment 

available till date for total degradation of organic compounds, including reactive dyes. 

AOPs are widely recognized as highly efficient treatments for recalcitrant wastewater 

that employ the degradation of organic pollutants by forming hydroxyl radicals which 

are highly reactive and non-selective (Oller et al., 2011). These include the treatment 

of wastewater with ozone, UV light, and Fenton-like treatment that uses reagent such 

as hydrogen peroxide, H2O2 to carry out degradation of organic compounds. Besides 

that, photocatalysis is another AOPs that can be deployed for RB5 dye wastewater 

treatment (Garg et al., 2016).

2



Being studied either as homogenous (liquid state oxidants) or heterogenous 

(solid state oxidants) process, many researches have been carried out in order to 

developed most advanced photocatalysts since the 1970s As for this research, it will 

be focusing on the application of heterogenous photocatalysts. In general, 

heterogenous photocatalysis is a process to degrade, destroy and permanently remove 

organic contaminants in wastewater that occurs when certain wavelengths of light 

interact with light-reactive materials called photocatalysts -  a suspension of 

nanoparticles or nanocomposites, usually wide-bandgap semiconductors. The 

activation of these metal oxides promoted the photo excitation of electrons from the 

valence band to the conduction band, which generates OH free radicals via secondary 

reaction that will subsequently degrades the organic contaminants found (Ayati et al., 

2014).

However, the application of photocatalytic nanoparticles in wastewater 

treatment may not be favourable by many as the nanoparticles tend to agglomerate, 

especially if the catalysts used are in amorphous form, thus reducing the capability to 

carry out catalytic process. Thus, by combining the powerful degradation mechanism 

of photocatalysis and the importance of adsorption capability for efficient wastewater 

treatment, the synthesis of photocatalyst-adsorbent nanocomposite could be a 

promising method that can adsorb and degrade organic compounds such as RB5 dye 

in the presence of UV/visible light irradiation (Peng et al., 2016). This synergistic 

combination will not only preserve the advantageous components possessed by both 

treatment, but will also overcome drawbacks such as low absorptivity and rapid 

recombination of photogenerated electrons (Keane et al., 2011). Moreover, the 

combination will significantly increase the surface area of the composite, providing 

more active sites for adsorption and degradation of pollutants (Gao et al., 2016). 

Finally, the introduction of multiple functional groups will promote ionic exchange 

between the composites and specific pollutants, increasing their adsorption efficiency 

and thus, increasing the percentage of adsorbed pollutants to be degraded by 

photocatalyst process (Mansur et al., 2014).
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1.2 Problem Statement

One of the most promising and most studied photocatalyst within AOPs 

treatment is titanium dioxide, TiO2 . TiO2 is chosen by many researchers as it possesses 

several good properties such as low-cost, high chemical stability, commercially 

available, non-toxic, and environmentally friendly. However, pristine TiO2 can only 

absorbed light in ultraviolet region due to their large band gap of 3.2 eV. Multiple 

researches were carried out to narrow the band gap, thus allowing the TiO2 particles 

to be activated by visible light (Leong et al., 2014).

On the other hand, perovskites, a collective name for materials with 

orthorhombic crystalline structure of ABO3 (A=typically rare-earth elements; 

B=transition metals) is a promising candidate of photocatalysts. Lanthanum 

orthoferrite, LaFeO3 is an example of compound with perovskite structure that had 

been studied for their photocatalytic activity in wastewater treatment. LaFeO3 

possessed a narrow band gap of 1.86 to 2.36 eV, making it efficient in visible light 

region as compared to TiO2 . Furthermore, its stability and non-toxicity properties 

made it a promising material in wastewater treatment (Thirumalairajan et al., 2013).

However, the susceptibility of LaFeO3 to agglomeration hinders its application 

in wastewater treatment researches and studies. This is mostly due to its high surface 

energy that interacts between the particles. Thus, by scattering the nanoparticles onto 

a support material that concurrently act as an effective adsorbent is one of the effective 

ways to reduce the agglomeration of the nanoparticles. Besides, the support material 

will also provide heterojunction for electron and holes that limit the charge 

recombination. There have been many support materials uses to support the 

nanoparticles (Peng et al., 2016).

One of the perfect candidates to achieve this goal is the application of chitosan. 

Chitosan is the most important derivative of chitin, which is the second most abundant 

natural polymer behind cellulose. Mainly extracted from crustaceans such as shrimp 

and crabs, chitin can also be found in the exoskeleton of arthropods or in the cell walls 

of yeasts and fungi as ordered crystalline microfibrils. Chitosan possessed excellent

4



non-toxic, anti-microbial, biocompatible and biodegradable properties that are proven 

to be advantageous for wastewater treatment (Shukla et al., 2013).

Chitosan has been widely studied for water and wastewater treatment due to 

high functional groups content (acetamido group, both primary hydroxyl and 

secondary hydroxyl group and amino group). The presence of these functional groups 

subsequently contributed to good adsorption capability of this material. These also 

provide a good base for interaction with other materials such as metal oxides where 

multiple chemical bonds can be made to effectively improves the desired parameters, 

such as lowering the band gaps or improving distribution of nanoparticles in 

heterogenous photocatalysis studies (Saravanan et al., 2018; Al-naamani et al., 2017; 

Ahmed et al., 2017).

In this study, LaFeO3-chitosan nanocomposites were prepared by chemical 

precipitation method. This method is selected due to its simplicity, required no 

specialized equipment, time-saving and easily replicated. The ratio of chitosan and 

LaFeO3 were varied accordingly in order to determine the difference in 

physiochemical properties and synergistic adsorption/photocatalytic performance of 

the nanocomposites.

The dominants active species generated during the photocatalytic process were 

identified via scavenger experiment. Previous studies on the scavenger experiment 

have shown that the dominant active species could be different for each dye molecules 

and photocatalyst (Chiu et al., 2019). Therefore, this study is important to establish the 

mechanism of photodegradation of RB5 dye by nanocomposite LaFeO3-chitosan. 

Apart from that, the operational parameter for photocatalytic degradation such as pH, 

nanocomposite loading and initial concentration of RB5 dye is further investigated to 

establish highly efficient photocatalytic degradation of RB5. This research is important 

in that it provided additional knowledge on the functions of chitosan adsorbents in 

enhancing LaFeO3 exceptional photocatalytic degradation of organic pollutants such 

as dyes to improve the feasibility of AOP technologies in wastewater treatment.
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1.3 Objectives of Study

The aim of this study is to fabricate LaFeO3-Chitosan nanocomposites for 

synergistic act of adsorption and photocatalytic degradation of Reactive Black 5 dye 

from synthetic textile wastewater under visible-light irradiation. The fabrication of the 

nanocomposites is also aimed to reduce the risk of LaFeO3 agglomeration due to their 

high surface energy.

In order to achieve that, there are three specific objectives of this study, which

were:

1. To assess the effects of LaFeO3 :chitosan ratio prepared via chemical 

precipitation method on physicochemical properties and photocatalytic 

degradation of RB5 dye in synthetic textile wastewater.

2. To determine the effect of various operating parameters (pH, catalyst 

loading and initial concentration of RB5 dye) towards the chosen 

nanocomposite performance, and subsequently the reusability of the 

nanocomposite.

3. To determine and deduce the removal mechanism or pathways of RB5 

dye by chosen LaFeO3-chitosan nanocomposite via scavenging 

experiments.

6



1.4 Scopes of Study

1. Synthesizing LaFeO3 using gel combustion method via citric acid route at

200°C without any subsequent calcination process at high temperature.

2. Characterizing the physicochemical properties of LaFeO3 using several

characterization analysis such as X-ray diffractometer (XRD), Fourier 

Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy 

(TEM), field emission scanning electron microscopy (FESEM), Energy- 

dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and 

UV-vis diffuse reflectance spectroscopy (UVDRS) analysis

3. Fabricating LaFeO3-chitosan nanocomposites via chemical precipitation

method by varying the ratio of LaFeO3 :chitosan (LaFeO3/chitosan in weight 

percent (wt%): 85/15, 75/25, 65/35 and 55/45), followed by preliminary studies 

to select the best two nanocomposites.

4. Characterizing the physicochemical properties of chitosan and chosen LaFeO3- 

chitosan nanocomposites using several characterization analysis such as X-ray 

diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR), field 

emission scanning electron microscopy (FESEM), Energy-dispersive X-ray 

spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and UV-vis diffuse 

reflectance spectroscopy (UVDRS) analysis, and subsequently determine the 

most suitable nanocomposite for effect of operating parameters evaluation.

5. Evaluating the synergistic adsorption-photocatalytic removal of RB5 dye by 

chosen LaFeO3-chitosan nanocomposite by varying the operating parameters, 

including the pH of synthetic RB5 dye wastewater (pH 3, pH 6, and pH 9), 

nanocomposites loading (1g/L, 2g/L and 3g/L) and initial concentration of RB5 

dye (30 mg/L, 50 mg/L and 70 mg/L). It was then followed by reusability 

experiments (5 cycles of reusability).

6. Determining and proposing the possible mechanism involved in removal of 

RB5 dye by carrying out radicals’ scavenging experiment.

7



1.5 Significance of Study

In this study, LaFeO3 will be integrated with chitosan to produce high 

performance nanocomposite for Reactive Black 5 dye removal via synergistic 

adsorption/photocatalytic activities. Findings of this study will provide the knowledge 

to the scientific community on chitosan roles in improving the physicochemical 

properties of LaFeO3 . This study will also provide additional knowledge on the 

exceptional synergistic performance possessed by LaFeO3 and chitosan 

nanocomposite at optimum ratio under visible light irradiation, and the reusability of 

it. By providing these insights, it is believed that the real-life application of 

heterogenous photocatalysts may soon become a reality in the near future.
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