LANTHANUM ORTHOFERRITE-CHITOSAN NANOCOMPOSITE FOR REACTIVE BLACK 5 DYE REMOVAL

MUHD ARIF AIZAT BIN MARHALIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

NOVEMBER 2020

DEDICATION

This thesis is dedicated to my mother, my wife, and my family who taught me that the best kind of knowledge to have is that which is learned for its own sake.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this thesis.

Special appreciation goes to my supervisor, Dr. Farhana Binti Aziz for her supervision and constant support. Her invaluable help of constructive comments and suggestions throughout the experimental and thesis works have contributed to the success of this research. I am also very thankful to my co-supervisor Mohd Nazri Bin Mohd Sokri for his guidance, advices and motivation. Without their continued support and interest, this thesis would not have been the same as presented here.

To my dearest mother and my wife, thanks for your full support in all aspect and angle especially in money and moral support. Thanks for your constant prayer. Thanks for believe in me the moment I do not believe I could survive throughout critical time.

To Nagoya Institute of Technology, Japan (NITech) and Japan Science and Technology Agency (JST) for providing my colleagues and one of the best experiences in world under Sakura Exchange Program in Science (November 2017).

To all my family, friends, and fellow postgraduate colleagues, thank you for your assistance and motivational support. Their views and tips are useful indeed. To all who may involve directly or indirectly in this research, thank you. May Allah bless you and reward you for your good deeds

ABSTRACT

Presence of reactive dyes such as reactive black 5 (RB5) in wastewater severely interfere the photosynthetic function of plants due to low light penetration, leading to reduction in the concentration of dissolved oxygen used by aquatic organisms to breathe. This will also affect the quality of freshwater used in our everyday lives as reactive dyes are known to be toxic and carcinogenic to human if consumed in large quantity. One promising way to eliminate dyes in wastewater is by photocatalysis process by perovskite-like nanosized material such as lanthanum orthoferrite (LaFeO₃). However, due to susceptibility of LaFeO₃ to agglomerate because of high interparticle surface energy, scattering the nanoparticles onto a support material is believed to be an effective way. Thus, a new LaFeO₃-chitosan nanocomposite, LC15 was successfully fabricated in this work based on chemical precipitation methods. Characterization using X-Ray diffraction analysis showed that there was no change in crystallinity of LaFeO₃ nanoparticles when integrated with chitosan, while the Fourier Transform Infrared Spectroscopy confirmed the formation of LaFeO3-chitosan nanocomposites by strong hydrogen bonding. Transmission electron microscopy verified the nanocrystalline structure of synthesized LaFeO3 while field emission scanning electron microscopy and energy dispersive X-Ray spectroscopy demonstrated good distribution of LaFeO₃ on chitosan matrices along with changes in elemental composition of LC15 nanocomposites. Brunauer-Emmett-Teller and Barrett-Joiner Halenda analyses exhibited reduction in specific surface area and increased average pore radius of LC15 compared to pristine LaFeO₃, while UV-vis diffuse reflectance spectroscopy revealed reduction of band gap value for LC15. Apart from that, both adsorption and photocatalytic activity LC15 were also studied by varying the pH of synthetic wastewater, loading of nanocomposites, and initial concentration of RB5 dye. These studies were important to understand the behaviour of the sample and to determine the optimal condition for maximum synergistic action of LaFeO3-chitosan nanocomposite onto RB5 dye. Following that, the reusability study was also performed in order to recognize the ability of LC15 nanocomposite to be used in real life application. Finally, the photocatalytic pathways for total removal of RB5 dye were also proposed based on species trapping experiment. Based on this study, LC15 nanocomposite showed the most prominent characteristics with high synergistic removal of RB5 dve at optimum conditions (pH 6, 2g/L loading and 30 mg/L of initial RB5 dye concentration). Moreover, the reusability experiment confirmed the stability of the nanocomposite with no dramatic changes occurred to their chemical structure, while the involvement of reactive oxygen species and positive vacant holes were established in species trapping experiment.

ABSTRAK

Kehadiran pencelup reaktif seperti hitam reaktif 5 (RB5) dalam air kumbahan mengganggu fungsi fotosintetik tumbuhan kerana penembusan cahaya yang rendah, menyebabkan pengurangan oksigen terlarut yang digunakan oleh organisma akuatik untuk bernafas. Ini juga akan mempengaruhi kualiti air tawar yang digunakan dalam kehidupan seharian kita kerana pencelup reaktif diketahui beracun dan karsinogenik kepada manusia jika terhadam dalam kuantiti yang banyak. Salah satu cara yang terbaik untuk menghapuskan pencelup dalam air sisa adalah dengan proses pemangkinan cahaya oleh bahan perovskit bersaiz nano seperti lanthanum ortoferit (LaFeO₃). Walau bagaimanapun, disebabkan kecenderungan LaFeO₃ untuk bergumpal kerana tenaga permukaan antara partikel yang tinggi, penyebaran partikel nano ke bahan sokongan dipercayai merupakan cara yang berkesan. Oleh itu, komposit nano LaFeO3-kitosan, LC15 telah berjaya dihasilkan dalam kajian ini berdasarkan kaedah pemendakan kimia. Pencirian menggunakan analisis pembelauan sinar-X menunjukkan bahawa tiada perubahan terhadap pengkristalan partikel nano LaFeO3 apabila digabungkan dengan kitosan, manakala spektroskopi jelmaan inframerah Fourier mengesahkan pembentukan komposit nano LaFeO3-kitosan dengan ikatan hidrogen yang kuat. Seterusnya, mikroskopi elektron penghantaran mengesahkan struktur kristal nano LaFeO3 vang disintesis, manakala imej mikroskop elektron imbasan pancaran medan dan spektroskopi penyebaran tenaga sinar-X menunjukkan taburan LaFeO₃ yang sekata pada matriks kitosan bersama dengan perubahan komposisi unsur komposit nano LC15. Analisis Brunauer - Emmett - Teller dan Barrett-Joiner Halenda menunjukkan pengurangan kawasan permukaan tertentu dan peningkatan radius purata LC15 berbanding LaFeO3, sementara spektroskopi refleksi serapan UV-Vis menentukan pengurangan nilai sela jalur untuk LC15. Selain itu, kedua-dua aktiviti penjerapan dan fotobermangkin LC15 juga dikaji dengan mengubah pH air sisa sintetik, muatan komposit nano, dan kepekatan awal pencelup RB5. Kajiankajian ini penting untuk memahami sifat sampel dan untuk menentukan keadaan optimum untuk tindakan sinergi maksimum komposit nano LaFeO3-kitosan ke pencelup RB5. Setelah itu, kajian penggunaan semula juga dilakukan untuk mengenali kemampuan komposit nano LC15 untuk digunakan dalam aplikasi sebenar. Akhirnya, laluan fotobermangkin untuk penyingkiran pencelup RB5 juga dicadangkan berdasarkan eksperimen pemerangkapan spesies. Berdasarkan kajian ini, komposit nano LC15 telah menunjukkan ciri-ciri paling menonjol dengan penyingkiran pencelup RB5 yang tertinggi pada keadaan optimum (pH 6, muatan 2 g/L dan 30 mg/L kepekatan awal pencelup RB5). Tambahan lagi, eksperimen kebolehgunaan semula mengesahkan kestabilan komposit nano tanpa perubahan dramatik terhadap struktur kimianya, sementara penglibatan spesies oksigen reaktif dan lubang kosong positif dikenal pasti dalam eksperimen pemerangkapan spesies.

TABLE OF CONTENTS

TITLE

	DECLARATION			iii	
	DEDICATION				iv
	ACKNOWLEDGEMENT				v
	ABST	RACT			vi
	ABST	RAK			vii
	TABL	E OF (CONTEN	TS	ix
	LIST	OF TA	BLES		xii
	LIST	OF FIC	GURES		xiii
LIST OF ABBREVIATIONS				XV	
	LIST	OF SY	MBOLS		xvi
СНАРТЕІ	R 1	INTR	ODUCTI	ON	1
	1.1	Resear	ch Backg	round	1
	1.2	Problem Statement			4
	1.3	Objectives of Study			6
	1.4	Scopes of Study			7
	1.5	Significance of Study			8
CHAPTER 2 LITE		RATURE	REVIEW	9	
	2.1	Dyes i	n Wastew	ater	9
	2.2	Remov	al of RB	5 dye in Wastewater	11
		2.2.1	Removal	of Dyes by Physical Methods	12
		2.2.2	Removal	of Dyes by Biological Methods	14
		2.2.3	Removal	of Dyes by Chemical Methods	16
	2.3	Photoc	atalysis		19
		2.3.1	Semicon	ductor as Photocatalyst	21
		2.3.2	Perovski	tes	23
			2.3.2.1	Lanthanum Orthoferrites (LaFeO3)	25

	2.3.2.2 Synthesis method of LaFeO ₃	26	
	2.3.2.3 Synthesis of LaFeO ₃ by Modified Gel-Combustion Method	28	
2.4	LaFeO ₃ Nanocomposites	30	
2.5	Chitosan in Fabrication of Nanocomposites		
2.6	LaFeO3-Chitosan Nanocomposite	36	
2.7	Parameters Affecting the RB5 Dye Removal Efficiency	37	
	2.7.1 Effect of pH	37	
	2.7.2 Effect of nanocomposites' loading	38	
	2.7.3 Effect of Initial RB5 Dye Concentration	38	
2.8	Reusability Study	39	
2.9	Scavenging or Species Trapping Experiments	40	
CHAPTER 3	RESEARCH METHODOLOGY	43	
3.1	Introduction	43	
3.2	Materials		
3.3	Synthesis of lanthanum orthoferrite (LaFeO ₃) nanoparticles	45	
3.4	Fabrication of LaFeO3-chitosan nanocomposites	46	
3.5	Preliminary Study using RB5 dye solution on fabricated LaFeO ₃ -chitosan nanocomposites	47	
3.6	Characterizations	48	
	3.6.1 X-Ray Diffraction (XRD) Analysis	48	
	3.6.2 Fourier Transform Infrared Spectroscopy (FTIR) Analysis	49	
	3.6.3 Transmission Electron Microscopy (TEM) Analysis	49	
	3.6.4 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS) Analysis	50	
	3.6.5 Brunauer–Emmett–Teller (BET) Analysis	50	
	3.6.6 UV–Vis Diffuse Reflectance Spectroscopy (UVDRS) Analysis	50	
3.7	Photocatalytic Studies of LaFeO ₃ -chitosan Nanocomposites	51	

	3.7.1 Effect of pH	51	
	3.7.2 Effect of nanocomposites' loading	51	
	3.7.3 Effect of initial concentration of RB5 dye	52	
3.8	Reusability and Scavenging Tests	52	
CHAPTER 4	RESULTS AND DISCUSSIONS	53	
4.1	Introduction	53	
4.2	Preliminary Studies on Fabricated LaFeO ₃ -chitosan Nanocomposites	53	
4.3	Characterizations	56	
	4.3.1 XRD Analysis	56	
	4.3.2 FTIR Analysis	58	
	4.3.3 Morphological and Elemental Analysis	61	
	4.3.4 Nitrogen Adsorption, Surface Area and Porosity Analysis	65	
	4.3.5 UVDRS Analysis	68	
4.4	Effects of Various Operating Parameters on Reactive Black 5 (RB5) Dye Removal by LC15 Nanocomposites	70	
	4.4.1 Effect of pH	70	
	4.4.2 Effect of catalyst loading	72	
	4.4.3 Effect of initial concentration of RB5 dye	74	
4.5	Reusability Study	77	
4.6	Photocatalytic Mechanism of LC15 Nanocomposites 80		
CHAPTER 5	RECOMMENDATIONS AND CONCLUSION	83	
5.1	Research Outcomes	83	
5.2	Contributions to Knowledge	84	
5.3	Recommendations	84	
REFERENCES		87	
LIST OF PUBLICATIONS			

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Fabricated adsorbents used for removal of RB5 dye by adsorption method within last five years.	13
Table 2.2	Fabricated membranes used for removal of RB5 dye within last five years	14
Table 2.3	Various chemical methods used for dye removal in textile wastewater (Katheresan <i>et al.</i> , 2018; Forgacs <i>et al.</i> , 2004; Gupta and Suhas, 2009; Salleh <i>et al.</i> , 2011; Yao <i>et al.</i> , 2015)	18
Table 2.4	Recent fabrication of semiconductor photocatalysts within five years	22
Table 2.5	Example of perovskite photocatalysts	25
Table 2.6	Preparation methods of LaFeO ₃	28
Table 2.7	Common scavengers used for active species trapping experiments (Chiu et al., 2019)	42
Table 3.1	Composition of LaFeO3-chitosan nanocomposites	47
Table 4.1	Calculated crystallite size from Scherrer's formula of fabricated LaFeO ₃ -chitosan nanocomposites	57
Table 4.2	Isotherm classification, specific surface area (S _{BET}), maximum pore radius (Max _r), average pore radius (Avr _r) and specific pore volume (V_p) of pure LaFeO ₃ and fabricated LaFeO ₃ -chitosan nanocomposites	65

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 2.1	Steps involved in wet processing of fabric (Holkar et al., 2016)	10
Figure 2.2	Chemical structure of Reactive Black 5 (RB5) dye	11
Figure 2.3	Schematic diagram of pollutants' degradation by heterogenous metal oxides photocatalyst, using TiO_2 is as the model ((Leong <i>et al.</i> , 2014)	20
Figure 2.4	Typical structure of perovskite	24
Figure 2.5	Comparison of XRD analysis (left) and FTIR spectra (right) of LaFeO ₃ synthesized by (a) co-precipitation, (b) combustion and (c) sol-gel methods (Gosavi and Biniwale, 2010).	27
Figure 2.6	DMPO spin trapping ESR spectra recorded at pH 3 in aqueous dispersion with the five as-prepared catalysts (Hammouda <i>et al.</i> , 2017)	31
Figure 2.7	Proposed mechanism of graphene-LaFeO ₃ nanocomposites (nanosheet) (Niu <i>et al.</i> , 2016)	32
Figure 2.8	TEM images of pure TiO_2 (a) and TiO_2 /chitosan nanocomposites at different ratio: 75:25 (b), 50:50 (c) and 25/75 (d) (Saravanan <i>et al.</i> , 2018)	35
Figure 2.9	Schematic diagram of hydrogen bonding between Y_2O_3 nanoparticles and the amine group of chitosan, suggesting the possible mechanism for LaFeO ₃ -chitosan nanocomposite formation (Du <i>et al.</i> , 2017)	36
Figure 3.1	Research design flowchart	44
Figure 3.2	Illustration of customized photo reactor with visible light source used	45
Figure 3.3	Schematic diagram for fabrication of LaFeO ₃ -chitosan nanocomposites	47
Figure 4.1	Performance of pure LaFeO ₃ , pure chitosan and all fabricated LaFeO ₃ -chitosan nanocomposites for removal of RB5 dye. Photolysis without any catalyst act as control experiment	55
Figure 4.2	XRD diffractogram of synthesized LaFeO3 nanoparticles	57

Figure 4.3	XRD diffractogram comparing LaFeO ₃ nanoparticles and fabricated LC15 and LC35 nanocomposites		
Figure 4.4	FTIR spectra of fabricated LaFeO ₃ -chitosan nanocomposites	59	
Figure 4.5	Schematic illustration of possible $LaFeO_3$ and chitosan interaction	60	
Figure 4.6	TEM images (a, b, c) and SAED pattern (d) of synthesized LaFeO ₃ nanoparticles	62	
Figure 4.7	FESEM micrographs of (a) LaFeO ₃ , (b) chitosan, (c) LC15 and (d) LC35, taken under 20000x magnification, and FESEM micrographs of (e) LaFeO ₃ , (f) chitosan, (g) LC15 and (h) LC35 taken under 50000x magnification		
Figure 4.8	Energy-dispersive X-ray (EDS) spectroscopy with corresponding molecular and atomic weight of each elements		
Figure 4.9	Nitrogen adsorption-desorption isotherms and BJH pore radius distribution curve for pure LaFeO ₃ sample (a), LC15 (b) and LC35 (c) nanocomposites		
Figure 4.10	UV-Vis spectra of LaFeO ₃ -chitosan nanocomposites with band gap determination (inset)	69	
Figure 4.11	Activity of LC15 nanocomposites in different pH	71	
Figure 4.12	Different loading of LC15 nanocomposites for removal of RB5 dye	73	
Figure 4.13	Illustration for photon flux penetration		
Figure 4.14	Studies on different initial concentration of RB5 dye	75	
Figure 4.15	Adsorption desorption illustration of results for different initial concentration of RB5 dye	76	
Figure 4.16	Five cyclic adsorption-photocatalytic removal of RB5 dye by LC15 nanocomposites at optimum conditions under visible light irradiation		
Figure 4.17	Comparison of FTIR analysis on LC15 nanocomposites before and after five consecutive RB5 dye removal cycles and RB5 dye structure (inset)		
Figure 4.18	Effect of various scavengers on the visible-light photocatalytic activity of LC15 nanocomposites towards the RB5 dye removal		
Figure 4.19	Proposed mechanism of visible light induced photocatalytic removal of RB5 dye by LC15 nanocomposites	82	

LIST OF ABBREVIATIONS

LaFeO ₃	-	Lanthanum Orthoferrite
TiO ₂	-	Titanium Dioxide
RB5	-	Reactive Black 5
COD	-	Chemical Oxygen Demand
BOD	-	Biological Oxygen Demand
AOPs	-	Advanced Oxidation Processes
UV	-	Ultraviolet
UV-vis	-	Ultraviolet-Visible Light
LED	-	Light Emitting Diodes
mL	-	Millilitre
mg/L	-	Milligram per Litre
cm ⁻¹	-	Per Centimetre
ppm	-	Parts per Million
nm	-	Nanometre
\mathbf{S}_{BET}	-	Specific surface area by BET method
Max _r	-	Maximum pore radius distribution (BJH)
Avr _r	-	Average pore radius (BJH)
\mathbf{V}_p	-	Specific pore volume measured at $p/p^0 = 0.99$

LIST OF SYMBOLS

Wt%	-	Weight percent
eV	-	Electronvolt
λ	-	Wavelength
θ	-	Bragg's angle
π	-	Pi
E_g	-	Band Gap Energy
e	-	Electron
\mathbf{h}^+	-	Positive Vacant Hole
R^2	-	Correlation Coefficient
k	-	Rate constant
hv	-	Photon energy
\mathbf{C}_0	-	Initial Concentration
Ct	-	Concentration at Given Time
°C	-	Degree Celsius

CHAPTER 1

INTRODUCTION

1.1 Research Background

Textile industries normally use large amount of water in their processes, especially in drying and washing processes. Approximately 21 to 377 m³ of water is consumed for each tonne of textile product, while the chemical consumption made up between 10 to 100 percent of the weight of the clothes. Annually, it is estimated that 7 x 10^5 tonnes of dyestuffs are produced, leading to 280,000 tonnes of textile effluents containing dyes discharged into the aquatics (Van Hoa *et al.*, 2016; Asghar *et al.*, 2015). As a result, the large amount of coloured effluent having high level of Chemical Oxygen Demand (COD) (150-10,000 mg/L), Biological Oxygen Demand (BOD) (100-4000 mg/L) and instable pH discharged negatively impacted aquatic flora and fauna. This occurs as presence of dyes in wastewater severely interfered the photosynthetic function of plants due to low light penetration, thus reducing the concentration of dissolved oxygen used by aquatic organisms to breathe. Subsequently this will also affect the quality of freshwater used in our everyday lives as certain dyes are known to be toxic and carcinogenic to human if consumed in large quantity over period of times (Holkar *et al.*, 2016).

Widely used in textile industries, reactive dyes are chosen due to their high stability with respect to washing. These water soluble and non-biodegradable compounds comprised of one or more azo bonds (-N=N-) proved to be difficult to be treated as they have low absorbability. Among them, Reactive Black 5 (RB5) dyes has been one of the most utilized dye, contributing to more than 50% of total reactive dyes demand (Semiz, 2019; Garg *et al.*, 2016). As reactive dyes are designed to resist degradation, these aromatic and heterocyclic compounds need proper treatment strategies to meet the requirements set by the government, which in Malaysia is the Department of Environment (DOE) under Ministry of Energy, Science, Technology,

Environment and Climate Change. According to the Fifth Schedule of Acceptable Conditions for Discharge of Industrial Effluent for Mixed Effluent of Standard A and B from Environmental Quality (Industrial Effluents) Regulation 2009, the allowable limit for wastewater containing colorant or dyes were set at 100 to 200 ADMI with BOD₅ at 20°C less than 40 mg/L.

According to Koyuncu and Güney (2013), there are two conventional methods for treatment of textile industry wastewaters, namely the end-of-pipe treatment and segregation methods. As the name applied, the end-of-pipe treatment is carried out at the end of the mixed wastewater stream, while the later is by segregating the wastewater streams and applying different treatment steps to each stream. Differ as they may be, both treatments comprised of either physical, chemical, biological or mixture of them in efficiently treat the wastewater. Methods such as adsorption, membrane separation/filtration, coagulation-flocculation, chemical oxidation, ozonation, ultraviolet (UV) treatment and use of bacteria are among commercially available methods (Semiz, 2019; Katheresan *et al.*, 2018; Çınar *et al.*, 2017; Erdem *et al.*, 2016; Wojnarovits and Takacs, 2008). Comes with sets of advantages and disadvantages that will be discussed in depth later, they are being improvised year after year by many researchers around the world to find the ultimate solution for efficient dye wastewater treatment.

Among that, a branch of chemical treatment known as advanced oxidation process, or simply known as AOPs is potentially to be one of the best treatment available till date for total degradation of organic compounds, including reactive dyes. AOPs are widely recognized as highly efficient treatments for recalcitrant wastewater that employ the degradation of organic pollutants by forming hydroxyl radicals which are highly reactive and non-selective (Oller *et al.*, 2011). These include the treatment of wastewater with ozone, UV light, and Fenton-like treatment that uses reagent such as hydrogen peroxide, H_2O_2 to carry out degradation of organic compounds. Besides that, photocatalysis is another AOPs that can be deployed for RB5 dye wastewater treatment (Garg *et al.*, 2016). Being studied either as homogenous (liquid state oxidants) or heterogenous (solid state oxidants) process, many researches have been carried out in order to developed most advanced photocatalysts since the 1970s As for this research, it will be focusing on the application of heterogenous photocatalysts. In general, heterogenous photocatalysis is a process to degrade, destroy and permanently remove organic contaminants in wastewater that occurs when certain wavelengths of light interact with light-reactive materials called photocatalysts – a suspension of nanoparticles or nanocomposites, usually wide-bandgap semiconductors. The activation of these metal oxides promoted the photo excitation of electrons from the valence band to the conduction band, which generates •OH free radicals via secondary reaction that will subsequently degrades the organic contaminants found (Ayati et al., 2014).

However, the application of photocatalytic nanoparticles in wastewater treatment may not be favourable by many as the nanoparticles tend to agglomerate, especially if the catalysts used are in amorphous form, thus reducing the capability to carry out catalytic process. Thus, by combining the powerful degradation mechanism of photocatalysis and the importance of adsorption capability for efficient wastewater treatment, the synthesis of photocatalyst-adsorbent nanocomposite could be a promising method that can adsorb and degrade organic compounds such as RB5 dye in the presence of UV/visible light irradiation (Peng et al., 2016). This synergistic combination will not only preserve the advantageous components possessed by both treatment, but will also overcome drawbacks such as low absorptivity and rapid recombination of photogenerated electrons (Keane et al., 2011). Moreover, the combination will significantly increase the surface area of the composite, providing more active sites for adsorption and degradation of pollutants (Gao et al., 2016). Finally, the introduction of multiple functional groups will promote ionic exchange between the composites and specific pollutants, increasing their adsorption efficiency and thus, increasing the percentage of adsorbed pollutants to be degraded by photocatalyst process (Mansur et al., 2014).

1.2 Problem Statement

One of the most promising and most studied photocatalyst within AOPs treatment is titanium dioxide, TiO_2 . TiO_2 is chosen by many researchers as it possesses several good properties such as low-cost, high chemical stability, commercially available, non-toxic, and environmentally friendly. However, pristine TiO_2 can only absorbed light in ultraviolet region due to their large band gap of 3.2 eV. Multiple researches were carried out to narrow the band gap, thus allowing the TiO_2 particles to be activated by visible light (Leong et al., 2014).

On the other hand, perovskites, a collective name for materials with orthorhombic crystalline structure of ABO₃ (A=typically rare-earth elements; B=transition metals) is a promising candidate of photocatalysts. Lanthanum orthoferrite, LaFeO₃ is an example of compound with perovskite structure that had been studied for their photocatalytic activity in wastewater treatment. LaFeO₃ possessed a narrow band gap of 1.86 to 2.36 eV, making it efficient in visible light region as compared to TiO₂. Furthermore, its stability and non-toxicity properties made it a promising material in wastewater treatment (Thirumalairajan *et al.*, 2013).

However, the susceptibility of LaFeO₃ to agglomeration hinders its application in wastewater treatment researches and studies. This is mostly due to its high surface energy that interacts between the particles. Thus, by scattering the nanoparticles onto a support material that concurrently act as an effective adsorbent is one of the effective ways to reduce the agglomeration of the nanoparticles. Besides, the support material will also provide heterojunction for electron and holes that limit the charge recombination. There have been many support materials uses to support the nanoparticles (Peng et al., 2016).

One of the perfect candidates to achieve this goal is the application of chitosan. Chitosan is the most important derivative of chitin, which is the second most abundant natural polymer behind cellulose. Mainly extracted from crustaceans such as shrimp and crabs, chitin can also be found in the exoskeleton of arthropods or in the cell walls of yeasts and fungi as ordered crystalline microfibrils. Chitosan possessed excellent non-toxic, anti-microbial, biocompatible and biodegradable properties that are proven to be advantageous for wastewater treatment (Shukla et al., 2013).

Chitosan has been widely studied for water and wastewater treatment due to high functional groups content (acetamido group, both primary hydroxyl and secondary hydroxyl group and amino group). The presence of these functional groups subsequently contributed to good adsorption capability of this material. These also provide a good base for interaction with other materials such as metal oxides where multiple chemical bonds can be made to effectively improves the desired parameters, such as lowering the band gaps or improving distribution of nanoparticles in heterogenous photocatalysis studies (Saravanan *et al.*, 2018; Al-naamani *et al.*, 2017; Ahmed *et al.*, 2017).

In this study, LaFeO₃-chitosan nanocomposites were prepared by chemical precipitation method. This method is selected due to its simplicity, required no specialized equipment, time-saving and easily replicated. The ratio of chitosan and LaFeO₃ were varied accordingly in order to determine the difference in physiochemical properties and synergistic adsorption/photocatalytic performance of the nanocomposites.

The dominants active species generated during the photocatalytic process were identified via scavenger experiment. Previous studies on the scavenger experiment have shown that the dominant active species could be different for each dye molecules and photocatalyst (Chiu *et al.*, 2019). Therefore, this study is important to establish the mechanism of photodegradation of RB5 dye by nanocomposite LaFeO₃-chitosan. Apart from that, the operational parameter for photocatalytic degradation such as pH, nanocomposite loading and initial concentration of RB5 dye is further investigated to establish highly efficient photocatalytic degradation of RB5. This research is important in that it provided additional knowledge on the functions of chitosan adsorbents in enhancing LaFeO₃ exceptional photocatalytic degradation of organic pollutants such as dyes to improve the feasibility of AOP technologies in wastewater treatment.

1.3 Objectives of Study

The aim of this study is to fabricate LaFeO₃-Chitosan nanocomposites for synergistic act of adsorption and photocatalytic degradation of Reactive Black 5 dye from synthetic textile wastewater under visible-light irradiation. The fabrication of the nanocomposites is also aimed to reduce the risk of LaFeO₃ agglomeration due to their high surface energy.

In order to achieve that, there are three specific objectives of this study, which were:

- To assess the effects of LaFeO₃:chitosan ratio prepared via chemical precipitation method on physicochemical properties and photocatalytic degradation of RB5 dye in synthetic textile wastewater.
- 2. To determine the effect of various operating parameters (pH, catalyst loading and initial concentration of RB5 dye) towards the chosen nanocomposite performance, and subsequently the reusability of the nanocomposite.
- To determine and deduce the removal mechanism or pathways of RB5 dye by chosen LaFeO₃-chitosan nanocomposite via scavenging experiments.

1.4 Scopes of Study

- Synthesizing LaFeO₃ using gel combustion method via citric acid route at 200°C without any subsequent calcination process at high temperature.
- 2. Characterizing the physicochemical properties of LaFeO₃ using several characterization analysis such as X-ray diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and UV-vis diffuse reflectance spectroscopy (UVDRS) analysis
- 3. Fabricating LaFeO₃-chitosan nanocomposites via chemical precipitation method by varying the ratio of LaFeO₃:chitosan (LaFeO₃/chitosan in weight percent (wt%): 85/15, 75/25, 65/35 and 55/45), followed by preliminary studies to select the best two nanocomposites.
- 4. Characterizing the physicochemical properties of chitosan and chosen LaFeO₃chitosan nanocomposites using several characterization analysis such as X-ray diffractometer (XRD), Fourier Transform Infrared Spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and UV-vis diffuse reflectance spectroscopy (UVDRS) analysis, and subsequently determine the most suitable nanocomposite for effect of operating parameters evaluation.
- 5. Evaluating the synergistic adsorption-photocatalytic removal of RB5 dye by chosen LaFeO₃-chitosan nanocomposite by varying the operating parameters, including the pH of synthetic RB5 dye wastewater (pH 3, pH 6, and pH 9), nanocomposites loading (1g/L, 2g/L and 3g/L) and initial concentration of RB5 dye (30 mg/L, 50 mg/L and 70 mg/L). It was then followed by reusability experiments (5 cycles of reusability).
- Determining and proposing the possible mechanism involved in removal of RB5 dye by carrying out radicals' scavenging experiment.

1.5 Significance of Study

In this study, LaFeO₃ will be integrated with chitosan to produce high performance nanocomposite for Reactive Black 5 dye removal via synergistic adsorption/photocatalytic activities. Findings of this study will provide the knowledge to the scientific community on chitosan roles in improving the physicochemical properties of LaFeO₃. This study will also provide additional knowledge on the exceptional synergistic performance possessed by LaFeO₃ and chitosan nanocomposite at optimum ratio under visible light irradiation, and the reusability of it. By providing these insights, it is believed that the real-life application of heterogenous photocatalysts may soon become a reality in the near future.

REFERENCES

- Abe, R., Takami, H., Murakami, N. and Ohtani, B., 2008. Pristine Simple Oxides as Visible Light Driven Photocatalysts : Highly Efficient Decomposition of Organic Compounds over Platinum-Loaded. *JACS Communications*, 130, pp.7780–7781.
- Acharya, S., Padhi, D.K. and Parida, K.M., 2017. Visible light driven LaFeO₃ nano sphere/RGO composite photocatalysts for efficient water decomposition reaction. *Catalysis Today*, pp.1–12.
- Ahmed, M.A., Abdelbar, N.M. and Mohamed, A.A., 2017. Molecular imprinted chitosan-TiO₂ nanocomposite for the selective removal of Rose Bengal from wastewater. *International Journal of Biological Macromolecules*.
- Akpan, U.G. and Hameed, B.H., 2009. Parameters affecting the photocatalytic degradation of dyes using TiO₂-based photocatalysts : A review. *Journal of Hazardous Materials*, 170, pp.520–529.
- Al-naamani, L., Dobretsov, S., Dutta, J. and Burgess, J.G., 2017. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. *Chemosphere*, 168, pp.408–417.
- Albery, W.J., O'Shea, G.J. and Smith, A.L., 1996. Interpretation and use of Mott-Schottky plots at the semiconductor/electrolyte interface. *Journal of the Chemical Society, Faraday Transactions*, 92(20), p.4083.
- Armstrong, B.K. and Kricker, A., 2001. The epidemiology of UV induced skin cancer. Journal of Photochemistry and Photobiology B: Biology, 63(1), pp.8–18.
- Asghar, A., Abdul Rahman, A. Z., Wan Daud, W. M. A., 2015. Advanced oxidation processes for in-situ production of hydrogen peroxide / hydroxyl radical for textile wastewater treatment : a review. *Journal of Cleaner Production*, 87, pp.826–838.
- Ayati, A., Ahmadpour, A., Bamoharram, F. F., Tanhaei, B., Manttari, M., Sillanpaa, M., 2014. A review on catalytic applications of Au / TiO 2 nanoparticles in the removal of water pollutant. *Chemosphere*, 107, pp.163–174.
- Bhaumik, M., McCrindle, R., Maity, A., Agarwal, S., Guta, V. K., 2016. Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black

5 from aqueous solutions. *Journal of Colloid and Interface Science*, 466, pp.442–451.

- Bhaumik, M., Maity, A. and Gupta, V.K., 2017. Synthesis and characterization of Fe0/TiO₂ nano-composites for ultrasound assisted enhanced catalytic degradation of reactive black 5 in aqueous solutions. *Journal of Colloid and Interface Science*, 506, pp.403–414.
- Bilal, M., Rasheed, T., Iwbal, H. M. N., Hu, H., Wang, W., Zhuang, X., 2018. Toxicological Assessment and UV/TiO₂-Based Induced Degradation Profile of Reactive Black 5 Dye. *Environmental Management*, 61(1), pp.171–180.
- Cao, R., Yang, H., Deng, X., Zhang, S., Xu, X., 2017. In-situ synthesis of amorphous silver silicate/carbonate composites for selective visible-light photocatalytic decomposition. *Scientific Reports*, 7(1), pp.1–12.
- Chen, P., Xing, P., Chen, Z., Hu, X., Lin, H., Zhao, L., He, Y., 2019. In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H2 generation. *Journal of Colloid and Interface Science*, 534, pp.163–171.
- Chiu, Y.H., Chang, T. M., Chen, C., Sone, M., Hsu, Y., 2019. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. *Catalysts*, 9(5).
- Çınar, S., Kaynar, U., Aydemir, T., Cam Kaynar, S., Ayvacikli, M., 2017. An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads. *International Journal of Biological Macromolecules*, 96, pp.459–465.
- Clark, I., Smith, J., Gomes, R.L. and Lester, E., 2019. Continuous Synthesis of Zn₂Al-CO₃ Layered Double Hydroxides for the Adsorption of Reactive Dyes from Water. *Journal of Environmental Chemical Engineering*, 7(3), p.103175.
- Deng, H., Zhang, M., Cao, Y. and Lin, Y., 2019. Decolorization of Reactive Black 5 by Mesoporous Al₂O₃ @TiO₂ Nanocomposites. *Environmental Progress and Sustainable Energy*, 38(s1), pp.S230–S242.
- Ding, Y., Zhou, P. and Tang, H., 2016. Visible-light photocatalytic degradation of bisphenol A on NaBiO₃ nanosheets in a wide pH range: A synergistic effect between photocatalytic oxidation and chemical oxidation. *Chemical Engineering Journal*, 291, pp.149–160.

- Dougna, A.A., Gombert, B., Kodom, T., Djaneye-Boundjou, G., Boukari, S. O. B., Leitner, N. K. V., Bawa, L. M. 2015. Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: Effect of inorganic oxidants. *Journal of Photochemistry and Photobiology A: Chemistry*, 305, pp.67–77.
- Du, B., Hu, S., Singh, R., Tsai, T., Lim., C., Ko, F., 2017. Eco-Friendly and Biodegradable Biopolymer Chitosan/Y₂O₃ Composite Materials in Flexible Organic Thin-Film Transistors. *Materials*, 10(9), p.1026.
- Edalati, K., Fujiwara, K., Takechi, S., Qing, W., 2020. Improved Photocatalytic Hydrogen Evolution on Tantalate Perovskites CsTaO₃ and LiTaO₃ by Strain-Induced Vacancies. *ACS Applied Energy Materials*, 3(2), pp.1710–1718.
- Erdem, B., Erdem, M. and Özcan, A.S., 2016. Adsorption of Reactive Black 5 onto quaternized 2-dimethylaminoethyl methacrylate based polymer/clay nanocomposites. *Adsorption*, 22(4–6), pp.767–776.
- Eskandarloo, H., Badiei, A., Behnajady, M. 2016. Ultrasonic-assisted synthesis of Ce doped cubic-hexagonal ZnTiO₃ with highly efficient sonocatalytic activity. *Ultrasonics sonochemistry*, 29, p.258–269.
- Forgacs, E., Cserháti, T. and Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. *Environment International*, 30(7), pp.953–971.
- Fujishima, A. and Honda, K., 1972. Electrochemical photolysis of water at a semiconductor electrode. *Nature*, 238(5358), pp.37–38.
- Gadipelly, C., Perez-Gonzalez, A., Yadav, G., 2014. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse Raquel Iba n. *Industrial and Engineering Chemistry Research*, 53, pp.11571– 11592.
- Gao, P., Gao, B., Gao, J., Zhang, K., 2016. Adsorption of mercury in coal-fired power plants gypsum slurry on TiO₂ / chitosan composite material. *IOP Conference Series: Materials Science and Engineering*, 137.
- Garg, A., Sangal, V.K. and Bajpai, P.K., 2016. Decolorization and degradation of Reactive Black 5 dye by photocatalysis: modeling, optimization and kinetic study. *Desalination and Water Treatment*, 57(38), pp.18003–18015.
- Ghosh, B.K. and Ghosh, N.N., 2018. Applications of Metal Nanoparticles as Catalysts in Cleaning Dyes Containing Industrial Effluents: A Review. *Journal of Nanoscience and Nanotechnology*, 18(6), pp.3735–3758.

- Gnanaprakasam, A., Sivakumar, V.M. and Thirumarimurugan, M., 2015. Influencing Parameters in the Photocatalytic Degradation of Organic Effluent via Nanometal Oxide Catalyst: A Review. *Indian Journal of Materials Science*, 2015.
- Gomez-Cuaspud, J.A., Vera-Lopez, E., Carda-Castello, J.B. and Barrachina-albert, E., 2017. One-step hydrothermal synthesis of LaFeO₃ perovskite for methane steam reforming '. *Reac Kinet Mech Cat*, 120, pp.167–179.
- Gosavi, P. V. and Biniwale, R.B., 2010. Pure phase LaFeO₃ perovskite with improved surface area synthesized using different routes and its characterization. *Materials Chemistry and Physics*, 119(1–2), pp.324–329.
- Gupta, V.K., Saravanan, R., Agarwal, S., Gracia, F., 2017. Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO₂ nanocomposites. *Journal of Molecular Liquids*, 232, pp.423–430.
- Gupta, V.K. and Suhas, 2009. Application of low-cost adsorbents for dye removal A review. *Journal of Environmental Management*, 90(8), pp.2313–2342.
- Hammouda, S. B., Zhao, F., Safaei, Z. Babu, I., 2017. Reactivity of novel Ceria Perovskite composites CeO₂ LaMO₃ (MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant 'Bisphenol F': Characterization, kinetic and mechanism studies. *Applied Catalysis B: Environmental*, 218, pp.119–136.
- Hao, X. and Zhang, Y., 2017. Low temperature gel-combustion synthesis of porous nanostructure LaFeO₃ with enhanced visible-light photocatalytic activity in reduction of Cr (VI). *Materials Letters*, 197, pp.120–122.
- Hassaan, M.A. and Nemr, A. El, 2017. Health and Environmental Impacts of Dyes : Mini Review. American Journal of Environmental Science and Engineering, 1(3), pp.64–67.
- Van Hoa, N., Khong, T.T., Thi Hoang Quyen, T. and Si Trung, T., 2016. One-step facile synthesis of mesoporous graphene/Fe₃O₄/chitosan nanocomposite and its adsorption capacity for a textile dye. *Journal of Water Process Engineering*, 9, pp.170–178.
- Holkar, C.R., Jadav, D., Pinjari, D., 2016. A critical review on textile wastewater treatments : Possible approaches. *Journal of Environmental Management*, 182, pp.351–366.

- Hwang, Y., Kang, D.S. and Park, M.H., 2010. Solution combustion synthesis and surface properties of LaFeO₃ powders. *Journal of Ceramic Processing Research*, 11(3), pp.397–400.
- Ishizaki, S., Fukushima, T., Ishii, S. and Okabe, S., 2016. Membrane fouling potentials and cellular properties of bacteria isolated from fouled membranes in a MBR treating municipal wastewater. *Water Research*, 100, pp.448–457.
- Islam, M.J. and Kumer, A., 2020. First-principles study of structural, electronic and optical properties of AgSbO₃ and AgSb_{0.7}8Se_{0.22}O₃ photocatalyst. *SN Applied Sciences*, 2(2), p.251.
- Ivanchina, E., Ivashkina, E., Dolganova, I., Fransina, E. 2017. Influence of alkylaromatic hydrocarbons on the efficiency of linear alkylbenzene sulfonic acid synthesis. *Chemical Engineering Journal*, 329, pp.250–261.
- Jadhav, A.J. and Srivastava, V.C., 2013. Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. *Chemical Engineering Journal*, 229, pp.450–459.
- Jaiswal, M., Chauhan, D. and Sankararamakrishnan, N., 2012. Copper chitosan nanocomposite: synthesis, characterization, and application in removal of organophosphorous pesticide from agricultural runoff. *Environ Sci Pollut Res*, 19, pp.2055–2062.
- Janus, M., Kusiak-Nejman, E. and Morawski, A.W., 2011. Determination of the photocatalytic activity of TiO₂ with high adsorption capacity. *Reaction Kinetics, Mechanisms and Catalysis*, 103, pp.279–288.
- Jellite, M., Rehspringer, J. L., Fazio, M. A., Muller, D. 2018. Investigation of LaVO₃ based compounds as a photovoltaic absorber. *Solar Energy*, 162, pp.1–7.
- Kamaludin, R., Mohamad Puad, A., Othman, M., Kadir, S. 2019. Incorporation of Ndoped TiO₂ into dual layer hollow fiber (DLHF) membrane for visible lightdriven photocatalytic removal of reactive black 5. *Polymer Testing*, 78(February).
- Kanhere, P. and Chen, Z., 2014. A review on visible light active perovskite-based photocatalysts. *Molecules*, 19(12), pp.19995–20022.
- Katheresan, V., Kansedo, J. and Lau, S.Y., 2018. Efficiency of various recent wastewater dye removal methods: A review. *Journal of Environmental Chemical Engineering*, 6(February), pp.4676–4697.

- Keane, D., Basha, S., Nolan, K., 2011. Photodegradation of Famotidine by Integrated Photocatalytic Adsorbent (IPCA) and Kinetic Study. *Catalysis Letters*, 141(2), pp.300–308.
- Khalil, K.M.S., Elhamdy, W.A., Said, A.E.A. and Elsamahy, A.A., 2016. Porous LaFeO₃ / Silica Nanocomposites via Sol-Gel Mixing Involving Citric Acid. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 506, pp.840–848.
- Kim, S.A., Kamala-Kannan, S., Oh, S., Cho, M., Bae, S., 2016. Simultaneous removal of chromium(VI) and Reactive Black 5 using zeolite supported nano-scale zero-valent iron composite. *Environmental Earth Sciences*, 75(5).
- Kodera, M., Moriya, Y., Katayama, M., Hisatomi, T., 2018. Investigation on nitridation processes of Sr₂Nb₂O₇ and SrNbO₃ to SrNbO₂N for photoelectrochemical water splitting. *Scientific Reports*, 8(1), p.15849.
- Kolangare, I.M., Isloor, A., Karim, Z., 2019. Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles. *Environmental Chemistry Letters*, 17(1), pp.581–587.
- Konstantinou, I.K. and Albanis, T.A., 2004. TiO₂ -assisted photocatalytic degradation of azo dyes in aqueous solution : kinetic and mechanistic investigations A review. *Applied Catalysis B: Environmental*, 49, pp.1–14.
- Koyuncu, I. and Güney, K., 2013. Membrane-Based Treatment of Textile Industry Wastewaters. In: Hoek, E.M.V. and Tarabara, V. V., (eds.) *Encyclopedia of Membrane Science and Technology*. John Wiley & Sons, Inc.
- Leong, S., Razmjou, A., Wang, K. Hapgood, K., Zhang, X. 2014. TiO₂ based photocatalytic membranes: A review. *Journal of Membrane Science*, 472, pp.167–184.
- Li, C., Yu, S., Dong, H., Liu, C., Wu, H., 2018. Z-scheme mesoporous photocatalyst constructed by modification of Sn₃O₄ nanoclusters on g-C₃N₄ nanosheets with improved photocatalytic performance and mechanism insight. *Applied Catalysis B: Environmental*, 238, pp.284–293.
- Li, L., Wang, X. and Zhang, Y., 2014. Enhanced visible light-responsive photocatalytic activity of LnFeO₃ (Ln = La, Sm) nanoparticles by synergistic catalysis. *Materials Research Bulletin*, 50(200), pp.18–22.

- Li, Q., Wang, Y., Yuan, Y., 2017. Phase-controlled synthesis, surface morphology, and photocatalytic activity of the perovskite AlFeO₃. *Journal of Sol-Gel Science and Technology*, 82(2), pp.500–508.
- Li, Y., Lu, A., Wang, C. and Wu, X., 2008. Characterization of natural sphalerite as a novel visible light-driven photocatalyst. *Solar Energy Materials and Solar Cells*, 92(8), pp.953–959.
- Liang, X., Wang, P., Wang, J., 2019. Zwitterionic functionalized MoS₂ nanosheets for a novel composite membrane with effective salt/dye separation performance. *Journal of Membrane Science*, 573, pp.270–279.
- Ling, H., Kim, K., Liu, Z., 2015. Photocatalytic degradation of phenol in water on asprepared and surface modified TiO₂ nanoparticles. *Catalysis Today*, 258, pp.96–102.
- Linsebigler, A.L., Lu, G. and Yates, J.T., 1995. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. *Chemical Reviews*, 95(3), pp.735–758.
- Lv, T., Wu, M., Guo, M., Liu, Q., Jia, L., 2019. Self-assembly photocatalytic reduction synthesis of graphene-encapusulated LaNiO₃ nanoreactor with high efficiency and stability for photocatalytic water splitting to hydrogen. *Chemical Engineering Journal*, 356, pp.580–591.
- Maeda, K., 2014. Rhodium-Doped Barium Titanate Perovskite as a Stable p-Type Semiconductor Photocatalyst for Hydrogen Evolution under Visible Light. ACS Applied Materials & Interfaces, 6(3), pp.2167–2173.
- Mahlambi, M.M., Ngila, C.J. and Mamba, B.B., 2015. Recent Developments in Environmental Photocatalytic Degradation of Organic Pollutants : The Case of Titanium Dioxide Nanoparticles — A Review. *Journal of Nanomaterials*, 2015.
- Mallakpour, S. and Madani, M., 2016. Functionalized-MnO₂/chitosan nanocomposites: A promising adsorbent for the removal of lead ions. *Carbohydrate Polymers*, 147, pp.53–59.
- Mansur, A.A.P., Manusr, H., Ramanery, F., 2014. "Green" colloidal ZnS quantum dots / chitosan nano-photocatalysts for advanced oxidation processes : Study of the photodegradation of organic dye pollutants. *Applied Catalysis B: Environmental*, 158–159, pp.269–279.

- Mirjolet, M., Sánchez, F. and Fontcuberta, J., 2019. High Carrier Mobility, Electrical Conductivity, and Optical Transmittance in Epitaxial SrVO₃ Thin Films. *Advanced Functional Materials*, 29(14), p.1808432.
- Mohamed, M.A., Zain, M., Minggu, L., Kasim, M., Amin, N., 2018. Constructing biotemplated 3D porous microtubular C-doped g-C₃N₄ with tunable band structure and enhanced charge carrier separation. *Applied Catalysis B: Environmental*, 236(May), pp.265–279.
- Mohtor, N.H., Othman, M., Bakar, S., Kurniawan, T., Dzinun, H., 2018. Synthesis of nanostructured titanium dioxide layer onto kaolin hollow fibre membrane via hydrothermal method for decolourisation of reactive black 5. *Chemosphere*, 208, pp.595–605.
- Moshtaghi, S., Gholamrezaei, S. and Salavati Niasari, M., 2017. Nano cube of CaSnO₃: Facile and green co-precipitation synthesis, characterization and photocatalytic degradation of dye. *Journal of Molecular Structure*, 1134, pp.511–519.
- Munagapati, V.S., Yarramuthi, V., Kim, Y., 2018. Removal of anionic dyes (Reactive Black 5 and Congo Red) from aqueous solutions using Banana Peel Powder as an adsorbent. *Ecotoxicology and Environmental Safety*, 148, pp.601–607.
- Mutalib, M.A., Aziz, F., Jamaludin, N., Yahya, N., Ismail, A. F., 2018. Enhancement in photocatalytic degradation of methylene blue by LaFeO₃-GO integrated photocatalyst-adsorbents under visible light irradiation. *Korean Journal of Chemical Engineering*, 35(2), pp.548–556.
- Nakanishi, H., Iizuka, K., Takayama, T., Iwase, A., Kudo, A., 2017. Highly Active NaTaO₃-Based Photocatalysts for CO₂Reduction to Form CO Using Water as the Electron Donor. *ChemSusChem*, 10(1), pp.112–118.
- Natarajan, S., Lakshmi, D., Bhuvaneshwari, M., 2017. Antifouling activities of pristine and nanocomposite chitosan/TiO₂/Ag films against freshwater algae. *RSC Adv.*, (7), pp.27645–27655.
- Nawi, M.A. and Sabar, S., 2012. Photocatalytic decolourisation of Reactive Red 4 dye by an immobilised TiO₂ / chitosan layer by layer system. *Journal of Colloid And Interface Science*, 372(1), pp.80–87.
- Niu, T., Liu, G., Chen, Y., Yang, J., Wu, J., 2016. Hydrothermal synthesis of graphene-LaFeO₃ composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas. *Applied Surface Science*, 364, pp.388–399.

- Ohtani, B., 2014. Revisiting the fundamental physical chemistry in heterogeneous photocatalysis: its thermodynamics and kinetics. *Phys. Chem. Chem. Phys.*, 16(5), pp.1788–1797.
- Oller, I., Malato, S. and Sánchez-Pérez, J.A., 2011. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination A review. *Science of the Total Environment*, 409(20), pp.4141–4166.
- Parida, K., Reddy, K., Martha, S., Das, D., Biswal, N., 2010. Fabrication of nanocrystalline LaFeO₃: An efficient sole gel auto-combustion assisted visible light responsive photocatalyst for water decomposition. *International Journal* of Hydrogen Energy, 35(22), pp.12161–12168.
- Peng, K., Fu, L., Yang, H. and Ouyang, J., 2016. Perovskite LaFeO₃ / montmorillonite nanocomposites : synthesis , interface characteristics and enhanced photocatalytic activity. *Scientific Reports*, 6(19723), pp.1–10.
- Phokha, S., Pinitsoontorn, S., Rujirawat, S. and Maensiri, S., 2015. Polymer pyrolysis synthesis and magnetic properties of LaFeO₃ nanoparticles. *Physica B: Physics* of Condensed Matter, 476, pp.55–60.
- Qi, K., Cheng, B., Yu, J. and Ho, W., 2017. Review on the improvement of the photocatalytic and antibacterial activities of ZnO. *Journal of Alloys and Compounds*, 727, pp.792–820.
- Qi, X., Zhou, J., Yue, Z., Gui, Z., Li, L., 2003. Auto-combustion synthesis of nanocrystalline LaFeO₃. *Materials chemistry and physics*, 78, pp.25–29.
- Qi, X., Zhang, M., Zhang, X., Gu, Y., Zhu, H., 2017. Compositional dependence of ferromagnetic and magnetoelectric effect properties in BaTiO₃- BiFeO₃-LaFeO₃ solid solutions. *RSC Advances*, 7, pp.51801–51806.
- Qu, Y., Zhou, W., Ren, Z., 2012. Facile preparation of porous NiTiO₃ nanorods with enhanced visible-light-driven photocatalytic performance. *Journal of Materials Chemistry*, 22(32), pp.16471–16476.
- Regmi, C., Kshetri, Y., Pandey, R., Kim, T., 2019. Understanding the multifunctionality in Cu-doped BiVO₄ semiconductor photocatalyst. *Journal* of Environmental Sciences (China), 75(2017), pp.84–97.
- Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M., 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. *Science of the Total Environment*, 447, pp.345–360.

- Roh, H., Han, G., Lee, S., 2018. New down-converter for UV-stable perovskite solar cells: Phosphor-in-glass. *Journal of Power Sources*, 389, pp.135–139.
- Rusevova, K., Koferstein, R., Rosell, M., Richnow, H., 2014. LaFeO₃ and BiFeO₃ perovskites as nanocatalysts for contaminant degradation in heterogeneous Fenton-like reactions. *Chemical Engineering Journal*, 239, pp.322–331.
- Salleh, M.A.M., Mahmoud, D.K., Karim, W.A.W.A. and Idris, A., 2011. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. *Desalination*, 280(1–3), pp.1–13.
- Saratale, R.G., Noh, H.S., Song, J.Y. and Kim, D.S., 2014. Influence of parameters on the photocatalytic degradation of phenolic contaminants in wastewater using TiO2/UV system. *Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering*, 49(13), pp.1542–1552.
- Saravanan, R., Aviles, J., Gracia, F., Mosquera, E., Kumar, V., 2018. Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO₂ / CS (
 Chitosan) nanocomposites. *International Journal of Biological Macromolecules*, 109, pp.1239–1245.
- Sathiya, S., Okram, G., Dhivya, S., 2016. Interaction of Chitosan / Zinc Oxide Nanocomposites and their Antibacterial Activities with Escherichia coli. *Materials Today: Proceedings*, 3(10), pp.3855–3860.
- Sayama, K., Hayashi, H., Arai, T., Yanagida, M., Gunji, T., 2010. Highly active WO₃ semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. *Applied Catalysis B*: *Environmental*, 94, pp.150–157.
- Scaife, D.E., 1980. Oxide Semiconductors in Photoelectrochemical Conversion of Solar-Energy. Sol. energy, 25(1), pp.41–54.
- Semiz, L., 2019. Removal of reactive black 5 from wastewater by membrane filtration. *Polymer Bulletin*. Available at: https://doi.org/10.1007/s00289-019-02896-8.
- Shafawi, A., Mahmud, R., Ahmed Ali, K., Putri, L., Md Rosli, N., 2020. Bi₂O₃ particles decorated on porous g-C₃N₄ sheets: Enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UV–vis light. *Journal of Photochemistry and Photobiology A: Chemistry*, 389(December 2019).

- Shet, A. and Shetty K, V., 2016. Photocatalytic degradation of phenol using Ag core-TiO₂ shell (Ag@TiO₂) nanoparticles under UV light irradiation. *Environmental Science and Pollution Research International*, 23(20), pp.20055–20064.
- Shukla, S.K., Mishra, A.K., Arotiba, O.A. and Mamba, B.B., 2013. Chitosan-based nanomaterials: A state-of-the-art review. *International Journal of Biological Macromolecules*, 59, pp.46–58.
- Sing, K.S.W., 1982. Reporting physisorption data for gas / solid systems with special reference to the determination of surface area and porosity. *Pure & Applied Chemistry*, 54(11), pp.2201–2218.
- Sobahi, T.R., Amin, M.S. and Mohamed, R.M., 2018. Enlargement of photocatalytic efficiency of BaSnO₃ by indium doping for thiophene degradation. *Applied Nanoscience*, 8(3), pp.557–565.
- Soltanabadi, Y., Jourshabani, M. and Shariatinia, Z., 2018. Synthesis of novel CuO/LaFeO₃ nanocomposite photocatalysts with superior Fenton-like and visible light photocatalytic activities for degradation of aqueous organic contaminants. *Separation and Purification Technology*, 202(October 2017), pp.227–241.
- Su, H., Jing, L., Shi, K. Yao, C., Fu, H., 2010. Synthesis of large surface area LaFeO₃ nanoparticles by SBA-16 template method as high active visible photocatalysts. *Journal of Nanoparticle Research*, 12(3), pp.967–974.
- Sureshkumar, V., Daniel, S.C.G.K., Ruckmani, K. and Sivakumar, M., 2016. Fabrication of chitosan – magnetite nanocomposite strip for chromium removal. *Applied Nanoscience*, pp.277–285.
- Suzuki, H., Araki, S. and Yamamoto, H., 2015. Evaluation of advanced oxidation processes (AOP) using O₃, UV, and TiO₂ for the degradation of phenol in water. *Journal of Water Process Engineering*, 7, pp.54–60.
- Tang, P., Tong, Y., Chen, H., Cao, F., Pan, G., 2013. Microwave-assisted synthesis of nanoparticulate perovskite LaFeO₃ as a high active visible-light photocatalyst. *Current Applied Physics*, 13(2), pp.340–343.
- Tang, X. and Hu, K., 2006. The formation of ilmenite FeTiO₃ powders by a novel liquid mix and H₂/H₂O reduction process. *Journal of Materials Science*, 41(23), pp.8025–8028.

- Taran, O., Ayusheev, A., Ogorodnikova, O., 2016. Perovskite-like catalysts LaBO₃ (
 B = Cu , Fe , Mn , Co , Ni) for wet peroxide oxidation of phenol. *Applied Catalysis B, Environmental*, 180, pp.86–93.
- Tauc, J., 1968. Optical properties and electronic structure of amorphous Ge and Si. Materials Research Bulletin, 3(1), pp.37–46.
- Teimouri, A., Nasab, S., Vahdatppor, N., 2016. Chitosan /Zeolite Y/Nano ZrO₂ nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. *International Journal of Biological Macromolecules*, 93, pp.254– 266.
- Thirumalairajan, S., Girija, K., Hebalkar, N., 2013. Shape evolution of perovskite LaFeO₃ nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities. *RSC Advances*, 3, pp.7549–7561.
- Tziotzios, G., Teliou, M., Kalsouni, V., 2005. Biological phenol removal using suspended growth and packed bed reactors. *Biochemical Engineering Journal*, 26(1), pp.65–71.
- Vaiano, V., Iervolino, G. and Sannino, D., 2016. Photocatalytic Removal of Tartrazine Dye from Aqueous Samples on LaFeO₃ / ZnO Photocatalysts. *Chemical Engineering Transactions*, 52, pp.847–852.
- Wamba, A., Lima, E., Ndi, S., Thue, P., Kayem, J., 2017. Synthesis of grafted natural pozzolan with 3-aminopropyltriethoxysilane: preparation, characterization, and application for removal of Brilliant Green 1 and Reactive Black 5 from aqueous solutions. *Environmental Science and Pollution Research*, 24(27), pp.21807–21820.
- Wei, Y., Wang, J., Yu, R., 2019. Constructing SrTiO₃–TiO₂ Heterogeneous Hollow Multi-shelled Structures for Enhanced Solar Water Splitting. *Angewandte Chemie International Edition*, 58(5), pp.1422–1426.
- Wojnarovits, L. and Takacs, E., 2008. Irradiation treatment of azo dye containing wastewater : An overview. *Radiation Physics and Chemistry*, 77, pp.225–244.
- Wong, S., Yac'cob, N., Ngadi, N., Hassan, O., Inuwa, I., 2018. From pollutant to solution of wastewater pollution: Synthesis of activated carbon from textile sludge for dye adsorption. *Chinese Journal of Chemical Engineering*, 26(4), pp.870–878.

- Wu, C.H. and Chang, C.L., 2006. Decolorization of Reactive Red 2 by advanced oxidation processes: Comparative studies of homogeneous and heterogeneous systems. *Journal of Hazardous Materials*, 128(2–3), pp.265–272.
- Wu, Y., Wang, H., Tu, W., Liu, Y., Zen, Y., 2018. Quasi-polymeric construction of stable perovskite-type LaFeO₃/g-C₃N₄ heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. *Journal of Hazardous Materials*, 347(September 2017), pp.412–422.
- Yamamoto, H., Imai, T., Sakai, Y. and Azuma, M., 2018. Colossal Negative Thermal Expansion in Electron-Doped PbVO₃ Perovskites. *Angewandte Chemie International Edition*, 57(27), pp.8170–8173.
- Yao, M., Ding, Y., Wang, Z., Deng, Y., Zheng, F., 2015. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. *Environmental Science* and Technology, 49(17), pp.10570–10580.
- Yaseen, D.A. and Scholz, M., 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review, Springer Berlin Heidelberg.
- Yu, J., Chen, Z., Zeng, L., 2018. Synthesis of carbon-doped KNbO₃ photocatalyst with excellent performance for photocatalytic hydrogen production. *Solar Energy Materials and Solar Cells*, 179, pp.45–56.
- Yusof, N.F., Mehamod, F.S. and Mohd Suah, F.B., 2019. Fabrication and binding characterization of ion imprinted polymers for highly selective Co²⁺ ions in an aqueous medium. *Journal of Environmental Chemical Engineering*, 7(2), p.103007.
- Zainudin, N.S., Yaacob, M.H. and Md Muslim, N.Z., 2016. Voltammetric Determination of Reactive Black 5 (RB5) in Waste Water Samples from the Batik Industry. *Malaysian Journal of Analytical Sciences*, 20(6), pp.1254– 1268.
- Zaleska, A., 2008. Doped-TiO₂: A Review. *Recent Patents on Engineering*, 2(3), pp.157–168.
- Zhang, J., Zhang, T., Liang, X., Wang, Y., Shi, Y., 2020. Efficient photocatalysis of Cr^{VI} and methylene blue by dispersive palygorskite-loaded zero-valent iron/carbon nitride. *Applied Clay Science*, 198, p.105817.

Zhu, Y., Xu, S. and Yi, D., 2010. Photocatalytic degradation of methyl orange using polythiophene/titanium dioxide composites. *Reactive and Functional Polymers*, 70(5), pp.282–287.

LIST OF PUBLICATIONS

Indexed Journal

- Aizat, A., Aziz, F., Mohd Yusop, M. Z., Jaafar, J., Yusof, N., Wan Salleh, W. N., Ismail, A. F. 2019. Decolorization of Reactive Black 5 dye using gel combustion synthesized LaFeO₃ nanoparticles. *Malaysian Journal of Fundamental and Applied Science*, 15(3), pp 462-466.
- Aizat, A., Aziz, F., Mohd Sokri, M. N., Sahimi, M. S., Yahya, N., Jaafar, J., Wan Salleh, W. N., Yusof, N., Ismail, A. F. 2019. Photocatalytic degradation of phenol by LaFeO₃ nanocrystalline synthesized by gel combustion method via citric acid route. *SN Applied Sciences*, 1(91).

Book Chapter

 Aizat, M. A. and Aziz, F. 2019. Chitosan Nanocomposite Application in Wastewater Treatments in Ahsan, A. and Ismail, A.F. (eds.) Nanotechnology in Water and Wastewater Treatment. Theory and Applications. Oxford. Elsevier, pp. 243-265.