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ABSTRACT

Lanthanum orthoferrite (LaFeO3) is the perovskite type of photocatalyst that 
has potential to treat oily wastewater. Compared to better-known titanium dioxide 
(TiO2), LaFeO3 has been found to have a smaller band gap. The key purpose of this 
study was therefore to manipulate the physicochemical properties of LaFeO3 in order 
to enhance the degradation of oily wastewater by calcination heat treatment. 
Synthesis of the photocatalyst via the sol-gel route produced positive result. The 
precursor and LaFeO3 were characterized using X-ray diffraction for crystallinity 
test, thermogravimetric analysis and differential thermal analysis for thermal 
decomposition, ultraviolet- visible spectroscopy for optical properties, Fourier- 
transform infrared spectroscopy and Brunauer-Emmett-Teller, BET for surface area 
and field emission scanning electron microscope (FESEM) for surface morphology 
analysis. LaFeO3 was calcined at different temperature ranging from 500-900°C in 
two hours. Using glucose as chelating agent, LaFeO3 calcined at 600°C started to 
have a complete crystal structure. Sharper and stronger peak indicated greater 
crystallization with increasing calcination temperature, where crystallite sizes of 7.29 
nm, 11.55 nm, 12.60 nm and 15.43 nm were obtained for samples calcined at 600 to 
900°C. FESEM images revealed that samples calcined at 600°C appeared to be in 
porous and regular shape, forming a large network system with smaller particles size 
and higher surface area compared to samples calcined at higher temperature. The 
BET surface areas for the samples were 3.89 m2/g, 15.68 m2/g, 6.43 m2/g, 4.63 m2/g, 
and 2.40 m /g at the aforementioned calcination temperature intervals. The 
perovskite photocatalyst calcined at 600°C was thus chosen as the finest 
photocatalyst to undergo photocatalytic study. This LaFeO3-600 had the most 
outstanding surface area (15.68 m /g) with the lowest band gap value (1.88 eV) and 
smallest crystal size (7.29nm) compared to the others. Photocatalytic activity was 
conducted for 180 minutes where the first 30 minutes were for adsorption and 
desorption. The effects of the initial concentrations under visible light irradiation 
have been studied for 150 minutes and the findings indicate that the degradation 
efficiency were 70 %, 80 % and 65 % for concentrations of 1000 ppm, 10000 ppm 
and 20000 ppm respectively. Less than 5% was removed under visible light 
irradiance (photolysis), showing the stability of the pollutant. In conclusion, the 
perovskite-based photocatalyst LaFeO3 was successfully prepared via the sol-gel 
method, where LaFeO3-600 demonstrated the highest efficiency in degrading 
synthetic oily wastewater by up to 80% in 180 minutes.
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ABSTRAK

Lantanum ortoferit (LaFeO3), adalah jenis fotomangkin perovskit yang 
berpotensi untuk merawat air kumbahan berminyak. Berbanding dengan titanium 
dioksida (TiO2), yang lebih terkenal, LaFeO3 telah diketahui mempunyai jurang jalur 
yang lebih kecil. Tujuan utama kajian ini adalah untuk memanipulasi sifat fizik- 
kimia LaFeO3 untuk meningkatkan degradasi air sisa berminyak dengan rawatan 
haba kalsinasi. Hasil sintesis fotomangkin melalui kaedah sol-gel menghasilkan 
keputusan yang positif. Prapenanda dan LaFeO3 dicirikan menggunakan pembelauan 
sinar-X untuk ujian pengkristalan, analisis termogravitimetrik dan analisis kebezaan 
terma untuk penguraian terma, spektroskopi ultraviolet dan cahaya kelihatan untuk 
sifat optik, spektroskopi transformasi inframerah Fourier dan Brunauer-Emmett- 
Teller, BET untuk luas permukaan, dan mikroskop elektron imbasan pancaran medan 
(FESEM) untuk analisis morfologi permukaan. LaFeO3 dikalsin pada suhu berlainan 
antara 500°C hingga 900°C dalam masa dua jam. Menggunakan glukosa sebagai ejen 
pengkelat, LaFeO3 yang di kalsinasi pada suhu 600°C mula membentuk struktur 
kristal yang lengkap. Puncak yang lebih tajam dan kuat menunjukkan penghabluran 
kristal yang lebih ketara dengan peningkatan suhu kalsinasi, di mana kristalit 
berukuran 7.29 nm, 11.55 nm, 12.60 nm, and 15.43 nm diperoleh untuk sampel dari 
600°C hingga 900°C. Imej FESEM menunjukkan bahawa sampel yang dikalsinasi 
pada suhu 600°C kelihatan berliang dan bentuk biasa, membentuk sistem rangkaian 
besar dengan saiz partikel yang lebih kecil dan luas permukaan yang lebih luas 
berbanding sampel yang dikalsinasi pada suhu yang lebih tinggi. Luas permukaan 
BET untuk semua sampel ialah 3.89 m2/g, 15.68 m2/g, 6.43 m2/g, 4.63 m2/g, dan 2.40 
m /g dengan selang peningkatan suhu kalsinasi yang telah dinyatakan diatas. 
Fotomangkin perovskit yang dikalsinasi pada suhu 600°C dipilih sebagai 
fotomangkin yang paling berpotensi untuk menjalani kajian fotobermangkin. 
LaFeO3-600 ini mempunyai luas permukaan yang luar biasa (15.68 m /g) dengan 
nilai jurang jalur terendah (1.88 eV) dan saiz kristal yang kecil (23.82 nm) 
berbanding dengan yang lain. Aktiviti pemangkin foto dilakukan selama 180 minit 
dengan 30 minit yang pertama sebagai masa penjerapan dan penyerapan. Kesan 
kepekatan awal di bawah penyinaran cahaya boleh lihat telah dijalankan selama 150 
minit dan penemuan menunjukkan bahawa kecekapan degradasi adalah 70%, 80% 
dan 65% masing-masing bagi kepekatan awal 1000ppm, 10000ppm, dan 20000ppm. 
Hanya kurang daripada 5% disingkirkan di bawah sinaran cahaya yang boleh dilihat 
(fotolisis), menunjukkan kestabilan bahan pencemar. Kesimpulannya, fotomangkin 
berasaskan perovskit LaFeO3 telah berjaya disintesis melalui kaedah sol-gel, di mana 
LaFeO3-600 menunjukkan kecekapan tertinggi dalam melakukan degradasi air 
kumbahan berminyak sintetik sehingga 80% dalam masa 180 minit.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Petrochemical industries, oil and petroleum industries, transportation have 

generated oily wastewater that can be harmful to the environment. If left untreated, 

oily wastewater, which is usually emulsified, can have a significant negative impact 

on facilities. Water is the main source of living; untreated wastewater could affect 

drinking water and endanger aquatic resources. Significant threats that can be 

identified include soil, human, air and water (Jamaly et al., 2015) . China has decided 

to limit as much as 10g/mL the maximum allowable emissions of oily wastewater in 

the country showing that oily wastewater is at a hazardous level (Yu et al., 2017).

In the oil and gas (O&G) industries, water will be produced in a high quantity 

and can be said to be the most productive in a day. O&G industries handle more 

water than oil on a daily basis (Adham et al., 2018). Water used primarily to 

maintain the pressure of the reservoir and through floods of water, may increase the 

recovery of oil (Adham et al., 2018). There are few technologies available to treat 

oily wastewater such as gravity seals, dewatering, flotation, coagulation and 

membrane separation technologies that are called traditional methods, although 

advanced oxidation processes (AOPs) and hybrid technologies are the new 

technologies. Conventional methods such as treatment of wastewater will not 

completely remove contaminants from water. Researchers therefore always find a 

new and alternative way to treat wastewater so that the contaminants can not only be 

transferred to another phase, but can be permanently eliminated. Figure 1.1 shows 

the photo-induced electron-hole pair formation mechanism in a semiconductor TiO2 

particle with the presence of a water pollutant (P).
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Countless harmful mixtures of hydrocarbons, chemical components and 

heavy metals in oily wastewater. There is a typical limit for oil and fat discharges 

depending on the type of oil. For example, the discharge limits for mineral and 

synthetic oils are 10-15 mg/L while for those of vegetable and animal based from 

100-150 mg/L (Purification et al., 2011). Oily wastewater needs to be treated 

because it can affect drinking water and groundwater resources, endangering aquatic 

resources and human health, affecting crop production and destroy the natural 

landscape.

Energy Level ^
R edaction

Figure 1.1 Reaction mechanisms of TiO2 photocatalysis (Umar and Abdul, 
2013).

Various kind of materials has been created and alter to get the best result in 

water treatment. Photocatalyst either heterogenous or homogenous being study to 

advance the treatment. Titanium Oxide (TiO2) is the best and most common 

photocatalyst used to remove contaminants. This TiO2  receives wide attention in the 

field of research due to its high catalytic activity, high stability and lower rate (Shao,

2013). Other than TiO2, some other photocatalyst used are LaNiO3 (Li et al., 2010) 

Bi2WO6 (Shang et al., 2008) and BiFeO3 (Humayun et al., 2016).
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Photocatalyst nanoparticles can be synthesis by hydrothermal method, 

combustion method, sol-gel method, co-precipitation method, micro emulsion 

method, thermal decomposition method and sono-chemical method. The common 

and widely used method of synthesizing photocatalyst nanoparticles is through sol- 

gel method. The advantages of this method are controllable size, less complex, cost- 

effectiveness and low temperature growth. Textural and structural material properties 

have been shown to be strongly influenced by the parameters of synthesis and 

processing. Synthesis parameters, including precursor types, molar ratios between 

reactants, solvents, complexion agents, pH, temperature of synthesis and temperature 

of calcination.

Perovskite with typical ABO3 formula such as NaTaO3, KTaO3, LaFeO3 have 

a higher photocatalytic activity due to its narrow band gap, unique crystal structure 

and electronic properties. Citrical acid and glucose-based sol-gel methods were used 

in the previous study and were successfully synthesized by LaFeO3. Based on 

previous studies, the temperature used for calcining while synthesizing was 

undeniably affected by the structure, particle size and properties of the final product, 

but rarely explored and reported. Advantages of the structure of perovskite:

(a) Their crystal structures generally provide an appropriate electronic structure 

that shifts the band gap energy to visible-light absorption.

(b) Their crystal structural arrangements allow lattice distortions, significantly 

affecting the separation of photogenerated charge carriers and avoiding the 

recombination processes.

Thus, the possibility of controlling the physicochemical properties of 

perovskite structures allows the relationship between structural properties and photo- 

catalytic activity to be unraveled, making this material a good alternative to TiO2 

photocatalyst.
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Figure 1.2 Structure of perovskite ABO3 crystal (Yahya et al., 2018)

In this study, lanthanum-based photocatalyst Lanthanum Orthoferrite 

(LaFeO3) with narrow band gap was synthesized to replace TiO2 as a photocatalyst to 

be activated using visible light. A study was conducted on the effect of the 

calcination temperature on the physicochemical properties and the photocatalytic 

degradation performance of the synthesized LaFeO3.

Glucose is more favourable as a complexing agent because of its eco-friendly 

nature, low cost, ease of use and reproducibility. The use of glucose as a chelating 

agent often results in convenience that requires less energy to synthesize high-purity 

nanoparticles. The main role of glucose is to generate a highly viscous and stable 

mixture solution, which prohibited the aggregation of cations and favoured the 

formation of LaFeO3 phase. The glucose structure is a ring with five hydroxyl groups 

and can form complexes with the La and Fe cations in the precursor solution, 

resulting in the simultaneous crystallisation of the La and Fe cations as the water 

evaporates. Calcination temperatures are also known to have an impact on 

physicochemical properties such as band gap, surface crystalline and morphological 

properties (Shen et al., 2016).
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1.2 Problem Statement

Titanium dioxide (TiO2 ) is the most widely studied since it is non-toxic, 

chemically stable, commercially available and inexpensive. However, TiO2 can only 

be activated with ultraviolet light (< 390 nm) as it cannot be activated by visible light 

due to the high band gap (3.2eV). The other barrier used by TiO2 as a photocatalyst 

is the rapid recombination of the electron-hole pair. Due to this limitation, this 

method is still practically not in use in the large industry. The wide band gap of TiO2 

limits their absorption of light within the ultraviolet region. The semiconductor must 

have a small band gap in order to get as much sunlight as possible. The band gap is 

one of the main factors to be considered for photocatalytic activity. Generally, the 

acceptable value of band gap of most photocatalysts that can be activated by visible 

light irradiation are below 3.0 eV. In that case, current researchers preferred LaFeO3 

nanoparticles due to its narrow band gap.

LaFeO3  is considered to be an effective visible-light driven photocatalyst for 

photocatalytic reactions due to its narrow band gap and optoelectronic properties. 

The UV source requires a large amount of electrical energy, which would result in 

high costs in practical applications. However, TiO2  is not ideal for all purposes and is 

rather weak in processes associated with solar photocatalysis due to its wide band 

gap (3.0-3.2 eV), making it impractical to set up large technological processes based 

on TiO2. Studies on the synthesization of LaFeO3 and its purpose as a photocatalyst 

were rarely reported, the smallest band gap from pure LaFeO3 was 2.07eV at 900oC 

via the auto-combustion route. In addition, research has also studied the impact of 

calcination temperature on the physiochemical properties of synthesised 

photocatalysts in ways of producing photocatalysts at lower cost and energy 

consumption.
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1.3 Objective of Study

The main aim of this study is to develop a new photocatalyst based on

perovskite with low band gap (< 2.2 eV) for the treatment of oily waste water. The

study aim can be further elaborated as follows:

1. To examine the effects of calcination temperature on LaFeO3 crystal

formation.

2. To determine the physicochemical properties of LaFeO3 through the route of

the sol gel.

3. To identify the photocatalytic degradation performance of the synthesized

LaFeO3 for potential applications of oily wastewater treatment.

1.4 Scope of Study

In order to achieve the stated objectives, the following scopes have been

drawn up:

1. Synthesizing the LaFeO3 perovskite using the glucose sol-gel method as a 

complexing agent. The temperature of the calcination ranged from 500- 

900°C.

2. Characterization of the physicochemical properties of the synthesized LaFeO3

in terms of thermal stability, morphological properties, surface areas, 

crystallinity, structural analysis and optical properties using Fourier 

Transform Infrared Spectra (FTIR), Thermogravimetric analysis (TGA), 

Field Emission Scanning Electron Microscope (FESEM), Brunauer-Emmett- 

Teller (BET) surface area, Xray powder diffraction (XRD) and UV-Vis 

spectrophotometer.

3. The optimal photocatalyst was selected by comparing the data collected.

Optimal samples with a high surface area, a low band gap value and a small 

crystal size were selected.
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4. Evaluating the photocatalytic activity of the selected LaFeO3 photocatalyst in

degrading oily synthetic wastewater by varying the operating parameters, 

including the irradiation time (0-180 min) and the initial concentration 

(1000,10000, 20000 ppm) under visible light irradiation. The catalytic load 

remains unchanged at 1.0 g/mL. The aliquot taken was characterized by the 

use of UV-Vis to determine degradation.

1.5 Significance of Study

Study on synthesizing LaFeO3 via glucose sol gel route rarely reported, 

previous study found that the lowest calcination time for pure LaFeO3 with 

orthorhombic structure was 500°C with a molar ratio between complexing agent and 

metal 3:10 and glucose as a complexing agent (Liu and Xu, 2011). No band gap 

value reported. A study conducted by Parida et al. 2010, using citric acid as a 

complexing agent, showed that a high surface area with a molar ratio of 3:5 with a 

band gap value of 2.1 eV can be achieved. Previous studies using citric acid as a 

complexing agent have shown that pure LaFeO3 can only be achieved with a high 

calcination temperature > 550oC (Khalil et al., 2016; Lebid and Omari, 2013; Qi et 

al., 2003). Deep research on the synthesizing of visible-light driven photocatalysts, 

which can be produced at a minimum molar ratio between the complexing agent and 

the metal (3:5), has therefore been conducted starting at a minimum calcination 

temperature of 500-900°C. The crystallization of LaFeO3 nanoparticles is known to 

have been favoured at high calcination temperature (Liu and Xu, 2011; Shen et al., 

2016). This LaFeO3 is possible to create energy-saving and environment friendly 

technology to treat oily wastewater.
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