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ABSTRACT 

Enzymes as biocatalysts in industries are more advantageous compared to 

chemical catalysts because of their low operating conditions, less complexity, and 

environmentally-friendly property. Laccase, an oxidoreductase enzyme, is foreseen to 

be used in various industries as a biocatalyst. However, the use of free laccase in 

industries often suffers some limitations, such as high production cost, instability 

issues, low recovery, and reusability problems. These problems can be overcome by 

enzyme immobilization technology, which offers enhancements to free enzyme's 

stability. The advent of nanotechnology has introduced electrospun nanofiber mat as a 

carrier for enzyme immobilization. The mat is foreseen to be implemented in the 

enzymatic membrane bioreactors of continuous flow processes. In this study, 

polyethylene terephthalate (PET) was grafted with maleic anhydride (MAH) (PET-g-

MAH) and spun through electrospinning into nanofiber mats with an average fiber 

diameter of 844 ± 149 nm before it was used as the carrier of immobilized laccase. 

Three different immobilization methods were used: physical adsorption on PET 

nanofiber mats, covalent bonding, and covalent bonding of cross-linked laccase 

aggregate with glutaraldehyde as the cross-linker. The combination of 0.28 mg/ml 

laccase concentration, pH 3 citrate buffer, 0.45 % (v/v) glutaraldehyde concentration, 

1.5 hr of covalent bonding time at 22.7 oC, and 1 hr of cross-linking time at 20 oC 

contributed to the optimum immobilization yield (87.64 %). The adsorption of laccase 

on PET-g-MAH nanofiber mats obeyed the pseudo-first-order, and the biosorption 

isotherms correlated well with the Freundlich isotherm model. The optimized 

immobilized laccase was able to withstand high temperature (60 oC) and also oxidized 

2, 2-azino-bis 3-ethylbenzothiazoline-6- sulfonic acid (ABTS) at a broad range of pH 

(pH 3 to pH 6) and temperature (20 oC to 70 oC). It also managed to retain 77.55 % of 

its initial activity after 10 repeated cycles of ABTS oxidation and 29.22 % after 30 

days storage at 4 oC in pH 3 buffer. In conclusion, the results showed that the laccase 

immobilized on the PET-g-MAH nanofiber mat might have great potential to be used 

in industries. 
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ABSTRAK 

Enzim sebagai biomangkin mempunyai kelebihan berbanding mangkin kimia 

untuk digunakan dalam industri kerana keadaan pengoperasiannya yang rendah, 

mudah dan bersifat mesra alam. Lakase, sejenis enzim oxidoreduktase, adalah 

berpotensi digunakan dalam pelbagai industri sebagai biomangkin. Walau 

bagaimanapun, terdapat beberapa kekangan yang dihadapi dalam penggunaan enzim 

tersebut, antaranya adalah kos penghasilan enzim yang tinggi, risiko ketidakstabilan 

enzim, dan masalah kebolehgunaan semula enzim yang rendah. Kekangan yang 

dihadapi dalam pengunaan enzim tersebut boleh diatasi dengan teknologi imobilisasi 

enzim iaitu satu kaedah yang boleh meningkatkan kestabilan enzim. Kemajuan 

teknologi nano, telah memperkenalkan tikar gentian nano elektroputar sebagai bahan 

kepada imobilisasi enzim. Tikar gentian nano berpotensi untuk dilaksanakan dalam 

bioreaktor membran berenzim proses aliran berterusan. Dalam kajian ini, polietilena 

tereftalat (PET) dicantumkan dengan maleat anhidrida (MAH) (PET-g-MAH) melalui 

proses putaran elektro menjadi tikar gentian nano dengan diameter 844 ± 149 nm 

sebelum digunakan sebagai bahan sokongan untuk lakase imobilisasi. Terdapat tiga 

kaedah imobilisasi yang digunakan: penjerapan fizikal pada tikar gentian nano PET, 

ikatan kovalen dan ikatan kovalen paut silang agregat lakase dengan menggunakan 

glutaraldehida sebagai pemaut silang. Hasil gabungan lakase pada kepekatan 0.28 

mg/ml, larutan penimbal pada pH 3, kepekatan glutaraldehida 0.45 % (v/v), 1.5 jam 

masa ikatan kovalen pada suhu 22.7 oC dan 1 jam masa penyambungan silang pada 

suhu 20 oC menyumbang kepada hasil imobilisasi yang optimum (87.64 %). 

Penjerapan lakase pada tikar gentian nano PET-g-MAH mematuhi model tertib 

pertama pseudo dan isoterm bioerapan mempuyai korelasi yang baik dengan model 

isoterm Freundlich. Lakase yang telah melalui proses imobilisasi pada keadaan 

optimum dapat menahan suhu yang tinggi (60 oC) dan juga mengoksidasikan 2, 2-

azino-bis 3-etilbenzotiazolina-6-asidsulfonik (ABTS) pada julat pH (pH 3 hingga pH 

6) dan suhu (20 oC hingga 70 oC) yang besar. Di samping itu, proses imoblisasi enzim 

mampu mengekalkan aktiviti enzim sekitar 77.55 % setelah 10 kitaran pengoksidaan 

ABTS secara berulang dan 29.22 % setelah disimpan selama 30 hari pada suhu 4 oC 

dalam larutan penimbal pH 3. Kesimpulannya, lakase yang diimobilisasikan pada tikar 

gentian nano PET-g-MAH mempunyai potensi yang besar untuk digunakan dalam 

industri.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Enzymes are protein macromolecules produced by living organisms and are 

essential for the organisms’ survival; their function is to speed up chemical reactions 

and act as natural catalysts inside living cells to ensure organisms' survival. Enzymes 

are highly selective and specific because they only catalyze specific substrates in a set 

of chemical reactions. Enzymes consume little energy, act at low temperatures, 

produce few by-products, are non-toxic and degradable, compared with chemical 

catalysts (Osbon and Kumar, 2019; Sheldon and van Pelt, 2013). Also, they are more 

cost-effective, environmentally friendly and sustainable than chemical catalysts. 

Enzymes implementation in processes has been recognized because of the advantages 

offered by them. 

Despite the advantages, several limitations hinder the implementation of 

enzymes as biocatalysts. The production cost of enzymes are high, and their 

purification process is rather complex (Ferreira et al., 2018; Klein-Marcuschamer et 

al., 2012; Zheng et al., 2017). Enzymes also suffer from low recovery and reusability 

problems, which are major problems in industries. The separation of enzymes from 

products after reactions also becomes a bottleneck that hampers the use of enzymes as 

biocatalysts. Moreover, free enzymes' stability is still limited, which is due to enzyme 

inactivation and denaturation under harsh reaction conditions. These problems have 

become major issues for enzyme usage in industries. 
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However, according to a review by Silva et al. (2018), several enzyme 

stabilization strategies such as the screening and isolation of enzymes from 

extremophiles, protein engineering, enzyme functionalization, enzyme 

immobilization, medium engineering, enzyme storage stabilization and enzyme 

stabilization by silk have been studied to tackle the problems faced by enzymes. 

Compared with the other strategies, the immobilization technology offers 

enhancements to enzymes, such as the ability to operate in a broad range of 

temperature and pH, longer shelf life than free enzymes and high reusability, which is 

the most important feature for catalysts (Hong et al., 2019; Liang et al., 2020). 

Immobilization stabilises the enzymes by immobilizing them on or within a solid 

carrier using various methods such as adsorption, covalent binding, encapsulation, 

entrapment and cross-linking (Meryam Sardar, 2015; Sheldon and van Pelt, 2013). 

Since a carrier's function is to help stabilize enzyme structure (Silva et al., 2018), the 

selection of a carrier is one of the important factors that should be considered in 

immobilization technology studies.  

Recently, laccase, an enzyme from the oxidoreductases class, received 

attention from several researchers because of its potential to be used as a biocatalyst 

in industries. Its potential is due to its capability to oxidize phenolic and non-phenolic 

lignin compounds and several environmental pollutants (Mate and Alcalde, 2015). 

Laccase has been immobilized using different types of carrier and evaluated in 

different industrial applications such as dye decolourization (Youxun Liu et al., 2016; 

Sathishkumar et al., 2014; Vršanská et al., 2018), phenolic compound removal (Dai et 

al., 2016; Qiu et al., 2019; R. Xu et al., 2017), bioremediation (Maryšková et al., 2016; 

Zdarta et al., 2020) and delignification (Sánchez-Ramírez et al., 2016).  

However, each immobilization method still has problems with its carriers. The 

physical immobilization methods offer immobilization without conformational 

changes in the enzyme structure (Asgher et al., 2017a). However, the desorption of 

enzymes can sometimes not be prevented because of the carriers' weak interaction. 

Although chemical immobilization can solve the enzyme leaching problem through  
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stronger covalent bonding (Chao et al., 2018; El-Aassar et al., 2019), the covalent 

attachment might denature, thus reduce the catalytic activity of the enzyme. As there 

is no universal immobilization method for every type of carrier, a suitable method 

should be studied for every new type of carrier. 

In the present time, the advent of nanotechnology has opened up a new arena 

for nanomaterials to be used as a carrier for enzyme immobilization. Nanostructured 

materials such as nanoparticles, nanofibers, nanotubes and nanoporous materials are 

considered valuable carrier options because they provide high available surface areas 

for enzyme immobilization. Since enzyme concentration influences the reaction rate, 

nanomaterials would be the best choice for the carrier selections.  

Among the nanomaterials, nanofibers constructed through electrospinning may 

be promising for enzyme immobilization because various types of polymer can 

produce them, and the preparation for the polymer solution is simple, depending on 

the desired mixture of the polymer. Electrospun nanofiber surfaces can be modified 

easily to meet the benefits of enzyme activity. The electrospun nanofibers have high 

porosity and interconnectivity, which eliminate the mass transfer limitation (Tran and 

Balkus, 2012; Wang et al., 2009). There have been many instances of enzyme 

immobilization on nanofibers; some of the nanofiber carriers are a modified nanofiber 

poly(acrylonitrile-co-styrene/pyrrole) nanofiber mat (El-Aassar et al., 2019), a 

modified polyurethane nanofiber mat (Li et al., 2019; Wu et al., 2018a), nanoparticle-

incorporated nanofiber as poly(crylonitrile)/poly(vinylidene fluoride) incorporated 

with nano-copper (R. Xu et al., 2017), and biopolymer nanofibers such as a polyamide 

6/chitosan nanofiber mat (Maryšková et al., 2016) and cellulose nanofiber 

(Sathishkumar et al., 2014). 

Polyethylene terephthalate (PET) is an inexpensive polymer that is most 

widely used in the synthetic material world. Regardless of the price, the structure of 

PET as a nanofiber mat has been proven to have good physical and mechanical 

properties (Veleirinhho et al., 2008). Unfortunately, PET is also a hydrophobic and 

chemically inert polymer, which limits its potential to be used as a carrier for enzyme 

immobilization. However, polymer modification helps to improve the characteristics 
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of PET. Several researchers have successfully immobilized enzymes on PET fibers by 

modifying the fibers’ surfaces. An example of those enzymes is horseradish 

peroxidase, which has successfully been immobilized on PET fibers grafted with 

acrylamide (Temoçin and Yiǧitoǧlu, 2009). Trypsin has also been immobilized, on a 

mixture of PET and polylactic acid nanofibers, and it was found that there was no 

enzyme leaching during the activity reaction (Silva et al., 2015). 

In this study, laccase was immobilized on a PET nanofiber mat that had been 

modified with maleic anhydride (MAH) through polymer grafting. This work marks 

the first time laccase was immobilized on a MAH-grafted PET nanofiber mat (PET-g-

MAH). The laccase immobilized on PET-g-MAH nanofiber mat has immense 

potential of being implemented in industries as a biocatalyst. 

1.2 Problem Statement 

Laccase has received attention from researchers because of its ability to oxidize 

phenolic compounds, non-phenolic compounds and environmental pollutants (Fillat et 

al., 2017). It has been used in various industries such as paper and pulp, textile, food 

and bioremediation (Mate & Alcalde, 2015). However, laccase use has production 

cost, instability under operational conditions, and reusability limitations (Daronch et 

al., 2020). The immobilization technology has been proven to enhance laccase's 

stability (Chao et al., 2018; Li et al., 2019; Xu et al., 2017), and this technology is the 

most implemented strategy for enhancing the stability of enzymes as biocatalysts. 

Nowadays, various carriers have been discovered to immobilize enzymes, from 

natural biopolymers to synthetic organic polymers. Choosing the carrier for enzyme 

immobilization has always been one of the crucial factors because the enzyme's 

properties may be affected by the structure and property of the carrier (Zhang et al., 

2013) after immobilization. The material of the carrier chosen should be biocompatible 

with the enzyme, non-hazardous, and resistant to harsh conditions. Polyethylene 

terephthalate (PET) has excellent physical and mechanical properties; however, the 

hydrophobic and chemically inert nature of PET limits its potential to be used as an 
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excellent enzyme carrier. Modification of the PET surface is required to prevent these 

problems. Recently, sPreviously, several researchers have successfully immobilized 

enzyme on PET based carrier by modifying its surface (Mohamed et al., 2016; Irena 

et al., 2009; Silva et al., 2015; Caramori and Fernandes, 2008). Even though the 

enzyme was immobilized on the carrier, the modification process of PET surface was 

still complex and some treatments also bring negative impact to the property of PET 

(Irena et al., 2009). 

Another important factor to improve the immobilized enzyme is the 

immobilization preparation parameters because the enzyme's stability and catalytic 

activity should be retained throughout the immobilization process. Since enzymes are 

sensitive to environmental changes, unsuitable immobilization conditions may cause 

them to denature during the process and decrease immobilization yield. Optimization 

of immobilization preparation parameters should be considered in synthesizing 

immobilized enzymes as some previous studies reported low immobilization yield 

even though the enzyme was successfully immobilized on the carrier (Maryšková et 

al., 2016; Li et al., 2019). 

Immobilization is the process of adsorbing an enzyme on a carrier. Knowledge 

on enzyme adsorption is vital as the maximum amount of enzyme adsorbed, the 

enzyme adsorption mechanism, and the rate-limiting step of the adsorption process 

need to be determined (Gilani et al., 2016). To the best of the author's knowledge, 

research regarding enzyme adsorption onto carriers is still limited because most of the 

research related to enzyme immobilization only focuses on immobilized enzymes' 

stability and kinetics. 

  



 

6 

1.3 Objective of Study 

The research was conducted to study the immobilization of laccase on a PET-

based nanofiber mat. Four sub-objectives were accomplished in this study, and they 

are listed as follows: 

(a) To fabricate and characterize a nanofiber mat from PET-g-MAH for the 

immobilization of laccase. 

(b) To optimize the parameters affecting the immobilization of laccase on the PET-

g-MAH nanofiber mat. 

(c) To determine the modelling of the laccase’s adsorption on the PET-g-MAH 

nanofiber mat. 

(d) To evaluate the laccase immobilized on the PET-g-MAH nanofiber mat’s 

performance, structure, properties, and stability. 

 

1.4 Scopes of Study 

The scopes of work considered in achieving the objectives of this research are 

listed as follows: 

(a) Liquid PET was grafted with MAH under different grafting temperatures (27 

oC – 70 oC) before the synthesis through the electrospinning process. PET-g-

MAH nanofiber mats were synthesized at different polymer concentrations (10 

% (w/v), 20 % (w/v), and 30 % (w/v)) but fixed electrospinning parameters. 

The MAH grafting success was determined based on a hydrophobicity test and 

nanofiber mats’ structural analysis. 
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(b) The optimization of immobilization preparation parameters was conducted in 

three phases. The first phase was the preliminary study of the immobilization 

methods (physical adsorption (PA), covalent bonding (CV), and covalent 

bonding of cross-linked laccase aggregates (CL)). The second phase was the 

screening for the best method. The immobilization preparation parameters 

screened were laccase concentration (0.2 – 1.0 mg/ml), pH (3.0 – 5.0), 

immobilization temperature (20 – 30 oC), immobilization time (1 – 6 hr), cross-

linking concentration (0.05 – 0.5 % (v/v)), cross-linking temperature (4 – 20 

oC), cross-linking time (1 – 12 hr), and agitation speed (150 – 250 rpm), and 

they were screened using a two-level factorial design. The independent 

variables that affected the immobilization yield significantly were further 

optimized using the Box-Behnken Design (BBD). 

(c) The effects of contact time (0 – 105 min), laccase concentration (0.1, 0.2, 0. 

mg/ml), and adsorption temperature (15, 22.7, 30 oC) on the adsorption of 

laccase on PET-g-MAH were determined to study the adsorption kinetics of 

the laccase by fitting the adsorption data to adsorption isotherm models 

(Langmuir and Freundlich) and kinetic adsorption models (pseudo-first-order, 

pseudo-second-order and intraparticle diffusions) and by using 

thermodynamics. 

(d) The laccase immobilized on the PET-g-MAH nanofiber mat was characterized 

and compared with free laccase in terms of 2-azino-bis 3-ethylbenzothiazoline-

6- sulfonic acid (ABTS) oxidation. The immobilized laccase with optimum 

immobilization preparation parameters was characterized in terms of optimum 

pH (3.0 – 6.0), optimum temperature (25 – 70 oC), thermal stability (30 – 60 

oC), and enzyme kinetics’ coefficients (Km and Vmax) by measuring the laccase 

activity assay. Additionally, the immobilized laccase’s storage stability (30 

days), leaching, and reusability (10 cycles) were also tested to verify 

immobilization enhancements. Finally, analysis on structure and morphology 

before and after immobilization was conducted to confirm further the 

immobilization of laccase on the PET-g-MAH nanofiber mat.  
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1.5 Significance of Study 

This study introduced a novel PET-based carrier for laccase immobilization. 

PET was grafted with MAH using a simple and effective way before the 

electrospinning process. The PET-g-MAH nanofiber mats fabricated in this study 

provide the enzyme technology field PET-based enzyme carriers ready to be used. The 

carriers do not require surface activation as the reactive MAH is already grafted on the 

surface to reduce the PET's hydrophobicity. The carrier is foreseen to be implemented 

as a membrane in an enzymatic bioreactor as it is physically in a mat form and can be 

used in several industries such as the textile industry, beverage industry, 

bioremediation, and paper industry. Furthermore, it can work well as a biocatalyst by 

looking at its performance in reusability and stability at a wide range of pH and 

temperature. This study also gives information on the optimum laccase preparation 

parameters obtained from the response surface methodology. The polynomial equation 

developed from the experimental data helped attain the best immobilization 

performance for the laccase on the PET-g-MAH nanofiber mat. Finally, the knowledge 

on the laccase adsorption on PET-g-MAH of this study is useful for researchers to 

determine the relationship between the laccase and PET-g-MAH nanofiber mat and 

the adsorption mechanism of the laccase. 
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