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ABSTRACT 
 
 
 
 

 The growth and characterization of silicon carbide (SiC) quantum 
dots (QDs) are reported in this work. The SiC QDs were grown using plasma 
enhanced chemical vapour deposition (PECVD) at 150 MHz radio frequency 
(RF). A mixture of silane (SiH4) and methane (CH4) with a ratio of 1:4 and 
diluted in hydrogen (H2) was used as precursor gaseous. By manipulating the 
growth parameters such as hydrogen flow rate, growth temperature, growth 
time and RF power, the morphological and structural properties of SiC QDs 
were studied. The surface morphology of samples was observed through 
atomic force microscopy (AFM) and field emission scanning electron 
microscopy (FESEM). The structural properties of the sample were 
determined using Fourier transform infra-red (FTIR), emission dispersive x-
ray (EDX) and Raman spectroscopy. It was found that a combination of dots 
formed islands on the substrate and the size of each dot was below 50 nm. By 
observing the cross-section view of the substrate, this self-assembled 
quantum dots followed Stranski-Krastanow (S-K) mode in which a 
combination of both islands and layer mode was formed. FTIR result showed 
absorption peaks located at 500 to 1000 cm-1 which proved the presence of 
SiC bonding. Further elemental mapping by EDX confirmed that the island 
and the layer underneath were formed from silicon, carbon and oxygen. This 
is in agreement with the observed SiC QDs cross-sectional FESEM image. 
The Raman spectra revealed three SiC polytypes which were 3C-SiC, 4H-
SiC and 6H-SiC, and therefore in agreement with XRD results. All polytypes 
were considered as crystal due to small full width half maximum (FWHM) 
with crystallite size greater than 1 nm and sharp peaks were formed on 
Raman spectra. In conclusion, the SiC QDs growth parameters have shown a 
good impact to the morphological and structural properties of the grown 
quantum dots. 
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ABSTRAK 
 
 
 
 

 Pertumbuhan dan pencirian titik-titik kuantum (QDs) silikon karbida 
(SiC) dilaporkan dalam kerja ini. Titik-titik kuantum SiC telah ditumbuh 
menggunakan pemendapan wap kimia diperkuat plasma (PECVD) pada 
frekuensi radio (RF) 150 MHz. Campuran silana (SiH4) dan metana (CH4) 
dengan nisbah 1:4 dan dicairkan dalam hidrogen (H2) telah digunakan 
sebagai gas pelopor. Dengan memanipulasi parameter pertumbuhan, seperti 
kadar aliran hidrogen, suhu pertumbuhan, masa pertumbuhan dan kuasa RF, 
ciri-ciri morfologi dan struktur titik-titik kuantum SiC telah dikaji. Morfologi 
permukaan sampel dicerap melalui mikroskopi daya atom (AFM) dan 
mikroskopi elektron pengimbasan pancaran medan (FESEM). Ciri-ciri 
struktur sampel ditentukan menggunakan transformasi Fourier infra-merah 
(FTIR), sebaran pancaran sinar-X (EDX) dan spektroskopi Raman. Didapati 
bahawa kombinasi titik-titik membentuk pulau-pulau pada substrat dan saiz 
setiap titik adalah di bawah 50 nm. Dengan mencerap pandangan keratan 
rentas substrat, titik kuantum yang terhimpun-sendiri ini mengikuti mod 
Stranski-Krastanow (S-K) di mana satu gabungan kedua-dua pulau dan mod 
lapisan dibentuk. Keputusan FTIR menunjukkan puncak penyerapan terletak 
pada 500 hingga 1000 cm-1 yang membuktikan kehadiran ikatan SiC. 
Pemetaan unsur seterusnya menggunakan EDX mengesahkan bahawa pulau 
dan lapisan di bawahnya adalah dibentuk daripada silikon, karbon dan 
oksigen. Ini adalah sepadan dengan cerapan imej keratan rentas FESEM titik-
titik kuantum SiC. Spektra Raman menunjukkan tiga polijenis SiC iaitu 3C-
SiC, 4H-SiC dan 6H-SiC, dan oleh itu selaras dengan keputusan XRD. 
Kesemua polijenis ini dianggap sebagai hablur kerana lebar penuh setengah 
maksimum (FWHM) yang kecil dengan saiz hablur lebih besar daripada 1 
nm dan puncak yang tajam terhasil pada spektra Raman. Kesimpulannya, 
parameter pertumbuhan titik-titik SiC telah menunjukkan impak baik kepada 
morfologi dan struktur titik-titik kuantum yang ditumbuhkan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

This chapter gives an overview about background, problem statement, 

objectives, scope, significant and contribution of this research. Finally, the 

thesis outline is presented toward the end of this chapter. 

 

 

 

 

1.2 Background of Research 

 

 

In the past two decades, there has been a great interest of 

nanostructures materials fabrication. The materials comprising of submicron 

or nanoscale size with at least at one dimension and exhibit the size effect, 

had received much attention by researchers due to its interesting 

characteristics and properties compared to bulk materials (Tiwari et al., 

2012). Silicon (Si) based materials are the most popular candidate since the 
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techniques used for fabrication are largely correspond with available 

semiconductor production processes. However, its crucial limitation where it 

is not well-matched to handle large current densities and high voltage open 

up an opportunity to new materials of wide band gap such as silicon carbide 

(SiC) (Mukherjee, 2011). 

 

 

Silicon carbide (SiC) is regarded as a promising substitute for silicon 

especially in high power, high temperature and high frequency devices. This 

emerging semiconductor material has received a great deal of attention due to 

its unique properties which fit for application in optoelectronics and 

microelectronics (Fan et al., 2006; Cheng et al., 2007) such as light emitting 

diode, electroluminescent devices, nanoelectromechanical system (NEMS) 

sensors fabrication and also thermoelectric cooling (TEC) devices for 

deployment in extreme environments (Saddaw, 2012). The most recent 

application of nanostructures SiC is quantum dots structures in optical device 

fabrication such as blue LED (Willander et al., 2006).  

 

 

Generally, thin film deposition method can be used to grow quantum 

dots structures. Si quantum dots structures are known to be grown with 

various methods. There are three type of quantum dots synthesis method 

which are solution-based chemical methods, chemical vapour methods and 

physical vapour deposition (Fan et al., 2012). Now, quantum dots can be 

synthesized by chemical colloidal method, self-assembly method, lithography 

and etching, and split-gate approach. 
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Through chemical colloidal method, multilayered quantum dots can 

be obtained and this process is suitable for mass production. In self-assembly 

method, chemical vapour deposition process (CVD) or molecular beam 

epitaxy (MBE) is utilized. In this method, the principle of lattice mismatch is 

applied to ensure the growth of quantum dots can undergo self-

polymerization in a particular substrate. This technique is applicable for 

regularly arranged quantum dots mass production. 

 

 

By electron beam lithography and etching, quantum dots can be 

fabricated by direct write of the electron beam to the photoresist on the 

substrate and followed by etching the substrate. However, it is time 

consuming and not suitable for mass production. The two-dimensional plane 

of the quantum well is generated from two-dimensional confinement when 

external voltage is applied is called split-gate approach. This approach is fit 

for academic research but not for mass production (Shi et al., 2015).  

 

 

Cheng et al (2007) had synthesized self-assemble SiC quantum dots 

grown on Si substrate by low-frequency inductively coupled plasma assisted 

RF magnetron sputtering. The effects of SiC target power and gas pressure 

on surface morphology and structural properties of SiC quantum dots were 

investigated. They discovered the growth dynamics of quantum dots obeys 

cubic root-law behavior. This law state that when an object undergoes a 

proportional increase in size, its new surface area is proportional to the 

square of multiplier and its new volume is proportional to the cube of 

multiplier. Thus, as the dimension increased, the volume will continue grow 

faster than the surface area. Moreover, the SiC quantum dots morphology is 
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highly uniform and the average size increases as the pressure increase, below 

1 Pa. Yet, the morphology became non-uniform and decreases in sized as 

pressure exceed 1 Pa. These behaviors attributed to scattering effect and 

surface mobility of the sputtered atoms (Cheng et al., 2007).   

 

 

In 2012, a group of researchers, Fan et al had fabricated SiC quantum 

dots from three different type of silicon carbide which are 3C, 6H and 4H 

SiC polytypes by electrochemical method and studied the dots based on its 

photoluminenscence. They noticed those polytypes show unexpected quite-

similar photoluminescence, photoluminescence excitation, and transient 

photoluminescence properties which can be explained by polytypic 

transformations of the colloidal SiC quantum dots driven by ultrasonic 

waves.  Although this method can produce SiC quantum dots but the size of 

the dots is varied from 1 nm to 8 nm. (Fan et al., 2012). Both research done 

by Cheng et al in 2007 and Fan et al in 2012 did not discuss the type of 

quantum dots obtained whether it is amorphous or crystalline. 

 

 

Mwania et al (2013) had produced quantum sized cluster of β-SiC by 

photo-assisted electrochemical corrosion of bulk powders. Transmission 

electron microscopy (TEM) result shows that β-SiC quantum dots are single 

crystalline. The process which is the amount of synthesized quantum dots and 

its size can be controlled via regulating the deposition time. However, 

indirect chemical etching through some of the in situ generated oxidizing 

species which cannot be excluded completely. Also, it requires external bias 

potential in order to control the size of the dots (Mwania et al., 2013). 
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3C-SiC quantum dots fabricated via pulsed laser ablation method was 

carried out by Zhu et al in 2014. They successfully produced bulk quantity of 

crystalline 3C-SiC quantum dots with uniform diameter of about 2 nm. Even 

though they had fabricated crystalline quantum dots with uniform diameter, 

but the distribution of the quantum dots obtained is not being observed and 

discussed. Moreover, the 6H-SiC target used in their experiment to fabricate 

the dots is quite expensive (Zhu et al., 2014). 

 

 

This research aims to grow SiC quantum dots film over large areas 

(substrate) which has been predicted to have a crystalline quantum dots 

structure. Very high frequency plasma enhanced chemical vapour deposition, 

150MHz (VHF-PECVD) technique will be utilized to deposit SiC quantum 

dots film in which variation in chamber pressure, substrate temperature, RF 

power and precursor gases flow rate will be investigated in order to get a 

crystalline quantum dots with uniform size and distribution. To the best of 

our knowledge, the report on SiC quantum dots structure growth by VHF-

PECVD is not widely discovered. 

 

 

Characterization of the growth quantum dots will be carried out to 

study the surface morphology, structural information and elemental 

composition using various techniques that serve the required characterization 

purposes. SiC quantum dots are expected to deposit with uniform size and 

distribution. Moreover, it is predicted to possess better structural as well as 

preserving the superior crystalline properties. 
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1.3 Problem Statement 

 

 

Silicon carbide has many superior properties which make it a good 

candidate for semiconductor applications such as power transistor, 

thermoelectric, optoelectronics and as coating materials.  

 

 

Many synthesis methods have been done by researchers in order to 

produce SiC quantum dots such as electrochemical technique, laser ablation, 

RF magnetron sputtering and electrochemical corrosion. Even though the size 

of quantum dots fabricated via RF magnetron sputtering has uniform and 

average size but it needs high power which is above 100 W and longer 

deposition time between 20 to 60 minute (Cheng et al., 2007).  

 

 

An ultrasmall quantum dots whose diameter below 1 nm had 

fruitfully obtained by electrochemical etching technique. The ultrasmall 

quantum dot was stem from bulk of SiC. However, only one type of SiC that 

can be produced from one bulk SiC. A different type of bulk SiC is needed in 

order to have various SiC polytypes (Fan et al., 2012). Similar to the 

electrochemical technique, photo-assisted technique also produce one 

polytype at once depend on the SiC polytype powder used. Moreover, there is 

formation of oxidizing species which cannot be excluded which affected the 

properties of quantum dots produced. This method also needs an external bias 

potential to control the dots size (Mwania et al., 2013).  

 

 



 
 

7 
 

Pulsed laser ablation technique had successfully produced 3C-SiC 

crystalline quantum dots with a uniform size of  2 nm. This technique needs 

high temperature and pressure during laser ablation which is analogous to 

thermal evaporation for SiC polytype from one (target) to another polytypes. 

For this technique, only one type of SiC polytype can be transformed at a 

time. In addition, the target used for this technique is expensive (Zhu et al., 

2014). 

 

 

Based on previous research, the quantum dots formations are strongly 

dependent on the growth technique and the selected growth parameter. High 

temperature, pressure and power are needed to produce quantum dots. Some 

of the techniques can only produce one polytype at a time and depend on the 

polytypes of bulk or target used. In addition, the structural properties of SiC 

quantum dots obtained are not widely discussed and most researchers only 

focus on the fabrication technique and photoluminescence of the SiC 

quantum dots. 

 

 

Therefore, in this research various polytypes of SiC quantum dots will 

be grown via VHF- PECVD at low temperature and limited growth time. The 

morphology and structural properties of the dots will be analyzed and 

discussed.  
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1.4 Research Objectives 

 

 

i. To grow silicon carbide quantum dots on silicon substrate using very 

high frequency chemical vapour deposition method. 

 

ii. To optimize the growth parameters (growth temperature, RF power, 

hydrogen flow rate and growth time) of silicon carbide quantum dots. 

 

iii. To characterize the morphology and structural properties of the 

deposited silicon carbide quantum dots. 

 

 

 

 

1.5 Scope of Research 

 

 

The fabrication of self-assembled SiC quantum dots was carried out 

using VHF-PECVD technique at 150 MHz in order to produce a crystalline 

quantum dots at low growth temperature and limited growth time. The Si 

substrate was used to grow the quantum dot. The structure was grown only 

limited to zero dimensions. The effect of varying growth temperature from 24 

to 400˚C, RF power from 10 to 25 W, hydrogen flow rate from 60 to 140 

sccm and growth time from 1 to 5 minutes were observed and investigated. 

The morphology and structural properties of the SiC quantum dots grown 

were characterized by Atomic Force Microscopy, Field Emission Scanning 

Electron Microscopy, Fourier Transform Infra-Red spectroscopy, X-ray 
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Diffraction Spectroscopy, Electron Dispersive X-ray, and 

Scanning/Transmission Electron Microscopy. 

 

 

 

 

1.6 Significant of Research 

 

 

Based on this research, the uniformity of dots size and distribution 

was controlled by 150MHz VHF-PECVD method. The different in polytypes 

and the size of the quantum dots are important for application in 

optoelectronics and microelectronics especially in extreme environment. This 

research would contribute to the understanding of the morphological and 

structural properties of SiC-quantum dots. 

 

 

 

 

1.7 Thesis Outline 

 

 

Chapter 1 presents some previous works that are related to this study. 

The problem statement, objectives, scope and significant of the research are 

also presented. In Chapter 2, literature reviews related with this research were 

discussed. This chapter covers the growth mechanism of quantum dots, Si 

and SiC as semiconductor materials, fundamental of PECVD method and the 

precursor gases used in SiC quantum dots growth. Chapter 3 described the 
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methodology which included the fabrication of SiC quantum dots, operation 

procedure for VHF-PECVD system and followed by characterization 

techniques in order to observe the morphological and structural properties of 

SiC quantum dots. In Chapter 4, the results from each characterization were 

analysed. The influenced of each parameter upon quantum dots growth were 

critically studied. The conclusions and suggestions are stated in Chapter 5. 
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