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ABSTRACT

Epilepsy is a disease that can be identified by its main features that are the
recurrent and unpredictable electrical discharges of the cerebral cortex that trigger
disturbances in brain functions. It can be diagnosed through a noninvasive tool called
electroencephalography (EEG), which records the electrical signals emanated by the
brain. The recorded signals provide important information about brain functions
in terms of observed electrical potentials. This information is critical especially
for diagnosing brain disorders, particularly epilepsy. In fact, EEG signals during
epileptic seizures can form a semigroup of upper triangular matrices under matrix
multiplication. This semigroup can be represented as the product of its elementary
components through the Krohn-Rhodes decomposition technique. The representation
of EEG signals in terms of the product of its elementary components is somehow
connected to how any positive integer can be written as a product of prime numbers.
In this study, the elementary EEG signals are shown to act as the building blocks of
EEG signals, similar to the prime numbers being the building blocks of the positive
integers. The primary goal of this research is to describe and view the elementary
components of EEG signals during epileptic seizures as prime numbers. Firstly, the
well-ordered property of prime numbers hints at a similar attribute to be found in
the case of elementary EEG signals. Therefore, a new way of ordering matrices,
namely the precede operator, is introduced to achieve this goal, and several theorems
are developed in the process. Secondly, the elementary EEG signals are decomposed
via the Jordan-Chevalley decomposition technique, which produces the summation of
its simpler parts and reveals that it resonates with one of the main properties of prime
numbers, particularly the Twin-Prime Conjecture. Finally, the decomposition method
is implemented on the real EEG data of three patients. In this way, the theoretical
framework of the EEG signals’ building blocks is developed. In short, it is obtained
that the ordered property of the elementary EEG signals and its representation through
the Jordan-Chevalley decomposition exhibits similar properties with certain results in
prime numbers as anticipated by the Krohn-Rhodes semigroup theory. The results hint
that, due to their similar properties, the EEG signals could have a similar pattern to that
of prime numbers.
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ABSTRAK

Epilepsi ialah sejenis penyakit yang dapat dikenali melalui ciri utamanya
iaitu pengaliran elektrik yang berulang dan tidak dapat diduga dari korteks serebrum
yang mencetuskan gangguan fungsi otak. Ia boleh didiagnosis melalui suatu peranti
tidak invasif yang dinamakan elektroensefalograf (EEG) yang merekodkan isyarat
elektrik yang dipancarkan oleh otak. Isyarat yang direkodkan memberikan maklumat
penting tentang fungsi otak dari segi potensi elektrik yang diperhatikan. Maklumat ini
adalah kritikal terutamanya untuk mendiagnosis kecelaruan otak, khususnya epilepsi.
Malah, isyarat EEG semasa sawan epilepsi boleh membentuk satu semikumpulan
matriks segi tiga atas di bawah pendaraban matriks. Semikumpulan ini boleh diwakili
sebagai hasil darab komponen asasnya melalui teknik penguraian Krohn-Rhodes.
Perwakilan isyarat EEG dari segi hasil komponen asasnya mempunyai kaitan tertentu
dengan bagaimana integer positif dapat ditulis sebagai hasil darab nombor perdana.
Dalam kajian ini, isyarat asas EEG ditunjukkan berfungsi sebagai blok binaan isyarat
EEG, sama seperti nombor perdana adalah blok binaan integer positif. Matlamat
utama kajian ini ialah untuk menerangkan dan melihat komponen isyarat asas EEG
semasa sawan epilepsi sebagai nombor perdana. Pertama, sifat nombor perdana yang
tersusun membayangkan bahawa sifat yang serupa akan dijumpai dalam kes isyarat
asas EEG. Oleh itu, satu kaedah baharu untuk mengatur matriks, dinamakan operator
pendahulu, telah diperkenalkan untuk mencapai matlamat ini, dan beberapa teorem
telah dikembangkan dalam proses ini. Kedua, isyarat asas EEG diurai melalui teknik
penguraian Jordan-Chevalley, yang menghasilkan penjumlahan bahagian-bahagian
yang lebih ringkas dan menunjukkan bahawa ia menyalun dengan salah satu daripada
ciri utama nombor perdana, terutamanya Konjektur Prima Kembar. Akhir sekali,
kaedah penguraian telah dijalankan berdasarkan data EEG sebenar tiga orang pesakit.
Dengan cara ini, kerangka teori blok binaan isyarat EEG dikembangkan. Ringkasnya,
didapati bahawa sifat isyarat asas EEG yang tersusun dan perwakilannya menerusi
penguraian Jordan-Chevalley mempamerkan sifat-sifat yang serupa dengan hasil
tertentu nombor perdana seperti yang dijangka oleh teori semikumpulan Krohn-Rodes.
Hasil ini memberi petanda bahawa, disebabkan oleh sifat-sifat mereka yang serupa,
isyarat EEG mungkin mempunyai corak yang serupa dengan corak nombor perdana.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Epilepsy is a chronic neurological disease (previously defined as a disorder)

that affects 60 million people worldwide [1]. Although several medical and surgical

treatments have been developed, they cannot be employed to manage roughly one-

quarter of all people with epilepsy (PWE) [2]. Epilepsy is caused by irregular,

excessive, or sudden brain function disturbances that make patients lose control of their

bodies, thus putting them at a high risk of suffering accidents and getting into possibly

life-threatening scenarios [3]. Generally, PWE’s brains function normally over 99.9%

of the time. However, even though epileptic seizures make up less than 0.1% of a

patient’s lifespan, their palpable and unpredictable nature puts immense psychological

strain on patients and jeopardizes their quality of life [2]. Accurate epilepsy diagnoses

are paramount to avoiding all epileptic stages—such diagnoses would help protect

PWE from injuries or death [4].

Electroencephalography (EEG) is a well-established, inexpensive, and non-

invasive clinical tool for diagnosing and managing PWE [5]. It played an important

role in classifying and characterized seizure and seizure syndromes that support the

clinical assessment of PWE [6]. The electrical activity of the brain can be measured

via EEG recording, which gives crucial insight into the timing and location of the

underlying activities [7]. Surgery is considered to be a more effective treatment

for epilepsy than that of drugs [8]. Prior to the epilepsy surgery, the cortical and

subcortical functions, such as the function of motor and language, can be monitored

by stimulating the brain through the intracranial electrodes to provide the information

necessary to assess the risk-benefit profile of the surgery [9]. The degree of reported
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seizure freedom post-surgery is indeed promising, but the fact that only a relatively

small number of patients have surgically remediable epilepsy syndrome has impeded

the option of surgical procedures as a large-scale treatment [10].

A practical way of anticipating seizure occurrence could significantly alleviate

patients’ physiological stress [11]. Seizure prediction offers an alternative way to treat

epilepsy owing to its capability to generate a warning prior to the occurrence of a

seizure. The PWE’s quality of life could greatly improve with the aid of such a seizure

prediction system [12]. However, this is a formidable task because the disabling aspect

of epilepsy is that it strikes “like a bolt from the blue” and seemingly in random

patterns [13]. Whether characteristic features can be derived from the recorded EEG

signals that are predictive of an imminent seizure is a matter of particular interest.

Clinicians and technologists can possibly rely on the dynamic changes extracted from

the EEG of PWE to develop fully automated closed-loop seizure-prevention systems

[14]. Therefore, doctors could prescribe an EEG-triggered on-demand treatment [15]

or reset the brain dynamics to a state where the risk of a seizure is minimized through

brain stimulation [16, 17].

Quantitative analysis and mathematical modeling of normal/abnormal brain

function is an arduous challenge considering its state changes over time (dynamic).

In fact, it is a common belief that the EEG signals of the brain, particularly

during a seizure attack, are always considered to be frantic and disorderly [18].

Most commonly, statistical methods are employed to study this unpredictable nature

of EEG signals (e.g., linear methods [19], non-linear methods [20, 21], wavelet

transform [22, 23], and Independent Component Analysis (ICA) [24]). Besides that,

nonlinear dynamics and chaos theory are other favored mathematical tools to study

the complexity of the brain’s function from the recorded EEG signals. Among them

are the Largest Lyapunov Exponent (LLE) introduced by Iasemidis and Sckellares

[25], wavelet-chaos method initiated by Adeli, Ghosh-Dastidar and Dadmehr [26],

fractal dimension proposed by Easwaramoorthy and Uthayakumar [27], and dynamical

similarity index established by Le Van Quyen et al. [28].

2



In 2008, Zakaria [29] developed a novel mathematical model, namely, Flat

EEG, where EEG signals can be viewed on two-dimensional space allowing the EEG

signals to be compressed and easier to be analyzed. Binjadhnan and Ahmad [30, 31]

extended the model of Flat EEG where the EEG signals are written as upper triangular

matrices and form a semigroup under matrix multiplication. This novel algebraic

structure is referred to as a semigroup of EEG signals. Then, Binjadhnan [32] proved

that the semigroup of EEG signals could be expressed in terms of a product of its

elementary components through Krohn-Rhodes decomposition. The author suggested

that the elementary components of EEG signals bear a resemblance to the prime

numbers. In this research, the premise of viewing the elementary components of EEG

signals as prime numbers is explored. The outcomes of this research are of great

importance in the sense that they provide valuable information with regard to a better

understanding of the dynamics of EEG signals during a seizure.

1.2 Statement of the Problem

The assertion proposed by Binjadhnan [32] that the elementary EEG signals

during an epileptic seizure resonate with the prime number is of the main interest in

this thesis. Therefore, certain properties of the distribution of prime numbers among

positive integers, particularly the well-ordering principle of the positive integers, is

explored so that similar property could be derived in the case of ordering square

matrices. Furthermore, some important conjectures about prime numbers give the

impression that the elementary EEG signals could be decomposed further into simpler

parts; ergo, the befitting decomposition technique is determined. Contrariwise, certain

properties of the EEG signals during an epileptic seizure can be found in prime

numbers as well. This analogy is illustrated in Figure 1.1.
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Twin prime
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Goldbach
conjecture

Fundamental Theorem
of Arithmetic

Figure 1.1 Analogy of elementary EEG signals as prime numbers

1.3 Methodology of Research

The premise of this research is viewing elementary EEG signals as prime

numbers, as depicted in Figure 1.1. Therefore, a survey of the literature related to

epilepsy, EEGs, and the distribution of prime numbers was conducted to gain deep

insight into relevant theories and methods that have been used and developed. Another

goal of the literature survey was to gain an understanding of the essential mathematical

concepts and theories that have been used and to identify the appropriate technique for

use in this research.

Next, the theoretical matrix partial order was developed to establish a further

connection between EEG signals and prime numbers. This development proved several

theorems and propositions for a certain type of square matrixces . Barja predicted

that the Jordan–Chevalley decomposition on transformed EEG signals would resemble

the Twin–Prime Conjecture of prime numbers. Hence, matrix decomposition was

performed on the elementary EEG signals. Then, the overall technique and method

were implemented on real data collected from three patients with epilepsy from the
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Pediatric Institute of the Kuala Lumpur Hospital.

1.4 Objectives of the Research

The objectives of the research are:

1. To develop a new technique of ordering square matrices of EEG signals

during a seizure.

2. To show that the elementary components of EEG signals can be written as a

sum of semisimple and nilpotent parts via Jordan-Chevalley decomposition.

3. To build a theoretical foundation of the elementary components of the EEG

signals, i.e., to find the relationship between the theory of prime numbers

and elementary EEG signals.

4. To present three real-time examples of the Jordan-Chevalley decomposition

of elementary EEG signals.

1.5 Scope of the Research

Two main areas—medical and mathematics—are covered in this study.

Specifically, a brief discussion on the brain function during an epileptic seizure

is presented on the medical side. Electroencephalogram used for the diagnosis

of epilepsy is studied in detail. On the contrary, attention is devoted to the

Jordan-Chevalley decomposition of elementary EEG signals on the mathematical

side. Moreover, some properties of the prime number’s distribution within the

positive integers in connection with the elementary EEG signals are explored. The

decomposition technique is implemented on the recorded EEG data of epileptic

seizures obtained from three epileptic patients (Patient A, Patient B, and Patient C)
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aged between six months to nine years old from the Pediatric Institute, Hospital Kuala

Lumpur (HKL) in 2004. The sample taken from the Patient A is the EEG data recorded

at time t = 1 to t = 15, whereas the sample taken from Patient B and C, the data are

recorded from t = 1 to t = 15. The results of this research are limited to the sample

taken from these three patients.

1.6 Significance of the Research

This research adopts the technique of the Jordan-Chevalley decomposition

in decomposing the elementary EEG signals during epileptic seizures. The

decomposition technique is prompted by the prime numbers that can be written as

a sum of two primes. The new approach provided a way to extract information from

the magnetic contour plane. The technique justified Yun’s [33] claim that: “Magnetic

Contour (MC) is a plane containing information.” The analogy of elementary EEG

signals as prime numbers requires a method of ordering matrices, which is obtained in

this thesis. Most importantly, this study presents a piece of supporting evidence that

the elementary EEG signals behave like the prime numbers as the building blocks of

the positive integers.

From a medical point of view, the results indicate that the EEG signals during

an epileptic seizure contain patterns—which is similar to the pattern of prime numbers

since they behaves like prime numbers—allowing the prediction of its occurrence. This

discovery can serve as a stepping stone in developing a seizure-prediction method that

will not only help the medical experts but, more importantly, also the PWE to lead a

better life.
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1.7 Outline of the Research

This thesis contains seven chapters. The introduction of this research is

provided in Chapter 1, which includes the background and motivation, problem

statement, objectives, scope, and significance of the research. This is followed by

Chapter 2, in which the literature review of the research will be dealt with. It

contains the discussion on epileptic seizures, Fuzzy Topographic Topological Mapping

(FTTM), Krohn-Rhodes decomposition of EEG signals, the notions of ordering

matrices, Jordan-Chevalley decomposition, and distribution of prime numbers.

Subsequently, a new method for ordering matrices is presented in Chapter

3. In Chapter 4, the elementary EEG signals during seizures are decomposed further

via the Jordan-Chevalley decomposition. Furthermore, the relationship between the

decomposition of elementary EEG signals during seizures with the prime numbers is

established.

The entire procedure of decomposing elementary EEG signals during seizures

is provided in Chapter 5. This chapter involves the decomposition of the main data

of a patient suffering from epilepsy into its elementary components, which is done by

Zakaria [29] and Binjadhnan [32], followed by the execution of Jordan-Chevalley on

the data. Finally, the conclusion of the whole thesis along with some recommendations

for further studies in this field of research are given in Chapter 6. The research outline

is illustrated in Figure 1.2.
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