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ABSTRACT 

The construction process of a bored tunnel is a complex process. During tunnel 

construction, loads were acting on tunnel and to support excavation, tunnel lining were 

installed with application of jack force (Fj). Jack force is exerted as a thrust force to 

ensure advancement of tunnel construction and to enhance tunnel face stability. 

However, the complexity of Fj to the variation of segment's thickness to ensure the 

overall tunnel stability is not fully studied yet. The impact of jacking force on segmental 

tunnel lining and surrounding soil during the tunnel construction also yet to be defined in 

certain. Therefore, effect of tunnel lining thickness applied with a variation of jack forces 

in the tunnel-boring machine (TBM) in different soil formations is investigated here in. 

This research presents a three dimensional (3D) numerical modelling of tunnel soil-jack 

force by using ABAQUS software. From the findings, the ground surface and subsurface 

reaction, and reaction force in segment lining were presented. It is found that, from the 

initial model, longitudinal and transverse surface settlement shows a similar results with 

previous research work thus verified the work. Next, from the simulation, loads case 

applied caused stress on the tunnel face which must be encountered by a certain thrust 

magnitude to advance the tunnel. The face pressure values changed respective to the soil 

formations, which recorded a different maximum values in the range of 360 MPa to 500 

MPa in different soil formations. The jack force calculated from the face pressures of 

three different lining thicknesses (0.135 m, 0.275 m, and 0.375 m). Jack force of each 

lining thickness in different soil formations is ranging from 4000 kN, 2000 kN and 1000 

kN for the lining thickness of 0.135 m, 0.275 m and 0.375 m, respectively. From the 

extended complex model, results show the subsurface soil settlement presents a heaving 

behaviour at the beginning of the excavation and induced a gradually increase of 

settlement once tunnel stabilise its excavation. The subsoil stress of the soil above the 

tunnel crown reaches its plastic behaviour at the end of shield contact to cause the final 

soil displacement. When investigate the effect of jack force to the tunnel lining reaction, a 

tunnel lining thickness of 0.135 m, 0.275 m and 0.375 m show a maximum reaction force 

in range of 20000 kN to 40000 kN, 27400 kN to 22700 kN, and 22400 kN to 27700 kN, 

respectively. This reaction force was varied due to the soil formations and staggered 

tunnel configurations. It is also found that, the lining thickness of 0.275m (t/D = 0.0458) 

shows the most stable uniform distribution of reaction force (RF) and thus presents none 

of critical segments (i.e., safe condition). The segment configuration and angle shows the 

favourable angle of 5 segment rings is when the staggered started at the angle 32.5°. To 

sum up, all factors including the geological condition, face pressure, redistribution of sub 

surface soil stress and jack force variation are crucial in tunnel stability, hence the tunnel 

lining selection should be done accordingly. 
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ABSTRAK 

Proses pembinaan untuk terowong korekan adalah proses yang rumit. Semasa 

pembinaan terowong, beban telah bertindak ke atas terowong dan untuk menyokong 

pengorekan, pelapik terowong telah dipasang dengan penggunaan daya bicu (Fj). Daya bicu 

dikenakan sebagai daya tujahan bagi memastikan kemajuan pengorekan dan untuk 

meningkatkan kestabilan pintu terowong. Walaubagaimanapun, kerumitan Fj terhadap 

variasi ketebalan segmen untuk memastikan kestabilan keseluruhan terowong belum dikaji 

sepenuhnya. Kesan daya bicu kepada segmen pelapik terowong dan tanah sekeliling sewaktu 

pembinaan terowong juga masih belum dapat dijelaskan dengan pasti. Oleh itu, kesan 

ketebalan pelapik terowong dengan variasi daya bicu di dalam mesin pengorekan terowong 

di dalam formasi tanah yang berbeza telah dikaji di sini. Kajian ini membentangkan model 

berangka tiga dimensi (3D) terowong-tanah-daya bicu menggunakan perisian ABAQUS. 

Daripada keputusan, reaksi tanah di permukaan dan subtanah serta reaksi pelapik segmen 

dibentangkan. Didapati, dari model awal, mendapan melintang dan membujur menunjukkan 

keputusan yang sama seperti kajian lepas dan ini mengesahkan model ini. Kemudian, 

daripada simulasi, kes-kes beban yang dikenakan telah menyebabkan tekanan kepada muka 

hadapan terowong yang memerlukan tindakan daripada sejumlah daya tujahan untuk 

meneruskan korekan. Nilai tekanan muka berubah berdasarkan formasi tanah, yang mana 

direkodkan pada nilai maksimum yang berbeza iaitu dalam anggaran 360 MPa kepada 500 

MPa di dalam tanah yang berbeza. Daya bicu telah dikira dari tekanan muka untuk tiga jenis 

ketebalan pelapik (0.135 m, 0.275 m, dan 0.375 m). Daya bicu untuk setiap ketebalan 

pelapik dalam formasi tanah yang berbeza adalah dalam anggaran 4000 kN, 2000 kN dan 

1000 kN untuk masing-masing ketebalan pelapik 0.135 m, 0.275 m dan 0.375 m. Daripada 

model kompleks, keputusan menunjukkan bahawa enapan tanah subpermukaan 

menunjukkan tingkah laku lambung pada permulaan pengorekan dan menghasilkan 

pertambahan mendapan apabila terowong mula mencapai kestabilan dalam pengorekan. 

Tekanan subtanah dalam permukaan di atas kepala terowong mencapai tingkahlaku plastik 

pada pengakhiran pelindung yang menyebabkan pergerakan akhir tanah. Apabila dikaji 

tentang kesan daya bicu kepada reaksi terowong, dengan ketebalan pelapik terowong 0.135 

m, 0.275 m and 0.375 m, daya reaksi maksimum adalah didapati pada anggaran 20000 kN to 

40000 kN, 27400 kN kepada 22700 kN, dan 22400 kN kepada 27700 kN, masing-masing. 

Daya reaksi adalah bervariasi disebabkan oleh formasi tanah dan konfigurasi terowong yang 

berperingkat. Juga didapati, ketebalan pelapik 0.275 m (t/D = 0.0458) menunjukkan keadaan 

paling stabil dengan pengedaran seragam daya reaksi (RF) dan menunjukkan tiada segmen 

yang kritikal (keadaan selamat). Corak konfigurasi segmen dan sudut menunjukkan sudut 

yang paling baik untuk 5 segmen ialah apabila kecondongan peringkat bermula pada sudut 32.5 

º . Sebagai rumusan, kesemua faktor termasuklah keadaan geologi, tekanan muka, pengagihan 

tegasan subtanah, dan variasi daya bicu adalah penting di dalam kestabilan terowong. Oleh 

itu, pemilihan pelapik terowong perlulah dilakukan dengan sewajarnya.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 General Overview 

The classical excavation method such as the New Austrian Tunneling Method 

(NATM) has limitations for tunneling in urbanized areas; therefore, a Tunnel Boring 

Machine (TBM) is widely used especially in urban areas due to the advantage of 

limiting disturbances to the surrounding soil. In TBM method, tunnel lining is 

accumulated inside the shield of the boring machine and it consists of jointed rings and 

each ring consists of elements (segments). These segments are designed dimensions 

and shapes for specific purposes to ensure the resistance of tunnel lining to all possible 

loads during and after the tunnel construction. Besides that, the segment is important 

to hold over the longitudinal continuity with keeping the tunnel alignment as it is 

designed and constructing the lining with a fast rate and high level of safety (Maidl, 

2013). 

While the tunnel is advancing, the cutter head thrust on the segments to 

encounter the tunnel face pressure to cause thrust effect on the whole tunnel lining. 

longitudinal thrust effect is the main parameter to identify the jacks number, position, 

segments size and the loading effect from the excavation cutter head. The magnitude 

of the longitudinal thrust can be calculated by estimating the tunnel face pressure, 

calculating the earth and water pressure and friction, and/or adhesion between the 

ground and Tunnel Boring Machine (TBM) via soil mechanics principles. Besides, the 

thickness of the segments face should be considered to avoid the damaging of face 

edges and to avoid the joints position and thrust ram position being in the same position 

(Telford, 2004). 
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Another important factor concerned during the tunnel design is the effects of 

segmental joints on tunnel lining behaviour. The effect of the joints has been studied 

by many researchers through different methodologies (Do et al., 2014 a; Vervuurt, 

2007; Jusoh, 2017). 

1.2 Problem Statement 

Most of the previous researchers had modelled only the structure behaviour of 

tunnel lining without considering the effect of the surrounding soil, the effect of a 

certain pattern of joints on the segments‘ structure behaviour, and the effect of jack 

force and soil loads on the thickness of the segments at all. Although many studies 

have been conducted on ground movements and lining forces, while a relatively small 

body of research exists regarding the relationship between the jacking force (Fj) and 

the stresses in the lining. 

As far as three dimensional (3D) numerical model is developed, some 

researchers have focused on studying the effect of the segments‘ joints on the tunnel 

lining behaviour, but not as a parameter in a full 3D model with the different soil loads 

and Fj. There is still not yet a full model, in a single face soil environment in which 

the presence of the varied value of jacking force during the tunnel advance is modelled, 

that allows ground displacement, structural lining forces, the pattern of the joints and 

thickness of segments to be considered. 

1.3 Objectives 

This research aims to fulfil the gap of the tunnel response due to the jacking 

force effect which is not yet fully explored. The results will show the reaction of 

each segment toward the force exerted by jacking the lining. This will lead to 

determining the highest suitable ring thickness that can resist the jacking force based 

on surrounding soil and exerted external load. Therfore, measure the settlement 
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pattern alongside the tunnel axis and the lateral settlement that represent the volume 

loss produced by constructing the tunnel. The specific objectives of this study are to: 

(a) Investigate the surface and subsurface settlement induced by the 

advancement of the tunnel via 3D model 

(b) Measure the soil stress and face pressure to evaluate the jacking force 

required to advance linings with different thickness. 

(c) Determine the effect of jack forces to the staggered segments reaction 

with different tunnel lining thickness 

1.4 Research Scope 

The scope of the research is to generate a series of numerical model for 

segments tunnel lining with and without the effect of Fj, in different geological 

conditions. The geological setting assign based on the subsurface data of Mass Rapid 

Transit (MRT) tunnel lining project, in Singapore. The geological formation data 

separated to assign seven different formations, and the tunnel model simulated in each 

formation independently to unify the surrounding behaviour to focus on the tunnel 

behaviour findings. Besides, the scope of the research is to study the most suitable 

segments thickness based on the Fj that resulted from a single geological formation. 

Therefore, a study shall be conducted on the relationship between the jacking 

force and the lining force of the tunnel lining considering the soil displacement; joints 

pattern will be the same for all models. The research outputs will be the tunnel rings 

behaviour that induced during the advance of the tunnel and the relation between the 

jacking force and settlement induced, the pressure acting on the tunnel face, the 

thickness of segments and the pattern of joints arrangements. 
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1.5 Limitation 

The models discussed in this research does not simulate the full construction 

stages because of the computer limitation. In which for the full construction stages to 

be incorporated in the Finite Element (FE), it requires the fine element mesh generation 

to simulate elastoplastic behaviour of ground surrounding excavation face and 

linings supporting Fj directly. Secondly, the number of step-by-step analyses will 

increase as the construction stage is determine specifically. Also, some parameters in 

this research, which is the behaviour of grout material under load cases effect, creep 

and shrinkage phenomena for the lining is not been considered in this research. These 

limitations will not influence the main aim from this stage, where to measure the 

settlement pattern alongside the tunnel axis and the lateral settlement that represent 

the volume loss produced by constructing the tunnel. 

1.6 Thesis Outline 

This thesis consists of: 

(a) Chapter (1): The general overview about TBM and the factors related to the 

search with the problem that will be discussed in this research, the objectives 

of this research and the scope of the research methodology. 

(b) Chapter (2): Background, which discusses the previous study of the segmental 

design and the effect of the different kinds of joints on the tunnel lining 

resistibility for different kinds of loads, soil-tunnel interaction and the relation 

between the settlement and the segmental tunnel lining. 

(c) Chapter (3): Details of research method which include the model flow chart 

that will lead to developing the 3D FEM model and the details of a case study 

that used in this research. 

(d) Chapter (4): the analysing, verification and discussion of numerical analysis of 

three-dimensional (3D) finite element model. 

(e) Chapter (5): The findings from the research that concluded and some 

recommendation for the future study proposed. 
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