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ABSTRACT 

The electrocatalytic properties of nickel (Ni), cobalt (Co) and nickel-cobalt (Ni-Co) 
alloy coating qualified them to be utilized in industrial applications. Traditional organic 
additives have been used to enhance the deposits properties but some of them are not 
eco-friendly and obtained low deposits quality. Green ionic liquids (ILs) have become 
an alternative additive to be used in the electrodeposition due to their excellent 
properties. In the present study, the influence of two new ILs, namely, 1-methyl-3-((2-
oxo-2-(2,4,5 trifluorophenyl) amino)ethyl)-1H-imidazol-3-ium iodide ([MOFIM]I) 
and 1-(4-fluorobenzyl)-3-(4- phenoxybutyl)imidazol-3-ium bromide ([FPIM]Br) were 
investigated as green additives for Ni, Co and Ni-Co alloy electrodeposition from acidic 
sulfate bath on a copper substrate. The resultant surface morphologies demonstrated 
that both studied ILs served as effective leveling agents but [MOFIM]I was more 
effective than [FPIM]Br owing to their molecular structures. Both studied ILs led to 
the formation finer-grained, more ordinated crystals, compact, free-cracked and highly 
uniform Ni, Co and Ni-Co alloy deposits compared to that obtained from free ILs bath 
as shown by scanning electron microscopic (SEM) studies. Atomic force microscopic 
(AFM) analyses exhibited that the roughness of all films deposited with [MOFIM]I 
were lower than that with [FPIM]Br. Both ILs led to a homogeneous distribution of 
the Ni and Co elements and confirmed the Ni-Co formation, as shown by the EDX-
mapping. The X-ray diffraction (XRD) patterns exhibited the fcc crystal structures 
with (2 2 0) was preferred growth orientation of the Ni, Co and Ni-Co alloys 
crystallites without and with both studied ILs. The average crystallite size of the Ni, Co 
and Ni-Co alloy films decreased by 30%, 12% and 27% respectively with [MOFIM]I 
and by 25%, 5% and 18% respectively with [FPIM]Br. The microhardness of the Ni, 
Co and Ni-Co alloys increased in the presence of both ILs. All voltametric 
measurements indicated that the inhibition of Co2+ and Ni2+ reduction in the presence of 
both ILs occurred via their adsorption on the cathode surface, which obeyed the 
Langmuir adsorption isotherm. The optimal bath conditions that led to the highest 
CCE% values involved a current of 20 mA cm-2, deposit potential of 6.5 V, pH of 4.5, 
temperature of 25°C and deposit time of 10 min. The percentage current efficiency 
(CCE%) values of Ni, Co and Ni-Co alloy electrodeposition were very high (nearly 
100%) in the presence of both studied ILs. The highest corrosion resistance was for Ni 
deposit in the NaCl solution with [MOFIM]I, compared to that with [FPIM]Br. 
However, Co deposit exhibited lowest corrosion resistance with [MOFIM]I and 
[FPIM]Br respectively. Ni-Co2 and Ni-Co3 alloys deposited at the optimal conditions 
were the two best alloys to resist corrosion among all the Ni-Co alloys examined in 
the current study. The co-deposition of Ni-Co alloy obeyed the anomalous type. This 
anomalous behavior was alleviated after [MOFIM]I and [FPIM]Br were introduced in 
the Ni-Co deposition baths. Quantum chemical calculations were performed at the 
B3LYP/6-311++G(d,p) level of the density functional theory (DFT). Several quantum 
parameters and natural atomic charges were calculated. The results showed that the 
calculated values of the quantum parameters and natural atomic charges were consistent 
with the experimental findings.   
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ABSTRAK 

Sifat elektromangkin nikel (Ni), kobalt (Co) dan aloi nikel-kobalt melayakkan mereka 
digunakan dalam aplikasi industri. Bahan aditif organik tradisional telah digunakan 
untuk menambahbaik sifat enapan tetapi sebahagiannya tidak berkualiti dan tidak 
mesra persekitaran. Cecair ionik (IL) hijau telah menjadi alternatif untuk digunakan 
dalam menghasilkan elektroenapan yang sangat baik. Dalam kajian ini kesan dua 
cecair ionik, iaitu, 1-metil-3-((2-okso-2-(2,4,5-trifluorofenil)amino)etil)-1H-imidazol-
3-ium iodida ([MOFIM]I) and 1-(4-fluorobenzil)-3-(4-fenoksibutil)imidazol-3-ium 
bromida ([FPIM]Br) dikaji sebagai bahan tambahan hijau untuk elektroenapan Ni, Co 
dan aloi Ni- Co di atas substrat kuprum daripada media sulfat. Hasil morfologi 
permukaan menunjukkan kedua IL berperanan sebagai agen pelaras tetapi [MOFIM]I 
adalah lebih berkesan daripada [FPIM]Br disebabkan oleh struktur molekulnya. 
Kedua IL menyebabkan pembentukan butiran halus berkristal yang tersusun, padat, 
bebas retak dan endapan Ni, Co dan Ni-Co yang seragam seperti ditunjukkan oleh 
kajian mikroskopi imbasan elektron (SEM). Analisis mikroskopi daya atom (AFM) 
menunjukkan penurunan kekasaran permukaan yang diendap oleh [MOFIM]I 
berbanding [FPIM]Br. Kedua IL menyebabkan penyerakan Ni, Co yang lebih seragam 
selain pembentukan aloi Ni-Co yang ditunjukkan oleh pemetaan EDX. Corak 
pembiasan sinar-X (XRD) menunjukkan Ni, Co dan Ni-Co terendap berstruktur hablur 
fcc dengan (2 2 0) sebagai orientasi tumbuh terpilih samada dengan kehadiran IL atau 
tidak. Purata saiz hablur dalam filem Ni, Co dan aloi Ni-Co berkurangan masing-
masing sebanyak 30%, 12% dan 27% dengan [MOFIM]I dan masing-masing 25%, 5% 
dan 18% dengan [FPIM]Br. Kekerasan mikro Ni, Co dan aloi Ni-Co juga bertambah 
dengan kehadiran kedua IL. Semua pengukuran voltametrik menunjukkan bahawa 
penghalangan penurunan Co2+ and Ni2+ dengan kehadiran IL berlaku melalui 
penjerapan di atas permukaan katod yang mematuhi isoterma penjerapan Langmuir. 
Keadaan mandian optimum yang memberikan %CCE tertinggi melibatkan arus 20 mA 
cm-2, keupayaan endapan 6.5 V, pH 4.5, suhu 25°C dan masa endapan selama10 min. 
Nilai %CCE elektroendapan Ni, Co dan aloi Ni-Co adalah sangat tinggi (hampir 
100%) dengan kehadiran kedua IL yang dikaji. Rintangan kakisan tertinggi adalah 
untuk endapan Ni di dalam larutan NaCl dengan [MOFIM]I berbanding [FPIM]Br. 
Walau bagaimanapun, endapan Co menunjukkan rintangan kakisan terendah di dalam 
[MOFIM]I dan [FPIM]Br. Aloi Ni-Co2 and Ni-Co3 yang dimendapkan pada keadaan 
optimum adalah dua aloi terbaik untuk menghalang kakisan di kalangan semua aloi 
Ni-Co yang diselidiki dalam kajian ini. Ko-enapan aloi Ni-Co mematuhi jenis anomali. 
Sifat anomali ini ditingkatkan setelah [MOFIM]I dan [FPIM]Br digunakan di dalam 
mandian endapan Ni- Co. Pengiraan Kuantum Kimia dilakukan pada aras teori fungsi 
ketumpatan (DFT) B3LYP/6-311++G (d, p). Beberapa parameter kuantum dan cas 
atom tabii telah dikira. Keputusan menunjukkan nilai pengiraan parameter kuantum 
dan cas atom tabii adalah konsisten dengan dapatan eksperimen. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

The formation of metallic films and coatings is an important technology and has 

been applied in many industries. Several coating methods which are commercially 

available such as vapor deposition, plasma spray, hot metal processes, painting, thermal 

spraying and metallizing including electrodeposition (1–4) can be used to extend the 

component’s life and protect surface functionality. Ni-Co alloy is commonly produced 

through electrochemical reduction, leaching process, mechanical alloying, and solgel 

method (5).  Electrodeposition or electroplating is the process by which an applied 

current or potential is used to deposit a film of metal or alloy by the reduction of metallic 

ions onto a conductive substrate.  

 
 

Electroplating finds numerous applications as thin films and three- dimensional, 

thick structures in micro devices due to its interesting advantages. The main advantages 

of electrodeposition process are rapid deposition rates, cost effectiveness, requires 

simpler operating conditions and instrumentation, obtaining a homogenous deposit 

film. Moreover, many other desirable properties of electrodeposition are simplicity of 

high level control over the thickness of the films, possible to prepare material that could 

not be prepared by other methods such as thermal spraying, painting, hot metal 

processes, and evaporation (1–3). The investigation of more beneficial properties as 

well as high deposit qualities was conducted using electrodeposition. The deposit 

exciting qualities are large area deposition, excellent corrosion protection, high strength 

formability, attractive bright appearance, ease of process ability, and relatively low 

temperature contrary to the physical systems usually required high temperature (6).  
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Among the wide range of electroplating materials available, nickel (Ni), cobalt 

(Co) and Ni-Co alloy are essential engineering material employed widely in several 

industrial applications. In industrial production, it is usually prepared by means of 

electrodeposition. 

 
 

1.2 Properties, Corrosion Resistance and Structure of Nickel, Cobalt and Ni-

Co Alloy Electrodeposits: 

 

Nickel (Ni) is silvery-white, hard, malleable, ductile metal and good conductor 

of heat and electricity. Ni and Ni-based alloy films obtained by electrodeposition 

approach are widely manufactured to improve the corrosion resistance in engineering 

application due to their good physical properties, high chemical stability and heat 

resistance, high current efficiency (>90%) (7) and attractive appearance. Moreover, the 

appropriate adsorption strength between Ni and adsorbed hydrogen (Ni-Hads) gave Ni 

deposit high electrocatalysts activity. The addition of additives is considered as 

responsible for strengthening the passivation phenomenon and enhancing the oxidation 

resistance of the Ni and its alloy phase in the coating. A reasonable cost of Ni and Ni 

alloy coatings compared with noble metals makes it an industrially desirable product 

(8–12). The mechanical properties of Ni deposited are high tensile strength, low 

ductility, high hardness and high internal strength (13,14). 

 

In electrodeposition technique, mechanic, magnetic, structure and 

morphological properties of deposits depend on the electrodeposition parameters. The 

refinement of crystal structure, for example by the use of organic addition agents, is 

accompanied by increased hardness and tensile strength, and reduced ductility (13,14). 

The Ni and its alloy coatings which are follow face-centered cubic (fcc) structure, is 

usually bright, pore-free and crack-free with fine and compact grains coatings. Addition 

of supporting agent such as Na2SO4 to the electrodeposition bath increases the 

conductivity of the solution, thus facilitating the mass transfer of metal ions towards 

the cathode surface. 
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Cobalt (Co) is a hard ferromagnetic, silver-white, lustrous and brittle element. 

It is stable in air and does not react with water and it can also be magnetized (13,14). 

The Co properties as good corrosion resistance, high coercivity and high saturation 

magnetization make Co useful and feasible material for potential applications in 

magnetic media devices. The special properties of Co electrodeposit, including good 

strength and thermal stability, high heat conductivity, strong hardness, good resistance 

to corrosion, good wear resistance, strong adhesion, optical properties, and high 

catalytic properties (15–17) qualified Co deposit to be very essential engineering 

material. Co can take two different crystalline structures which are hexagonal closed 

packed (hcp; ε-Co) at T < 417 °C, and fcc; α-Co) at 417 °C < T < 1493 °C (melting 

point) (18). 

 
 
The electrodeposition of iron family-based alloys, including Ni and Co alloy, 

has been the subject of continuous investigations due to the high magnetic, mechanical 

chemical, physical and electrocatalytic properties of such coatings (1). Ni-Co alloy 

possesses an excellent adhesion and wear resistance, good hardness, high corrosion 

resistance, and heat conductivity. Therefore, Ni-Co alloy coatings are used in various 

magnetic devices, especially in micro-technology for the manufacture of sensors, 

actuators, and memory devices (2)(5). The bath composition deposition affects the     

Ni-Co alloy properties. The cobalt introduction in nickel alloys, ≤ 40%, causes an 

increase in their hardness and strength and corrosion resistance  (16)(19). 

 
 
The bath composition deposition potential and the current density strongly 

influence the deposit growth mechanism and morphological characterization including 

surface roughness, microstructure and grain size. If the Ni content is higher than that of 

Co in the bath, (up to 50wt.%, rich nickel deposit) (2)(20) at high overpotentials, the 

deposit has lower roughness and finer grain size with face center cubic-close packed 

structure (fcc) solid solutions of Ni and Co. In contrast, while at low overpotentials, and 

at higher content of cobalt in the electrolyte (rich cobalt deposit), hexagonal-close 

packed (hcp) structure, higher surface roughness, bigger grain size of deposits was 

formed. Moreover Ni-Co alloy deposit with lower Co content exhibits higher hardness 

and strength (21). 
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1.3 Mechanism of Ni, Co and Ni-Co alloy electrodeposition  

 
  
Ni, Co and Ni-Co alloy coatings are constructed using the electrodeposition 

method through applying the electrical current in the electrochemical cell. The 

following steps, Figure 1.1,  illustrated the mechanism of the formation Ni, Co and Ni-

Co alloy electrodeposits from aqueous system (22): 

  

1- The divalent Co and/or Ni ions are surrounded by hydration shells. The solvated 

ions move towards the negative charged cathode electrode after applying the 

electrical current on metal substrate cathode.  

2- The ions get reduced and neutralized, as the following Eqs. (1.1-1.2): 

Co+2 + 2e -→Co                                                                                          (1.1) 

             Ni+2 + 2e- →Ni                                                                                           (1.2) 

 

3- The attractive interaction between water molecule and neutral Co and Ni ions is 

zero, so hydrated water molecules are displaced and neutral metal atom gives 

an intermetallic phase according to the following chemical reaction (Eq.1.3 only 

related to Ni-Co alloy): 
 

              Co + Ni → CoNi                                                                                        (1.3) 

 

4- Then Co and/or Ni diffuse to the surface sites where it incorporates into the 

metal lattice.  

5- After the incorporation into the metal lattice, the Ni, Co and Ni-Co alloy 

deposits are formed. 
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Figure 1.1 Schematic steps illustrated the mechanism of the formation Ni, Co and Ni-

Co alloy electrodeposits. 

 
 
 
 

1.4 Applications of Nickel, Cobalt and Ni-Co Alloys in Industry 

1.4.1 Application of Nickel  

 
 

Nickel and nickel alloys are important industrial materials as their wide variety 

of utilizations, as shown in Figure 1.1. The majority of these applications require heat 

resistance and high corrosion resistance, (such as nuclear power systems, power 

stations, steam turbines, and aircraft gas), medical applications, and petrochemical and 

chemical industries (1–3)(23–25). Being highly resistant to tarnish and high hardness, 

nickel and nickel alloys have become alternatives for chromium electrodeposition in 

hardware, automotive, electrical and electronics accessories. Currently, Ni film is 

considered to be one of the most promising hydrogen evolution reaction (HER) 

electrocatalysts among high-activity electrocatalysts due to the appropriate adsorption 

strength between Ni and adsorbed hydrogen (Ni-Hads). Moreover, the significant Ni and 

its alloy coating properties include stability, high efficiency and reasonable cost of Ni 
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and Ni alloy coatings compared with noble metals (8–12). Other Ni alloy film 

applications are in the fabrication of anodes for Li–ion batteries (1–3) and protein 

microarray fabrication technologies (26). Moreover, because of its favorable 

mechanical properties, Ni deposits are used for printing, phonography, foils, tubes, 

screens and many other articles (27). 

 
 
 
 
1.4.2 Application of Cobalt 

 
 

In engineering, cobalt and its alloys are regarded as essential materials and are 

commonly used in many industrial applications. This is due to their special 

characteristics, including good strength and thermal stability, high heat conductivity, 

strong hardness, good resistance to corrosion, good wear resistance, strong adhesion, 

optical properties, and high catalytic properties (15–17). Co and its alloys are also used 

in the manufacture of nanostructural materials such as nanowires and nanotubes and in 

various storage and magnetic equipment (28). Moreover, Co and its alloys are applied 

in microsystem technology for the manufacture of sensors, actuators, micro relays, 

inductors and magnetic devices in the computer industry (16)(29,30), as shown in 

Figure 1.1. Additionally, it is used in modern accumulators and advanced batteries, as 

well as in microelectronics for the semiconductor industry (28).  

 
 
 
 
1.4.3 Application of Ni-Co Alloys  

 
 

Ni-Co alloy deposits are very important due to their industrial applications (such 

as electronics, computers, automotive and energy storage devices, particularly in the 

computer field), technological (space, rocketry) applications (1–3)(31,32), 

biotechnological applications (26) and powerful fabrication applications (33).  These 

significant applications are due to Ni-Co alloys having suitable magnetic, mechanical, 

chemical, physical and electrocatalytic properties, Figure 1.1. In addition, 

electrodeposited Ni-Co alloys are widely used as active materials for hydrogen and 

oxygen evolution reactions in water electrolysis, as anode materials for lithium 
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batteries, and as catalysts for H2O2 decomposition (31)(34). Ni-Co films have been 

prepared via electrodeposition due to their low cost, easy to maintain equipment, control 

of film thickness, preparation of high-quality alloys, and capability of handling complex 

geometries. The method is environmentally friendly compared with other coating 

technologies including chemical and physical deposition by vapor (1–3). 

 

 

 

 

Figure 1.2 Examples of different Ni, Co and Ni-Co alloy coatings applied on 

components in various industries. 

 
 

 
 

1.5 Additives in the Electrodeposition Process: 
 
 

1.5.1 Organic and Inorganic Additives: 

  
 
The electrodeposition of metals and alloys employed usually by using solutions 

contain one or more organic or inorganic addition agents which have effective functions 
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in the electrodeposition processes (35–39). In the  aqueous electroplating solutions, it 

is considerably important to use additives in order to improve the surface morphology 

of the deposit, produce more precision, durability and stability for coating (40–43), 

owing mainly to the desirable influences produced on the structure and growth of 

deposits (44). The increasing in current density range, enhancing potential brightening 

the deposit, promoting leveling, reducing grain size and the tendency to tree, reducing 

stress and pitting in the deposited film, and improving physical and mechanical 

properties, can be achieved by using additives. The additives may even be organic and 

metallic, ionic and non-ionic, and adsorbed onto the plated surface (6). Organic 

additives actually seem to enhance the creation of some dominant textures of most 

crystallites, often inhibiting crystallization process towards the other crystallographic 

axes (45). These additives influence the processes of deposition and crystal building as 

adsorbate on the cathode surface (46). The deposit form obtained at a constant current 

density can depend on the surface coverage value of the additive. Therefore, the 

adsorbed additives may affect both the kinetics and mechanism of electrodeposition. 

Organic additives can also elevate surface polarization, increase cathodic overpotential, 

and suppress the kinetics of electrodeposition reaction (47).  

 

 

 

 

1.5.2 Mechanism of Additives  

 

One of the two main brightener categories is additives. Brighteners are organic 

or inorganic, ionic or non-ionic compounds that added to the electrodeposition for 

enhancing the morphological structure of deposit obtained and improving its quality 

and properties. In aqueous solutions, there are mainly two mechanisms for the 

brighteners to affect the deposits during the electroplating. One is called leveling agent 

additive or additive (common name). It is performed by the adsorption of an organic 

species on the electrode surface, blocking nucleation and hindering growth of metal 

nucleus. The other is carried through coordinating to the metallic species called 

complexing agent. Complexing with metal ions leads to decreasing their reduction 

potential for making it more difficult to nucleate metal clusters (48).  

 
 



 

  9  
 

On the other hand, it is important to study the nucleation and growth mechanism 

of the film structure during electrodeposition. The nucleation mechanism of the 

conducting metals growth was investigated via the theory model of metal growth 

(5)(49). The nucleation mechanism includes instantaneous and progressive nucleation 

was developed by Scharifker and Hills, and the direction of nucleation includes two-

dimensional (2-D) and three-dimensional (3-D) growth (5)(49). In an instantaneous 

nucleation process, the model assumes the rate of nucleation is high and that coverage 

of all active sites by nuclei, i.e., nucleus grow. In the progressive nucleation mechanism, 

the rapid growth of a large number of active sites is achieved throughout the reduction, 

i.e., the number of nuclei increases (5)(44). 

 
 
The nucleation mechanism of the metal or alloy deposited on the surface is 

affected significantly by the category of the brighteners used. The leveling agent 

additive, which is adsorbed on the cathode surface and exhibited the change in the 

cathodic current density, follows a 3D-progressive nucleation/growth mechanism. The 

morphology of the deposited metal or alloy is getting leveled (5)(44)(50). However, 

since the coordination environment of the metal ions in electrodeposition bath was 

changed by addition of a complexing agent and led to change in the cathodic current 

density, the electrodeposition of metal or alloy follows a 3D-instananeous 

nucleation/growth mechanism (5)(44)(50). With the instantaneous nucleation model, 

the number of nuclei is constant, and they grow on their former positions on the bare 

substrate surface without formatting new nuclei. Hence the radii of the nuclei is larger 

and the surface morphology is rougher. Addition of leveled additive into 

electrodeposition bath, the nuclei not only grow on their former positions but also on 

new nuclei, which form smaller nuclei particles and the surface morphology becomes 

smoother, less granular, flatter and lower roughness (51). 

 

 
 

 
1.6 Ionic Liquids (ILs): 
 
 

Ionic liquids (ILs) are an interesting challenge for new chemicals with the 

potential to enhance chemical technology development and stimulating considerable 

field research. Ionic liquids are organic salts composed of organic cations and 
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organic/inorganic anions that are liquids at room temperature (39). ILs are synthesized 

by combining organic cations such as pyridinium, imidazolium, ammonium, 

phosphonium, and guanidinium with a wide variety of anions including halides (Cl−, 

Br−), hexafluorophosphate (PF6−), tetrafluoroborate (BF4−), trifluoroacetate 

(CF3COO−), bis- (trifluoromethylsulfonyl) amide (NTf2), and dicyanamide (DCA) (52). 

The amount of literature concerning ILs has significantly increased over the past few 

decades (53). ILs are considered as an efficient alternative to conventional organic 

solvents. Air and water-stable ILs systems have been emerged because of their unique 

properties, including such better organic and inorganic solvents, non-volatile, less 

poisonous, non-flammable, thermal stability (can be used over a wide temperature 

range up to 400 °C) and negligible vapor pressures (10-11 - 10-10 mbar) (54). In addition, 

the most important advantage of ionic liquids is their wide electrochemical windows ( 

> 5V) which offers access to elements which cannot be electrodeposited from aqueous 

or organic systems (46)(55). Some of the crucial factors that can cause ILs to differ 

towards aqueous systems are conductivity, viscosity, density, dissolving ability from 

metal salts, polarity, and potential window. In conclusion, ILs are inevitably 

sophisticated and advanced solvents which can be formulated to fit the specific 

application. In addition, eco-sustainable, recyclable material for synthetic organic 

chemistry, separation sciences and other chemical and engineering sciences have been 

fully justified for ILs. Due to the multitude of useful properties and abilities of ILs, ILs 

have now become alternatives for several industrial applications including (54): 

 Electrochemistry. 

 Synthesis and extraction processes. 

 Electrodeposition. 

 Liquid crystals.  

 Photochemistry. 

 Fuel desulfurization.  

 CO2 capture. 

 Lubrication. 

 Enzymatic synthesis. 

 Thermal storage systems.  

 Rocket propulsion.  
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The ionic liquid is defined as an ionic material consists cation and anion with a 

melting point below 100 °C. Low melting point of ILs arises due to a large, non-

symmetrical organic cations and hence low lattice energies of ILs structure (48). It is 

generally accepted that the cation is more important in controlling the physical 

properties of the salt whereas the anion has a greater effect upon the stability and 

chemical reactivity. The majority of ILs systems used for metal deposition have been 

based on nitrogen-based cations. Imidazolium based cations, which are chosen in the 

current work, have been favored due to their superior fluidity and conductivity. The 

other important role that the cation probably plays in electrodeposition is controlling 

the structure and most importantly the Helmholtz layer thickness. Anions also affect 

the conductivity and viscosity of the electrolyte. Anions could decrease the Helmholtz 

layer thickness considerably and should make metal ion reduction easier (48). 

 
 
 

1.6.1 Ionic Liquid as Additives 

 
 
 Due to special properties of ionic liquids, such as undetectable vapor pressure, 

a wide range of liquids, fast recovery and reuse, ionic liquids are a strong alternative to 

traditional molecular organic solvents in recent years (53). Scientists are currently 

interested in ionic liquids applications, including imidazolium-ionic liquids as additives 

(36). Ionic liquids reporting in the liquid chromatography (56), sustainable solutions 

(57), organic synthesis, catalytic reactions, and ILs used as lubricants and corrosion 

inhibitors (53).  

 
  
 
 

1.7 Quantum Chemical Calculation: 

 
 
The investigation of ionic liquid additives performance in the electrodeposition 

processes are conducted experimentally. In addition, computational chemistry can be 

used to provide theoretical explanation for the experimental findings. Experimental 

measurements to achieve the effect of ionic liquid as additives in Ni, Co and Ni-Co 

alloy electrodeposition process are conducted using various techniques which are 
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studied deeply in the experimental section. Traditionally, experimental techniques are 

mainly used to investigate the additives performance in the electrodeposition field. 

However, employing the experimental methods only is harmful to the environment, 

expensive and time consuming (58). With the improvement in computer hardware and 

software as well as in theoretical chemistry, computational chemistry has been 

increasingly used in the design and development of addition agents in the 

electrodeposition field (43)(59–61) and corrosion inhibitors (58)(62–65). As reported 

in (59) "Density functional theory (DFT) has become an active field of research to 

envisage the mechanism arising between additives and surface of the metal at the 

molecular level".  

 
 
 
 
1.8 Problem Statement 
 
 

An organic or inorganic compound is considered as one of the main components 

of electrodeposition solution of single metal or alloy due to a positive and beneficial 

effects of specific functions of additives on the deposit’s properties. Adding additives 

in Ni, Co and Ni-Co alloy electrodepositions processes is not very common. Moreover, 

glycine, acetonitrile and choline chloride–urea (1:2 molar ratio) which were used as 

additives in the Ni-Co alloy electrodeposition exhibits granular, no uniform deposits 

(1)(66–68). An extensive micro-cracked deposits were produced by adding glycine, 

thiourea, sodium gluconate, boric acid, coumarin and saccharin due to hydrogyn 

evolution (23,24)(15)(59–62). Non-brightness, low corrosion resistance Ni-Co alloy 

deposit obtained by using nano Al2O3 particles as additive (32). Moreover, the hardness 

and the strength of deposits (27)(16) and the cathodic current efficiency (CCE%) of 

some studies were very low (15)(36)(39,40). Insufficient thermal stability and poor 

throwing power were achieved in other studies (23)(27)(7).   

   
 
In addition, Ni, Co and Ni-Co alloy crack free films were produced in the 

presence of glycine and sodium citrate (67)(69) as additives but these studies required 

high temperature and high current density. Moreover, some studies used an expensive 

substrate such as gold, Pt, Si (25)(29)(66). The others consumed high concentration of  
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metal sources and additives (16)(29)(66). Some studies used non environmentally 

friendly, toxic such as Cd2+ (70) and cyanides (71), highly flammable and volatile 

substances, acetone, (50) and health hazards substance, thiourea (50), as additives. 

Moreover, some works lack for hardness and corrosion resistance measurements 

(36)(72–74). 

  
 
Ionic liquids have been applied as a media of electrodeposition process by many 

researchers (24)(34)(50,51)(67)(75) but some of them obtained micro-cracked, granular 

films, and low CCE% (24)(31)(44)(46) (50,51)(67,68). However, using ionic liquids as 

addition agents in the electrodeposition processes attracted only few researchers 

(39)(53). This means that study the effect of ILs as additives during electrodeposition 

process is insufficient.   

 
 
Many investigations into Ni induced from different baths including, sulfamate, 

chloride, citrate, acetate, gluconate, glycine, and Watts-type nickel electrodeposition 

bath, without or with additives were recorded (76–78). Moreover, cobalt deposits has 

been obtained from different baths containing chloride (79), chloride & sulfate (80), 

gluconate (81), acetate  (82) and citrate (83) electrolytes. Unfortunately, some of these 

coating deposited in industry from electrolytic baths contains toxic solutions such as 

the cyanide anions (71)(84). A distinguished feature of cyanide-based systems is 

obtained fixable and soft deposits, strong adhere to alloys, good electrical conductivity, 

easily buffed, good solderability and obtaining decorative, bright and attractive antique 

finishes (84). Cyanide process is being prohibited due to its health and environmental 

pollution hazards as well as high cost involved to treat the effluent. Therefore, 

demanding to use green and more environmentally friendly electrolytes in the industrial 

fields become extremely necessary to decrease the problem of pollution in the world. 

Using acid sulfate bath is attracted many attentions due to pollution control 

characteristics, its safety features and relatively low cost (85). Moreover, finer grained 

and smoother surface was obtained from sulfate bath than that which was obtained from 

other baths (38). 

 
 
On the other hand, employing experimental approaches only for investigating 

the additive’s role in the electrodeposition is not eco-friendly, costly and time 
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consuming. Therefore, applying computational techniques, including quantum 

chemical calculations as predictive techniques, is more environmentally friendly, time 

saver and more economic (64). The practical investigations are complemented through 

computational systems. These systems are effective tools to propose the effective ionic 

liquids as additive among an enormous group of additives using in the electroplating 

field. Quantum chemical calculations are used to support the experimental 

investigations. Al-Fakih et al (64) reported that "Density functional theory (DFT) is a 

quantum chemical approach that is considered a powerful tool to investigate the 

quantum parameters of molecules theoretically with reasonable accuracy". Moreover, 

the natural atomic charge, i.e., Mulliken population analysis, has been calculated to 

determine the active sites and the adsorption mode of additives or inhibitor molecules, 

which can offer or accept electrons (86). As reported in (86) "There is a general 

consensus that the more negatively charged the heteroatom is, the more adsorption 

centers there are on the metal surface through donor–acceptor interactions". The use of 

Mulliken population analysis has been widely reported for calculation of the charge 

distribution over the whole skeleton of inhibitor molecules (64)(59). 

 
 
Most of studies which used the quantum chemical parameters were conducted 

for organic compounds as additives in the electrodeposition field (43)(59) (60,61)(87) 

or as corrosion inhibitors (62)(64)(86)(88). Moreover, many other researchers 

calculated the natural atomic charge and determined the active sites and the adsorption 

mode of organic compounds as corrosion inhibitors (62)(64) or as additive in the 

electrodeposition (59).  

 
 
Although some studies used ionic liquids as electrodeposition electrolytes 

(72)(89) or as corrosion inhibitors (90,91). However, very limited studies have used the 

quantum chemical parameters for clarifying the behavior of ionic liquids which are used 

as additives during the electrodeposition processes. It could be said that the studies 

regarding the use of quantum chemical calculations on ionic liquid compounds as 

additive in Ni, Co and Ni-Co alloy electroplating are not many and very poor.  

 
 
According to the gaps in all previous research in the Ni, Co and their alloys 

electrodeposition, the main aim of the current study is improving the qualities of Ni, Co 
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and Ni-Co alloys deposits by investigating the influence of two new green eco-friendly 

imidazolium ionic liquids using as addition agents in the electrodeposition of Ni, Co 

and Ni-Co alloy from acidic baths.  

 
 
Furthermore, in the current work, the quantum chemical calculations as 

theoretical tools are used to explain the adsorption performance of two studied ionic 

liquids additives based on their molecular structure properties. Moreover, electronic 

properties and molecule orbital information were obtained by quantum chemical 

calculation to further analyze the interaction between studied ionic liquid and metal 

surface. In addition, the natural atomic charge was calculated and employed to 

investigate the active sites of two imidazole derivatives ionic liquids molecules which 

can offer or accept electrons. 

 
 
 
 
1.9 Research Objectives   
 
 

As stated by all previous research gaps, obtaining Ni, Co and its alloy via 

electrodeposition by applying a novel green ILs become very essential to achieve it in 

current study. Therefore, the objectives of the present study are as follows:  

1. To study the electrodeposition of Ni, Co and Ni-Co alloy in the absence and the 

presence of [MOFIM]I and [FPIM]Br ionic liquids as new additives. 

2. To characterize the surface morphology and microstructure of Ni, Co and Ni-Co 

alloy deposits in the presence of the studied new ionic liquids as additives from 

acidic sulfate bath.  

3. To optimize the ionic liquids as additives in the electrodeposition of Ni, Co and Ni-

Co alloy by using density functional theory (DFT). 

4. To study the structure and properties relationship of Ni, Co and Ni-Co alloy deposits 

prepared by electrodeposition with the presence of the studied new ionic liquids. 
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1.10 Scope of the Research  
 
 

Figure 1.3. illustrated the molecular structure of two new studied ionic liquids 

namely:  

 

1-  Imidazolium iodide incorporating aromatic amide (name: 1-methyl-3-(2-oxo-2-

((2,4,5trifluorophenyl)amino)ethyle)-1H-imidazol-3-ium iodide [MOFIM]I ionic 

liquid. 

2-  Imidazolium bromide (name: 1-(4-fluorobenzyl)-3-(4-phenoxybutyl)imidazol-3-

ium bromide [FPIM]Br ionic liquid.  

 
 
 

 
 
 

 
 

Figure 1.3 The molecular structure of the ionic liquids namely (a) 1-methyl-3-(2-oxo-

2-((2,4,5 trifluorophenyl) amino) ethyl)-1 imidazol-3-ium iodide ([MOFIM]I), (b) 1-

(4-fluorobenzyl)- 3-(4-phenoxybutyl)imidazol-3-ium bromide ([FPIM]Br). 

 
 

The effect of many important factors will be studied in the electrodeposition of 

Ni, Co and Ni-Co alloy. The first factor is concentrations of two studied ILs in the range 

from 1×10-7 to 1×10-3 M, The other factors that will be studied in the electrodeposition 

of Ni, Co and Ni-Co alloy are including pH ,in the range from 3.5 to 4.5, electroplating 

time, in the range from 5 to 15 min, current density, in the range from 6 to 24 mA/cm2, 

and electroplating potential, in the range from 3 to 9 V. Three different bath 

compositions for co-electrodeposition of Ni-Co alloy ,as illustrated in  Table 3.2 in 

chapter 3, will be investigated. These selected range of all previous factors are due to 

a b 
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the pest coating qualities and high cathodic current efficiency (CCE%) are obtained, as 

reported in (1)(3)(15)(7)(49).  Moreover, the CCE% during electrodeposition processes 

will be investigated at all these factors.  

 

 
Characterization the surface morphology, elemental compositions, roughness, 

microstructure and microhardness of Ni, Co and Ni-Co alloys deposited in the absence 

and the presence of two studied ILs will be obtained by using microscopic analysis such 

as scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), 

EDX mapping, atomic force microscopy (AFM) and X-ray diffraction analysis (XRD). 

Moreover, the mechanical properties such as micro-hardness of Ni, Co and Ni-Co alloy 

deposits will be measured. 

 
 
The mechanism of the electroplating process of Ni, Co and Ni-Co alloys in 

absence and presence of additives will be achieved experimentally by using voltametric 

analysis such as (potentiodynamic cathodic polarization curves, cyclic voltammetry 

(CV), In situ-anodic linear stripping voltammetry (ALSV)). The electrochemical 

corrosion behavior in a saline environment (3.5% NaCl solution) will be investigated 

using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) 

techniques. 

 
 
Optimization of the neutral and cationic forms of both [MOFIM]I and [FPIM]Br 

ionic liquids used as additives in the electrodeposition of Ni, Co and Ni-Co alloy will 

be investigated by using quantum chemical calculations. Quantum chemical 

calculations using DFT was conducted to calculate quantum parameters and discuss the 

relationship with the experimental findings. Several quantum parameters, such as 

highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular 

orbital energy (ELUMO), energy gap (ΔE), ionization potential (I), electron affinity (A), 

electronegativity (χ), hardness (η), softness (S) and fraction of electrons transferred 

(ΔN), and the natural atomic charge will be calculated using DFT (44). The results of 

the quantum chemical calculations will be served as a theoretical confirmation for the 

experimental data based on the quantum chemistry of the ionic liquids molecules. 
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1.11 Significance of the Study 
   

 

In the current study, two new [MOFIM]I and [FPIM]Br ionic liquids will be 

added in Ni, Co and Ni-Co alloy electroplating baths to enhance the qualities, the 

surface morphology, hardness and the corrosion resistance of Ni, Co and Ni-Co alloy 

deposits. It is hopeful to overcome these defects of traditional additives and toxic 

organic corrosion inhibitors and help to realize additives with good stability and 

inhibitors with a virulence by using ILs as metal electrodeposition additives and 

corrosion inhibitors, respectively. This study will provide our industry with new ionic 

liquids for producing good quality Ni-Co alloy deposits from environmentally friendly 

solutions. 

 
 
The use of quantum chemical calculations in this study complements the 

experimental measurements. The calculations provide theoretical descriptions for the 

effect of ionic liquid behavior on structures and mechanical properties of Ni, Co and 

Ni-Co alloy. The implementation of these procedures is useful to predict potential 

efficient ionic liquids additives, and thus will reduce the cost and time of testing 

inefficient ionic liquids. Based on our research, quantum chemical calculations are used 

effectively for the prediction of ionic liquids as addition agents in Ni, Co and Ni-Co 

alloy electroplating. This efficient and versatile method thus opens a new window to 

study or design ionic liquids for generalized metal electroplating and will vigorously 

promote the level of this research region. 

 
 
 
 
1.12 Outline of the Thesis 
 
 
The dissertation is split into seven chapters. Chapter 1 provides a summary of the 

research, a brief history on the advantages of the electrodeposition process, the 

applications of industrial deposits of Ni, Co and Ni-Co alloys, the mechanism of Ni, Co 

and Ni-Co alloy electrodeposition, the effective role of additives in improving the 

consistency of deposited films, the advantages of using ionic liquid as additives in the 

field of electrodeposition and experimental measurement methods, and theoretical 
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approaches. It also includes the present study's problem statement, aims, importance 

and scope. The related literature of the present study is discussed in Chapter 2. The 

literature was reviewed on the basis of four key subjects, previous studies in 

electrodeposition of Ni, Co and Ni-Co alloys, organic compounds as additives, 

mechanism of additives in the electrodeposition, the nucleation mechanism of deposit, 

ionic liquid including synthesis, description, structure, properties and utilities of 

electrodeposition processes, mechanism of Ni, Co and Ni-Co alloy electrodeposition in 

the presence of ionic liquid as additive, the principle of adsorption isotherm and 

quantum chemical calculations of additives and corrosion inhibitors. The details and 

specifics of the experimental methods are given in Chapter 3. An overview of the key 

experimental procedures used to investigate the current efficiency, voltametric behavior 

and mechanism, surface morphology, hardness and corrosion resistance of deposited 

Ni, Co and Ni-Co alloys from acidic baths is included. The findings result from the 

experimental work, discussion, and derived conclusions are discussed. Chapter 4 is 

split into two sections (A and B). The findings and discussion of the Co and Ni 

electrodeposition measurements in the absence and presence of different concentrations 

of [MOFIM]I and [FPIM]Br were included in both sections. Chapter 5 describes the 

outcomes and discussion of the Ni-Co alloy electrodeposition experimental study with 

three primary compositions of Ni2+ and Co2+ ions without and with [MOFIM]I and 

[FPIM]Br. Then, the main results are presented from all experimental measurements. 

The details of the quantum chemical calculation are given in Chapter 6. An overview 

of the procedures used and the quantum parameters measured and the natural atomic 

charge is given. The key conclusions of the present work and a brief description of this 

study are given in Chapter 7 and some suggestions for future work are provided. 
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