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ABSTRACT 

Drug-eluting stent (DES) is a promising treatment for atherosclerosis and in-

stent restenosis. However, the long-term implantation of DES contributes to late-stent 

thrombosis due to the rapid release of anti-proliferative drug and delayed 

endotheliasation. Besides, the presence of anti-proliferative drugs which is typically 

effective in preventing in-stent restenosis, has also could suspend the healing process 

by inhibiting the growth of endothelial cells. Everolimus is one of the anti-proliferative 

drugs used in developing commercial DES. Therefore, this study, aimed at developing 

a dual-functional surfaces of everolimus immobilised polydopamine (PDA) on poly(l-

lactic acid)/poly(d-lactic acid) (PLLA/PDLA) scaffolds. The study, also printed 

scaffolds with different PLLA and PDLA compositions (100% PLLA, 0% PDLA; 90% 

PLLA, 10% PDLA; 80% PLLA, 20% PDLA and 70% PLLA, 30% PDLA) using three-

dimensional (3D) printer. The study further subjected PLLA/PDLA scaffolds to 

wettability, mechanical and degradation analyses. The incorporation of PDLA into the 

blend of PLLA has increased the scaffold hydrophobicity and mechanical properties. 

Observation on the degraded PLLA/PDLA scaffolds show the capability in retaining 

its chemical functionalities. Less crack formation, less acidity of the degraded solution, 

higher percentages of remaining weight, greater average molecular weight and higher 

crystallinity percentages were recorded on the higher PDLA composition after the 

degradation analysis. The 80% PLLA and 20% PDLA scaffold blend was selected for 

further grafting and immobilisation processes due to its wettability, mechanical and 

degradation properties. The grafted scaffolds with the PDA intermediate layer were 

partly  immobilised with different everolimus concentrations (0.01, 0.05 and 0.10 mM) 

to form dual-functional surfaces. The study further analyses the dual-functional 

surfaces of everolimus immobilised PDA using ATR-FTIR, XPS, SEM, AFM, 

wettability, everolimus quantification, drug release, coating stability, blood 

compatibility and in-vitro endothelial cell analyses. Immobilisation of the everolimus 

on the PDA layer through O–N and C–O covalent linkages was also determined. The 

flowery-structured everolimus demonstrated a lower wettability (103.33 ± 7.13°) and 

higher surface roughness (784.92 ± 21.33 nm) on the greater concentration of 

everolimus (0.10 mM). A sustainable drug release profile based on the zero-order 

release profile was acquired for 0.05 mM and 0.10 mM everolimus concentrations. 

The higher everolimus concentration produced greater contribution on the coating 

stability. All scaffolds were classified as non-haemolytic with haemolytic index less 

than 2%. The endothelial cells extensively proliferated on the PDA surface which 

support scaffold implantation in the abluminal area. Meanwhile, cell growth inhibition 

was observed on the everolimus surface. Thus, this dual-functional scaffolds are 

beneficial for DES application in preventing possible complications such as burst drug 

release, late-stent thrombosis and delayed endotheliasation. 
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ABSTRAK 

Sten pembebasan ubat (DES) adalah satu kaedah rawatan yang memberi 

harapan untuk aterosklerosis dan pembentukan restenosis dalam sten. 

Walaubagaimanapun, implantasi DES pada jangka masa panjang telah menyumbang 

kepada kelewatan trombosis dalam sten disebabkan oleh pembebasan ubat anti-

percambahan yang cepat dan pertumbuhan sel endotelial yang lambat. Selain itu, 

kehadiran ubat anti-percambahan yang berkesan menghalang restenosis dalam sten, 

juga telah menangguhkan proses penyembuhan dengan merencat pertumbuhan sel 

endotelial. Everolimus adalah salah satu ubat anti-percambahan yang digunakan dalam 

penghasilan DES yang dikomersialkan. Oleh itu, kajian ini, bertujuan untuk 

membangunkan permukaan dwi-fungsi everolimus dinyahgerakkan polidopamin 

(PDA) dibina di atas perancah poli(asid l-laktik)/poli(asid d-laktik) (PLLA/PDLA). 

Kajian ini, telah mencetak perancah dengan berbeza komposisi PLLA dan PDLA 

(100% PLLA, 0% PDLA; 90% PLLA, 10% PDLA; 80% PLLA, 20% PDLA dan 70% 

PLLA, 30% PDLA) menggunakan pencetak (3D) tiga dimensi. Kajian ini 

kemudiannya menjadikan  perancah PLLA/PDLA kepada analisis kebasahan, 

mekanikal dan penguraian. Penggabungan PDLA ke dalam campuran PLLA 

meningkatkan sifat hidrofobik dan sifat mekanikal perancah. Pemerhatian pada 

perancah PLLA/PDLA yang terurai menunjukkan keupayaan dalam mengekalkan 

fungsi kimianya. Pembentukan retak yang sedikit, keasidan yang kurang dalam larutan 

terurai, purata berat molekul yang tinggi dan peratusan habluran yang tinggi dicatatkan 

pada komposisi PDLA yang lebih tinggi selepas analisis penguraian. Campuran 

perancah 80% PLLA dan 20% PDLA dipilih untuk proses cantuman dan 

penyahgerakkan selanjutnya kerana sifat kebasahan, mekanikal dan penguraiannya. 

Sebahagian dari perencah yang telah dicantumkn dengan lapisan perantara PDA 

dinyahgerakkan dengan everolimus pada kepekatan yang berbeza (0.01, 0.05 dan 0.10 

mM) untuk menghasilkan permukaan dual-fungsi. Kajian selanjutnya menganalisis 

permukaan dual-fungsi everolimus dinyahgerak PDA menggunakan ATR-FTIR, XPS, 

SEM, AFM, kebasahan, pengkuantitian everolimus, pembebasan ubat, kestabilan 

salutan, keserasian darah dan analisis sel endotelial secara in-vitro. Penyahgerakkan 

everolimus berjaya pada lapisan PDA melalui ikatan kovalen O–N dan C–O juga 

ditentukan. Everolimus berstruktur bunga menunjukkan kebasahan yang lebih rendah 

(103.33 ± 7.13°) dan kekasaran permukaan (784.92 ± 21.33 nm) yang lebih tinggi pada 

kepekatan everolimus yang lebih tinggi (0.10 mM). Profil pembebasan ubat yang 

mampan berdasarkan profil pembebasan tertib sifar telah diperolehi untuk kepekatan 

everolimus 0.05 mM dan 0.10 mM. Kepekatan everolimus yang lebih tinggi 

meningkatkan kestabilan salutan. Kesemua perancah dikelaskan sebagai tidak 

hemolisis berdasarkan hemolitik indek yang kurang 2%. Sel-sel endotelial bercambah 

secara meluas di permukaan PDA yang menyokong penempelan perancah di kawasan 

abluminal. Sementara itu, perencatan pertumbuhan sel berlaku pada permukaan 

everolimus. Oleh itu, keupayaan perancah dual-fungsi ini bermanfaat untuk aplikasi 

DES dalam mencegah komplikasi yang mugkin akan berlaku seperti pembebasan ubat 

yang cepat, kelewatan trombosis di dalam sten dan endoteliasasi yang lambat.  
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Coronary heart disease, stroke, peripheral arterial disease and aortic disease are 

several abnormalities in the heart and blood vessels which will lead to cardiovascular 

diseases (CVD) [1]. Deficit in blood flow to the heart cause rapid shortfall of oxygen 

and nutrients in the cardiac cells, thus promoting ischemia [2]. The prolong deficit 

blood flow leads to cardiac tissue necrosis and relative circulatory complication [2]. In 

2019, approximately 18.6 million of global deaths were caused by CVD that can be 

associated to a significant narrowing of the artery due to atherosclerosis  [3]. Diabetes, 

smoking habit, obesity and mental stress are among the factors that could trigger 

atherosclerosis [4]. It is also recognised that endothelial layer damage and 

inflammatory responses are two cascaded events related to the formation of 

atherosclerosis [5].  

Stent implantation is adopted in the percutaneous coronary intervention 

treatment (PCI) to treat atherosclerosis [6]. Stent in combination with balloon 

angioplasty is a prominent treatment for atherosclerosis. It is fabricated in a shape of 

small tubular wire mesh, intended to open narrowed blood vessel until the vessel 

remodels into its normal state [6]. During stent implantation, arterial injury followed 

by a cascade of biological events that resulted in-stent restenosis and neointimal 

hyperplasia have been reported [7–9]. In-stent restenosis and neointimal hyperplasia 

are the results of delayed wound healing, smooth muscle cells (SMC) growth and 

extracellular matrix deposition within the arterial lumen [7,10]. Hence, the 

incorporation of stent surfaces with specific drugs and biomolecules is crucial to 

improve the biological and bioactive properties of the stent in preventing in-stent 

restenosis and neointimal hyperplasia. Drug-eluting stent (DES) is a drug-coated stent 

which functioned to accommodate drugs and to regulate drug release into surrounding 
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tissues [11]. Even though DES has the capabilities to prevent in-stent restenosis and 

neointimal hyperplasia [12], the burst release of drugs has triggered late-stent 

thrombosis and has suppressed endotheliasation as well as tissue healing following an 

implantation [13]. Tissues injuries have been reported in the early phase of 

implantation due to the implementation of several anti-proliferative drugs such as 

sirolimus, paclitaxel and everolimus [14].  

Everolimus is a type of commercial drug that has been widely used in 

developing DES [15,16].  It is derived synthetically from sirolimus which is classified 

as an immunosuppressive agent [17]. This drug inhibits kinase, the mammalian target 

of rapamycin (mTOR) which is identified to have a beneficial effect in preventing 

atherosclerosis formation [15]. An exposure to everolimus will activate mTOR 

proliferation signal and induce the generation of cell cycle block in the G1 phase, thus 

inhibiting cell proliferation [18]. Besides, it could suppress the growth of SMC in 

preventing in-stent restenosis and neointimal hyperplasia [18]. This drug is beneficial 

in the atherosclerosis treatment but requires modification in the coating design and 

technique to provide dual functions of cell suppression in the luminal stent and cell 

integration in the abluminal stent. A successful implantation should enhance the 

proliferation of endothelial cells (EC) to accelerate vessel integration and should 

inhibit the growth of SMC to prevent clot formation [19].  

In this study, an immobilisation technique was chosen to immobilise 

everolimus on scaffold surfaces to prevent burst drug release using the mediation of 

polydopamine (PDA) layer. This layer can be developed through the surface 

modification of based-materials with a cross-linker agent [10]. Surface modification 

with PDA layer has gained interest among researchers due to its ability to form strong 

chemical linkages on a various types of structures and materials [20,21]. This method 

is facile, versatile and low cost [20,21]. It has been used to modify various implant 

medical surfaces to immobilise antibacterial agents, proteins, nanoparticles and 

biomolecules [22]. There are two active functional groups presented in PDA, catechol 

and amine groups, which contribute to its ability to bind covalently with a broad range 

of inorganic, organic and metallic substrates [23,24]. This covalent linkages have 

motivated the exploration on element release where PDA emerges as a highly 



 

3 

promising candidate to stabilise and sustain the release of immobilised molecules due 

to its strong chemical linkages [24]. Besides, PDA layer also has assisted cell 

attachment and adhesion for advance tissues integration [24]. Therefore, in developing 

dual-functional surfaces coating on stent, PDA is the best candidate to mediate 

everolimus immobilisation for sustainable cell suppression purpose (luminal stent) and 

to enhance cell integration (abluminal stent) for vessel remodelling purpose. 

In this study, everolimus was immobilised on biodegradable poly(l-lactic 

acid)/poly(d-lactic acid) (PLLA/PDLA) scaffolds to construct biodegradable 

polymeric DES. Biodegradable stent is currently attained researcher’s attention due to 

its ability to degrade while allowing tissues regeneration [25]. Biodegradable stent 

made of metal is mainly being explored due to its mechanical strength to support vessel 

wall [26]. However, the degradation of metal product may lead to inflammation and 

late-stent thrombosis [26]. Therefore, much attention has been diverted to 

biodegradable polymeric stent which does not produce degraded and accumulated 

metal products in the physiological circulation system [25]. The 3D printing technique 

is viewed as a promising approach for the fabrication of biodegradable polymeric 

stents or scaffolds due to its ability to produce complex shape design [27]. It adopts an 

additive manufacturing (AM) technology which constructs 3D printed objects based 

on 3D computer-aided design (CAD) models [28]. In the biomedical field, fused 

deposition modelling (FDM) is frequently utilised for printing 3D structures, 

attributable to its high adaptability in creating distinctive forms of implant shape [29] 

and the ability to choose biocompatible filament materials in preventing cytotoxicity 

response [30]. Therefore, in this study, FDM was used to extrude filaments with 

different compositions of polylactic acid (PLA) derivatives. 

Polylactic acid is an aliphatic polyester that has been classified as one of the 

most popular biodegradable polymers [31]. The use of PLA in the human body is 

clinically approved by the Food and Drug Administration (FDA) due to the 

biocompatibility factor [29]. There are two enantiomers of sc-PLA formation which 

are poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA) [32,33]. Several research have 

been conducted to improve the formation, structure, mechanical and degradation 

properties of PLLA by combining both PLLA and PDLA, to develop sc-PLA [34–37]. 
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The enhanced properties of sc-PLA led to the selection of these polymers as a based-

material for the fabrication of biodegradable polymeric DES. In the beginning, PLLA 

and PDLA were blended at different compositions and 3D printed to form 

biodegradable scaffolds. The scaffolds were surface grafted with a PDA layer. One 

side of the scaffolds was immobilised with different concentrations of everolimus to 

develop a dual-functional surfaces coating for DES application. This dual-functional 

surfaces coating is proposed to prevent the proliferation of cell growth (luminal 

surfaces) and to support EC proliferation (abluminal surfaces) while controlling the 

release of anti-proliferative drugs. Thus, the novelty of the present study lies on the 

immobilisation of everolimus on PLLA/PDLA 3D printed scaffolds using PDA layer 

and the dual-functional surfaces coating of PDA and everolimus, to be potentially 

applied as biodegradable polymeric DES. 

1.2 Problem Statement 

World Health Organisation (WHO) reported that cardiovascular related 

diseases are the number one cause of death globally [38]. A total of 75% of the heart 

attack occurred from plaque rupture of atherosclerosis [39]. Atherosclerosis is being 

treated with PCI procedures [6]. Previous research focused on bare metal stents for 

PCI treatment. An early generation of this stent has several drawbacks including in-

stent restenosis, stent thrombosis, poor endotheliasation and delayed wound healing 

that impact the effectiveness of stent implantation [40].  

Drug-eluting stent is used to overcome the issues of bare metal stent. However, 

other complications of delayed endotheliasation and late-stent thrombosis have been 

reported from DES implantation [41]. The utilisation of polymer coating layer on 

DESs could trigger an inflammatory and hypersensitivity response which result in 

cardiac infraction and sudden death [42,43]. Besides, burst or rapid drug release is 

another DES related drawback which cause deficiencies on the delivery of therapeutic 

effects at the implanted lesion and impacts on late-stent thrombosis [13]. Thus, DES 

development with sustain drug release capability to ensure enough drug 

supplementation along the implantation to prevent late-stent thrombosis is immensely 
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needed. Sufficient amount of drugs is also needed to promote EC growth and to 

prevent SMC proliferation where both functions are the main roles of tissues/vascular 

remodelling [44].  

Rapamycin drug such as everolimus has become the subject of interest in 

developing DES. However, the rapid release of everolimus in some cases due to non-

stable coating, cause deficiencies in its therapeutic effectiveness [45]. Moreover, 

everolimus does not have the ability to selectively inhibit SMC and EC where a 

successful implantation should inhibit SMC to prevent clot formation and should 

enhance EC proliferation that can accelerate vessel integration [19]. Therefore, an 

ideal everolimus DES should has dual functions, to prevent the proliferation of SMC 

and to support EC proliferation. 

Furthermore, a second surgery is mostly needed to remove the metal stent and 

to treat inflammation [46]. The revolution of  biodegradable metal stent gives a 

promising value to overcome in-stent restenosis and stent thrombosis [47]. However, 

degradation of the metal products has caused inflammation and accumulation on 

specific organs that lead to forthcoming diseases [26]. Therefore, the attention on 

biodegradable metal stent has been diverged, covering the development of 

biodegradable polymeric stent. However, low mechanical strength and high 

degradation rate of biodegradable polymeric stent become major limitations for the 

implementation of polymeric stent to support weaken blood vessel wall [48]. It is 

crucial to maintain the structural of biodegradable stent at least within 6 months and 

to ensure element degradation instead of large compounds dissociation [49].  

Modifying the polymer stent materials to increase its mechanical strength has 

drawn a significant challenge [19,48]. In addition, the complex structure of stent calls 

for a huge exploration on stenting technology to fabricate wire-mesh tubes [50,51].   
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1.3 Objective of the Study 

The aim of this study is to develop dual-functional surfaces coating of PDA 

and everolimus on biodegradable polymeric materials for DES application. Therefore, 

the objectives of the study are stated as below: 

(a) To fabricate and characterise the effects of different compositions of PDLA 

and PLLA on the wettability, mechanical and degradation properties of the 3D 

printed PLLA/PDLA biodegradable polymeric scaffolds. 

(b) To assess the capability of PDA to mediate the immobilisation of everolimus 

on the 3D printed PLLA/PDLA scaffolds at different everolimus 

concentrations in developing dual-functional surfaces coating through 

chemical composition, morphology, roughness and wettability analyses.  

(c) To determine the everolimus release mechanism and the stability of the dual-

functional surfaces coating at different everolimus concentrations through an 

immersion approach. 

(d) To investigate the blood compatibility and the responses of human umbilical 

vein endothelial cells (HUVEC) on the dual-functional surfaces coating 

through haemolysis, cytotoxicity, cell proliferation and cell attachment 

analyses. 

1.4 Scope of the Study 

In the beginning of the study, different compositions of PLLA and PDLA were 

blended (PLLA100, PLLA90, PLLA80 and PLLA70) to produce PLLA/PDLA 

filaments. The extruded filaments were installed into a 3D printer to print 

PLLA/PDLA scaffolds. The wettability of the printed scaffolds was identified through 

a contact angle measurement and the mechanical properties were determined through 

a compression test.  
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Then, the printed scaffolds were subjected to a degradation test through a static 

immersion in phosphate buffer saline (PBS) for 30 and 60 days at 37°C to study the 

degradation behaviour of PLLA/PDLA scaffolds. The pH of the degradation solution 

and the remaining weight of the degraded scaffolds were recorded. The degraded 

scaffolds were also subjected to attenuated total reflectance-Fourier transform infrared 

spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), gel permeation 

chromatography (GPC) and differential scanning calorimeter (DSC) analyses, 

respectively, to determine the chemical functionality, morphology, molecular mass 

and thermal degradation of the scaffolds. 

Based on the mechanical and degradation findings, the composition of 

PLLA80 was selected to further print the 3D PLLA/PDLA scaffolds. The 

PLLA/PDLA scaffolds were grafted with PDA by immersing the scaffolds in 

dopamine salt solution (PP-PDA). Different concentrations of everolimus (0.01 mM, 

0.05 mM and 0.10 mM) were then immobilised on the PP-PDA scaffolds, partly, and 

known as PP-PDA-EVEx to develop dual-functional surfaces coating. The dual-

functional surfaces coating was characterised through ATR-FTIR, X-ray 

photoelectron spectroscopy (XPS), SEM, atomic force microscopy (AFM) and 

wettability analyses.  

The quantification of immobilised everolimus was performed with ultraviolet-

visible (UV) spectrophotometry. The everolimus release and the stability of the dual-

functional surfaces coating were assessed through a month immersion approach in 

deionised water. The release of everolimus profile was determined with UV 

spectrophotometry and five mathematical models were used to further elaborated the 

everolimus release mechanism. The stability of the dual-functional surfaces coating 

was examined under ATR-FTIR and SEM.  

The compatibility of the dual-functional surfaces coating towards red blood 

cells was then investigated through haemolysis assay. In-vitro assessments of 

cytotoxicity and cell proliferation were also performed with HUVEC on the dual-

functional surfaces coating using MTT (3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyl 

tetrazolium) (MTT) assay. The capability of the dual-functional surfaces coating to 
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inhibit cell attachment was verified on the everolimus surface while the ability of the 

dual-functional surfaces coating to support HUVEC integration was verified on the 

PDA surface under VPSEM visualisation. 

1.5 Significance of the Study 

This study produced dual-functional surfaces coated biodegradable scaffold 

which has an ability to inhibit cell growth (luminal) on one surface and has capability 

to support EC growth (abluminal) on another surface. These dual-functionalities are 

achieved by immobilising everolimus, partly, on biodegradable 3D printed 

PLLA/PDLA scaffolds mediated with PDA layer. While another part is 

accommodated with only PDA layer, without the immobilisation of everolimus.  

The PDA grafted scaffold surfaces will accelerate endotheliasation process for 

greater vessel integration (abluminal surface) while overcome the everolimus 

limitation in selectively inhibiting EC. The release of everolimus will also prevent 

plaque formation and cell attachment in the luminal structure of stent, thus avoiding 

in-stent and late-stent thrombosis. Furthermore, the utilisation of PDA to mediate 

everolimus immobilisation is intended to control and sustain the release of everolimus.  

This dual-functionalities biodegradable scaffolds have advance values in DES 

application as a replacement for bare metal stent, biodegradable metal stent and DES 

metal stent. It will prevent patients from undergoing a secondary surgery to remove 

metallic implant and to avoid inflammation caused by the degradation of metal 

products. The blending of PLLA and PDLA to form sc-PLA could provide an 

appropriate mechanical strength and degradation properties to biodegradable 

polymeric scaffolds that can be used in polymeric stent application to support weak 

blood vessels.  
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