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ABSTRACT 

Dry reforming of methane (DRM) is an environmentally benign process for 

production of synthesis gas carbon monoxide (CO) and hydrogen (H2) with low H2:CO 

ratio by utilization of carbon dioxide (CO2) and methane (CH4) as feed gas. The large-

scale production of syngas via DRM is still in its infancy due to operational constraints 

exhibited by the several catalysts involved. In this study, microemulsion engineered 

fibrous ZSM-5 (FZSM-5) support was selected as the support material due to its 

extended surface area and stabilization of metal particles. In addition, nickel (Ni) 

loaded on FZSM-5 was prepared by double solvent, physical mixing and wetness 

impregnation methods. Furthermore, magnesium (Mg), calcium (Ca), tantalum (Ta) 

and gallium (Ga) promoters were added to Ni/FZSM-5 catalyst using wetness 

impregnation method. The catalysts were characterized using X-ray diffraction, 

nitrogen adsorption-desorption isotherm, transmission electron microscope, field-

emission scanning electron microscope, Fourier-transform infrared spectrometer, IR-

lutidine chemisorption, temperature-programmed desorption with ammonia and CO2, 

temperature-programmed reduction with H2, energy-dispersive X-ray, X-ray 

photoelectron spectrometer, Raman spectrometer, and thermogravimetric analysis. 

The effects of active metals, Ni-loading methods, support morphology, promoters, Ni-

Ta ratio towards the activity, selectivity and stability of the Ni based catalysts were 

examined in DRM over a temperature range of 500–800 oC and atmospheric pressure. 

Results revealed that Ni species are highly active for dissociation of the reactants. 

Ni/FZSM-5 produced superior performance than conventional ZSM-5 supported Ni 

catalyst. High basicity, surface area and mesoporosity were responsible for the 

outstanding performance of FZSM-5 supported catalyst. The wetness impregnation 

catalyst produced superior performance, which was correlated to microscopic 

dispersion and low surface acidity. The activity of the bimetallic catalysts was in the 

order: Ni-Ga/FZSM-5 (CH4= 50.1 %, CO2= 58.8 %) < Ni-Ca/FZSM-5 (CH4= 82.9 %, 

CO2= 82.7 %) < Ni-Mg/FZSM-5 (CH4= 86.7 % ,CO2= 92.3 %) < Ni-Ta/FZSM-5 

(CH4= 91 % ,CO2= 97.4 %). The side reaction (methane cracking, Boudouard and 

RWGS) test results indicated that Ni catalyst had high inclination towards methane 

cracking reaction. The presence of small Ta cations in Ni catalyst was enough to 

suppress the driving force for agglomeration and coke formation. The optimum CH4 

conversion predicted from the response surface analysis was 96.6 % at reaction 

temperature of 784.15 °C, CO2:CH4 feed ratio of 2.52, and GHSV of 33,760 mL g-1 h-

1. Experiment carried out with these optimum parameters gave 95.8 % CH4 conversion 

with error of 0.8 %. The strong catalytic stability of Ni-Ta/FZSM-5 was due to the 

small-size and immobilized Ni sites, enhanced reducibility and interaction of catalyst 

components. This study highlighted the contribution of fibrous structured ZSM-5 

support and Ni-Ta catalyst in the quest for potent catalyst development for industrial 

production of syngas via DRM.  
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ABSTRAK 

Pembentukan semula metana kering (DRM) merupakan satu proses yang 

mesra alam untuk pengeluaran gas sintesis karbon monoksida (CO) dan hidrogen (H2) 

dengan nisbah H2:CO yang rendah melalui penggunaan karbon dioksida (CO2) dan 

metana (CH4) sebagai gas suapan. Pengeluaran singas berskala besar melalui DRM 

masih dalam peringkat awal kerana kekangan operasi yang ditunjukkan oleh beberapa 

mangkin yang terlibat. Dalam kajian ini, sokongan ZSM-5 berserat direka bentuk 

secara mikroemulsi (FZSM-5) dipilih sebagai bahan sokongan kerana luas 

permukaannya yang besar dan kestabilan zarah logamnya. Di samping itu, nikel (Ni) 

yang dimuat pada FZSM-5 disediakan dengan kaedah pelarut berganda, pencampuran 

fizikal dan impregnasi basah. Selanjutnya, penggalak magnesium (Mg), kalsium (Ca), 

tantalum (Ta) dan galium (Ga) ditambahkan kepada mangkin Ni/FZSM-5 

menggunakan kaedah impregnasi basah. Mangkin tersebut dicirikan menggunakan 

belauan sinar-X, isoterma penjerapan-penyahjerapan nitrogen, mikroskop elektron 

penghantaran, mikroskop elektron imbasan pancaran medan, spektrometer inframerah 

jelmaan Fourier, jerapan kimia IR-lutidina, nyahjerapan dengan amonia dan CO2 pada 

suhu terprogram , penurunan dengan H2 pada suhu terprogram, sinar-X serakan tenaga, 

spektrometer fotoelektron sinar-X, spektrometer Raman dan analisis termogravimetri. 

Kesan logam aktif, kaedah pemuatan Ni, morfologi sokongan, penggalak, nisbah Ni-

Ta terhadap keaktifan, kememilihan dan kestabilan mangkin berasaskan Ni telah dikaji 

dalam DRM dengan julat suhu 500–800 oC dan pada tekanan atmosfera. Hasil kajian 

menunjukkan bahawa spesies Ni sangat aktif untuk penguraian bahan tindak balas. 

Ni/FZSM-5 menghasilkan prestasi unggul berbanding mangkin Ni sokongan ZSM-5 

konvensional. Kebesan, luas permukaan dan keliangan meso yang tinggi 

bertanggungjawab bagi prestasi cemerlang mangkin sokongan FZSM-5. Mangkin 

impregnasi basah menghasilkan prestasi yang unggul, yang berkorelasi dengan 

penyebaran mikroskopik dan keasidan permukaan yang rendah. Keaktifan mangkin 

dwilogam adalah mengikut urutan: Ni-Ga/FZSM-5 (CH4= 50.1 %, CO2= 58.8 %) < 

Ni-Ca/FZSM-5 (CH4= 82.9 %, CO2= 82.7 %) < Ni-Mg/FZSM-5 (CH4= 86.7 % ,CO2= 

92.3 %) < Ni-Ta/FZSM-5 (CH4= 91 % ,CO2= 97.4 %). Keputusan ujian (pemecahan 

metana, Boudard dan RWGS) tindak balas sampingan menunjukkan bahawa mangkin 

Ni mempunyai kecenderungan tinggi terhadap tindak balas pemecahan metana. 

Kehadiran sedikit kation Ta dalam mangkin Ni sudah cukup untuk menahan daya 

pendorong untuk pembentukan pengumpalan dan kok. Penukaran CH4 optimum yang 

diramalkan daripada analisis sambutan permukaan adalah 96.6% pada suhu tindak 

balas 784.15 °C, nisbah suapan CO2:CH4 sebanyak 2.52, dan GHSV sebanyak 33,760 

mL g-1 h-1. Eksperimen yang dijalankan dengan parameter optimum ini memberikan 

95.8% penukaran CH4 dengan ralat sebanyak 0.8%. Kestabilan pemangkinan yang 

kuat Ni-Ta/FZSM-5 adalah kerana tapak Ni yang bersaiz kecil dan tersekat gerak, 

peningkatan pengurangan, dan interaksi daripada komponen mangkin. Kajian ini 

menyerlahkan sumbangan sokongan ZSM-5 yang mempunyai struktur berserat dan 

mangkin Ni-Ta dalam usaha pembangunan mangkin yang kuat untuk pengeluaran 

singas industri melalui DRM. 
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INTRODUCTION 

1.1 Background of Study 

The envisaged diminution of crude oil reserves, rapid population growth and 

stringent environmental policies on emission control has triggered unprecedented 

research on alternate energy sources. Natural gas (NG) is one of the solutions to this 

multi-sided challenge, since NG is an abundant (6879 trillion cubic feet) and 

environmentally benign energy source for power generation and vehicular applications 

(Chong et al., 2020, Huang et al., 2018). Drawbacks of NG includes low critical 

temperature as well as high storage and transportation costs, which led to its limited 

utilization as fuel. Emission of greenhouse gases have been established to be 

responsible for the current earth's radiative energy imbalance leading to the menace of 

global warming (Chang et al., 2020). Carbon dioxide and methane constitute the major 

part of greenhouse gases, with concentration of CO2 (393.1 ppm) higher than that of 

CH4 (1.8 ppm), but the global warming potential of CH4 still supersedes (Wang et al., 

2015). This shows that CH4 contributes severely to the overall global warming (Chong 

et al., 2020; Song et al., 2018).  

Carbon dioxide management in terms of capture and utilization has received 

attention in recent years (Norhasyima & Mahlia, 2018; Usman et al., 2015; Wittich et 

al., 2020). From an industrial standpoint, CO2 is not only an effluent gas with 

detrimental environmental footprint, but it’s also an intriguing raw material. Despite 

the potentials of CO2 utilization process such as Carbon capture and sequestration 

(CCS) process, the hugely stored CO2 has been less utilized. The major alternative to 

address this problem is utilizing CO2 as feedstock integrated with CH4 conversion 

process to produce syngas (CO and H2), a versatile feedstock for production of liquid 

energy carriers and useful chemicals through technologies such as steam reforming 

(SRM), dry reforming of methane (DRM) and partial oxidation (POM) (Ashok et al., 

2020; He et al., 2020; Wittich et al., 2020).  
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Methane conversion to syngas via DRM is a promising technology in the 

production of syngas used as an important platform chemical for the synthesis of liquid 

energy carriers and valuable chemical such as methanol, dimethyl ether and ammonia 

(Wittich et al., 2020; Zain & Mohamed, 2018). Compared to other methane reforming 

processes, DRM has several attractive aspects because the process requires less energy 

and is suitable for NG reserves with high CO2 content. In addition, DRM produces 

eco-friendly fuel products via Fischer-Tropsch synthesis to curb the underlying issues 

associated with storage and transportation of gaseous fuels (Dahan et al., 2019; Pal et 

al., 2018). The catalyst is considered as a key factor in the DRM reaction. As a result, 

development of catalyst system capable of maximally producing syngas remains the 

prime research focus in the last two decades. Despite its environmental and economic 

potentials, large-scale production of syngas via DRM is still in its infancy due to 

operational constraints exhibited by the several catalysts involved (Aziz et al., 2019; 

Das et al., 2019). 

A DRM pilot plant has recently been constructed by Linde group in Germany, 

which was aimed at determining the commercial readiness of DRM technology. The 

pilot plant uses Ni-based and Co-based catalysts. The plant performance test provided 

data on longer-term and process parameters, which pave way for investigation of 

optimization approaches towards development of a more broadly applicable process 

(Schwab et al., 2015; Wittich et al., 2020). The successfully developed pilot plants are 

the CALCOR and SPRAG process (Er-Rbib et al., 2012; Schwab et al., 2015). The 

CALCOR process is only suitable for small-scale operation, with production of CO 

rich syngas (H2:CO = 0.43) (Shah & Gardner, 2014). The SPRAG process was 

designed to combine the characteristics of DRM and SRM process. However, the 

negative impact of sulphur poisoning reduces the overall activity and stability of the 

catalyst (Wittich et al., 2020; York et al., 2007). The state of the art DRM technologies 

seems feasible only in certain scenarios and lack breadth in applicability. Therefore, 

development of an efficient commercial syngas plant requires greater research efforts 

towards design of low cost and robust catalyst system that can withstand the harsh 

conditions of DRM process (Aramouni et al., 2018; Er-Rbib et al., 2012). 
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Intrinsically, the DRM (Equation 1.1) process involves reaction of CH4 and 

CO2 to produce syngas mixture with equimolar H2:CO ratio in comparison to SRM 

(H2:CO = 3) or POM (H2:CO = 2) for subsequent Fischer-Tropsch process (Usman et 

al., 2015). The endothermic nature of the DRM reaction infers high energy 

requirement and thus high operating cost. Additionally, propagation of competing side 

reactions during DRM affects the product spectrum and increases the propensity of 

coke deposition (Danghyan et al., 2020; Pakhare and Spivey, 2014). The side reactions 

are methane cracking (Equation 1.2), Boudouard reaction (Equation 1.3), and reverse 

water gas shift reaction (Equation 1.4) (Pal et al., 2018). 

 CH4 + CO2 ⇌ 2CO + 2H2    ΔH0
298K=260.5 kJ/mol (1.1) 

 CH4 ⇌ C + 2H2    ΔH0
298K = 75.0 kJ/mol (1.2) 

 2CO ⇌ C + CO2    ΔH0
298K = -173.0 kJ/mol (1.3) 

 CO2 + H2 ⇌ CO + H2O    ΔH0
298K = 41.0 kJ/mol (1.4) 

The occurrence of these reactions alters the purity of syngas produced, 

especially the reverse water gas shift reaction which results in H2:CO ratio less than 

unity. The extent of occurrence of these side reactions is evaluated by the deviation of 

H2:CO ratio from the ideal stoichiometry. 

Generally, catalyst component in terms of active metals, support and promoter 

is imperative for stellar DRM performance. Ni-based catalysts are suitable for DRM 

due to their wide availability, high turnover frequency and moderate cost. Nonetheless, 

they are inclined to fast deactivation due to formation of carbonaceous deposits, 

usually of encapsulation and graphitic type. Concerted efforts have burgeoned to 

overcome the severe carbon laydown and Ni catalyst sintering, where several factors 

have been considered and deliberated for their reduction or elimination. These factors 

include nature of active metal, type of support, metal dispersion, particle size reduction 
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and support interactions, basic and acidic properties, change in preparation and metal 

doping method (Aramouni et al., 2018; Danghyan et al., 2020; Li et al., 2015). It has 

been substantiated in lots of researches that obtaining an anti-carbon and anti-sintering 

catalyst by modification of a single factor is difficult to achieve. Hence, collaborative 

association of various factors is prerequisite for robust and efficient catalyst 

development.   

Several studies have highlighted the impact of catalyst support materials and 

preparation methods on the activity of Ni-based catalysts for DRM, of which the 

catalyst structure formed after synthesis also dictates carbon formation and deposition. 

For any catalyst support to have a potential in industrial applications, several 

parameters must be met, such as high surface area, high porosity, fine dispersion of 

metal species, high reducibility, thermal stability, good surface oxygen mobility, 

surface basicity and low surface acidity (Aziz et al., 2019; Chong et al., 2020; Titus et 

al., 2017; Usman, et al., 2015). The method of support synthesis and metals loading 

have demonstrated pivotal effect on overall catalytic performances. Both approaches 

have overtime emerged as a powerful tool to control interaction of catalyst components 

in an effort to address the shortcomings of Ni-based catalysts in DRM process. 

The development of structured support materials has been conceived to 

significantly hinder deactivation of Ni catalysts. Many findings attributed the 

remarkable performance of structured catalyst system to confinement of active metals 

in the support and enhanced metal-support interaction (Chong et al., 2020; Usman, et 

al., 2015). Structured supports such as SiO2 (Cruz-Flores et al., 2020), Al2O3 (Shang 

et al., 2017), SiO2-Al2O3 (Xiang et al., 2016), ZSM-5 (Tang et al., 2014), bi-modal 

Al2O3 (Ma et al., 2020), trimodal hydroxyapatite (Li et al., 2020), trimodal porous 

silica (Amin et al., 2017), hexagonal mesoporous silica (Sun et al., 2020), core-shell 

Al2O3 (Jabbour et al., 2016) and core-shell SiO2 (Li et al., 2018; Lu et al., 2018) have 

thus far been employed in DRM reaction. Fabricating structured materials was 

achieved via contemporary synthesis techniques, forming catalyst system with 

mesoporous structure. Lu et al. (2018) synthesized hollow spherical silica support by 

microemulsion method. Likewise, one-pot micro-emulsion method was applied to 

fabricate yolk-shell SiO2 support (Almana et al., 2016). Bawah et al. (2018) developed 
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mesoporous silicalite-1 zeolite support by adapting the microwave assisted 

hydrothermal synthesis method. Nevertheless, these approaches have inclinations 

towards reducing catalytic activity due to the blockage of active sites and mass transfer 

limitation.  

Recent innovation in development of fibrous structured KCC-1 (KAUST 

Catalysis Centre 1) has found relevant application in the field of drug delivery, 

chromatographic separation and energy storage due to its unique fibrous morphology 

and large surface area (Bayal et al., 2016; Febriyanti et al., 2016; Maity & 

Polshettiwar, 2019; Singh et al., 2016). The fibrous structured support favour high 

dispersibility of the loaded metal species due to its dendrimeric silica fibres 

morphology. These characteristics were responsible for its remarkable performances 

in reactions such as carbon dioxide methanation (Shahul Hamid et al., 2018), organic 

pollutant degradation (Azami et al., 2020), hydrocarbon isomerization (Jalil et al., 

2019; Triwahyono et al., 2019), methane reforming (Wang et al., 2017; Abdulrasheed 

et al., 2019) and carbon dioxide capture (Maity et al., 2019). Thus, utilizing the KCC-

1 synthesis approach could modify the textural, structural and chemical properties of 

conventional zeolite support. This study involves the development of novel 

mesostructured fibrous ZSM-5 Ni-based catalyst with fast reaction kinetics and coke 

tolerance to maximally produce syngas by utilization of gases (CO2 and CH4) with 

potential to cause global warming. The fibrous ZSM-5 offers extended surface area 

and large pore channels, fine metal dispersion, increased basicity, moderate acidity, 

thermal stability and confinement of metal particles thereby inducing remarkable 

performance much better than conventional ZSM-5 support.  

1.2 Problem Statement 

The rapid population growth and stringent environmental policies on emission 

control has triggered unprecedented research on alternate energy source. The 

utilization of greenhouse gas CO2 as feedstock integrated with CH4 to produce syngas 

provides alternative ways for counteracting the energy crises and global warming. 

However, both the greenhouse gases (CO2 and CH4) are highly stable gas molecules 
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and thus, require high temperatures to have a spontaneous reaction. As a result of this 

high energy input condition, there are several underlying issues associated with the 

catalyst system that hinder the commercialization and industrialization of syngas 

production via DRM process. 

The development of an efficient and robust DRM catalyst without 

compromising activity and stability remains a hurdle. Being a highly endothermic 

reaction, equilibrium conversion of reactants in DRM is attainable only at high 

temperatures mostly in the regions above 700 oC. Despite the meaningful conversion 

of reactants attained at these temperatures, the DRM process is faced with severe 

carbon formation due to the carbon rich feed gas and harsh reaction conditions. 

Moreover, propagation of methane cracking, Boudouard reaction and reverse water 

gas shift reaction increases the propensity of carbon deposition. The occurrence of 

these side reactions alters the purity of syngas produced, which results in H2:CO ratio 

less than unity. Therefore, commercialization of DRM process is hinged on 

development of an economically potent catalyst with the required activity, stability 

and ease of regeneration.     

Remarkable DRM performance were obtained over noble metals such as Rh, 

Ru, Ir, Pt and Pd. Nonetheless, their application is not profitable and sustainable from 

an industrial standpoint. More so, noble metals are likely vulnerable to sintering at 

high temperature. As an alternative to the scarce and exorbitant noble metal catalysts, 

Ni-based catalysts have been the most widely tested. Nickel is relatively abundant with 

moderate cost and has an activity competitive with those of noble metals. The demerit 

of Ni-based catalysts is their characteristic swift deactivation due to carbon deposition 

and sintering. It is worthy of note that the effect of the carbon type, and mechanism of 

formation during DRM is still much debated and subject of continuous studies in 

academia. Despite the research successes recorded over recent years in catalyst 

development with remarkable activity and stability, the quest for novel and 

economically potent Ni catalysts with enhanced properties and performances is still 

much desired towards successful commercialization of syngas production via DRM.  
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Zeolite has been extensively used as a support material for catalysts due to its 

well define pore structure, universal availability, high affinity for CO2 as adsorbent, 

surface acidity, high surface area and intralattice pore volumes. However, it usually 

contains varying levels of hydration, which leads to structural collapse due to harsh 

DRM conditions. Its surface contains high concentration of acid sites which often lead 

to side reactions with inferior stability. Efforts have been made over the years to 

enhance porosity and moderate the surface acidity for better active metal dispersion 

and thermal resistance via approaches such as addition of promoters, dealumination 

and altering Si/Al ratio. Accessibility of reactants to active metal sites is hampered as 

a result of its intercrystalline mass transfer hinderance, thus, limiting its catalytic 

performances. 

This research is therefore geared primarily towards design of a stable ZSM-5 

supported Ni catalyst with activity, stability and selectivity suitable for the 

industrialization of DRM process. Development of fibrous ZSM-5 zeolite support with 

increased basicity and porosity is crucial in enhancement of CO2 chemisorption, 

thermal stability and metal particles dispersion which suppress the driving force for 

agglomeration and coke formation. Therefore, addressing the shortcomings of cheap 

and widely available Ni catalyst is imperative in the quest for an economically and 

industrially potent catalyst for syngas production via DRM.  

1.3 Research Hypothesis 

To overcome the above-mentioned problems, unique fibrous ZSM-5 support 

with extended dendrimer surface area and porosity is expected to improve dispersion 

and accessibility of Ni active sites for improved performance. Synthesis by 

microemulsion method is presumed to produce a coke and sinter tolerant catalyst with 

core-shell morphology, where Ni particles are finely dispersed on the spherical 

structured support. The enhanced mass transfer is expected to increase the accessibility 

of reactants to active metal sites for faster reaction kinetics. The improved surface 

basicity of fibrous ZSM-5 support is expected to facilitate formation of distinct 

adsorptive sites for better activity. The fibrous ZSM-5 support is also expected to 



 

8 

induce stabilization of Ni particles to suppress the driving force for agglomeration and 

coke formation. It is expected that incorporation of tantalum promoter influence 

dispersion, reducibility and Ni-support interaction for an improved activity, stability 

and selectivity of the fabricated catalyst. The tantalum promoter is also expected to 

hinder the diffusion of monoatomic carbon into the Ni particles which is prerequisite 

for stable performance in DRM. 

1.4 Research Objectives 

The aim of this research work is to synthesize a robust bimetallic nickel-based 

catalyst supported on fibrous ZSM-5 with high activity and stability for optimal 

production of syngas via dry reforming of methane. This is achieved through the 

following objectives: 

1. To conduct thermodynamic sensitivity analysis and equilibrium 

computations of dry reforming of methane alongside the occurrence of 

other competing side reactions using HSC Chemistry software. 

 

 

2. To synthesize and characterize fibrous ZSM-5 (FZSM-5) supported nickel 

catalysts and evaluate the effects of nickel loading method, morphology 

and various promoters on catalytic activity and stability. 

 

 

3. To investigate the effect of nickel-tantalum ratio on selectivity of dry 

reforming of methane and other competing side reactions. 

 

 

4. To optimize the dry reforming of methane reaction parameters over Ni-

Ta/FZSM-5 via response surface methodology (RSM). 
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1.5 Research Scope 

This study is focused on addressing the major challenges of nickel-based 

catalyst for industrial syngas production via DRM. In this perspective, 

thermodynamics of DRM, effects of active metal catalysts, effects of nickel 

incorporation method, effects of support morphology, effects of promoter, effect of 

nickel-tantalum ratio, and optimization of dry reforming of methane have been 

deliberated upon. The details of the specific research scope are as follows: 

1. Thermodynamic study of DRM reaction was conducted using the HSC 

chemistry 6.0 software. Spontaneity of occurrence of DRM reaction and other 

side reactions were evaluated as a function of reaction temperature. 

Temperature range of 100–1000 oC and a pressure of 1 atm was considered for 

all analysis. Equilibrium amount of each reactant and products were 

determined with respect to reaction temperature using the equilibrium 

compositions module. Effects of co-feeding steam or oxygen on equilibrium 

H2:CO ratio and carbon deposition were also conducted at reaction temperature 

of 600–1000 oC and pressure of 1 atm. 

 

 

2. Preparation of fibrous ZSM-5 (FZSM-5) support was achieved using 

microemulsion technique. The dendrimer structure was developed via mixture 

of cetyltrimethylammonium bromide (as surfactant), butanol (as co-

surfactant), toluene (as oil phase), tetraethyl orthosilicate, Urea, ZSM-5 seed 

and deionized water. Amount of transition metals (Co, Mo, Mn and Ni) on the 

support catalysts were adjusted to 5 wt.%. The transition metal catalysts were 

prepared via impregnation method. The prepared catalysts were characterized 

by FESEM, N2-adsorption, XRD and catalytic testing for DRM was conducted 

at atmospheric pressure and a temperature range of 500–800 oC. Thereafter, 

effects of nickel incorporation method, support morphology and promoter on 

DRM was studied. A series of FZSM-5 supported nickel catalysts namely: 

Ni/FZSM-5-(DS), Ni/FZSM-5-(PM) and Ni/FZSM-5-(WI) are prepared by 

double solvent, physical mixing and wetness impregnation methods, 

respectively. The conventional ZSM-5 and FZSM-5 supported nickel catalyst 
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were prepared by wet impregnation to evaluate the effect of support 

morphology. Ni/FZSM-5 with various promoter (Mg, Ca, Ta, Ga) were also 

prepared to study the effect of promoters. 5 wt% of metal was loaded for 

monometallic catalysts, while 5 wt% Ni and 1 wt% promoter was loaded for 

the bimetallic catalysts. As-synthesized catalysts were characterized by XRD, 

N2-adsorption, ICP-OES, FESEM-mapping, FTIR-KBr, FTIR-lutidine, TPD, 

TPR, and XPS. Spent catalysts were characterized for carbon deposition or 

sintering using XRD, TGA, DTA and TEM. Performance evaluation of 

catalysts for DRM was conducted at atmospheric pressure and a temperature 

range of 500–800 oC at a GHSV of 30,000 mL g-1 h-1, CO2:CH4:N2 ratio of 

20:20:60 and reaction kinetics using Arrhenius equation. 

 

 

3. In order to investigate the effects of nickel-tantalum on selectivity of DRM and 

other competing side reactions, five catalyst namely: 10Ni, 7Ni-3Ta, 5Ni-5Ta, 

3Ni-7Ta, 10Ta are prepared by microemulsion and impregnation method. 

Physicochemical properties of the catalysts were characterized by XRD TPD, 

TPR and FTIR-lutidine. Spent catalysts were characterized by TGA, TEM, 

Raman spectra and O2-TPO. Catalyst testing was also performed at 

atmospheric pressure, temperature range of 550–800 oC and reaction kinetics 

using Arrhenius equation. The stability of DRM and competing side reaction 

tests were performed at reaction temperature of 700 oC. 

 

 

4. Optimization of DRM reaction parameters was carried out with the aid of 

central composite design (CCD) interface of RSM available on Design Expert 

software 11.0. The independent variables selected for this optimization are 

temperature (700–800 oC), CO2:CH4 feed ratio (1–5) and GHSV (10,000–

60,000 mL g-1h-1) using 7Ni-3Ta as the catalyst. These variables and their 

ranges were selected based on preliminary studies conducted and information 

obtained from literature. CH4 conversion being the rate determining step of 

DRM was selected as the response variable to evaluate the optimal 

performance of the catalyst. 
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1.6 Research Significance 

In this study where carbon laydown is an inevitable accompaniment of syngas 

production, making catalyst prone to swift deactivation. Thermodynamic study of the 

reaction will provide preliminary information on the dynamics of DRM and other 

competing side reactions. A coke tolerant catalyst was thus developed using 

microemulsion method and applied for the first time in dry reforming of methane. As 

compared to low surface area and micro structured conventional zeolite supports, the 

fibrous silica ZSM-5 catalyst has unique morphology with dendrimer like structure. 

This distinctive morphology with extended surface area, large pore channels, increased 

basicity and thermal stability is anticipated to tremendously affect the catalytic 

performance. Active metals supported on fibrous ZSM-5 will be highly dispersed and 

accessible leading to higher turnover of reactants and thus, a faster reaction kinetics. 

The optimization study using RSM analysis will provide insights on the effect of 

process variables and their interactions on FZSM-5 supported bimetallic catalysed 

DRM process. Hence, this research will be a significant contribution to the research 

and science community, especially in the effort to counteract the environmental issues 

associated with greenhouse gases by converting these hazardous gases into value 

added products. 

1.7 Thesis Outline 

The research is targeted on the development of modified ZSM-5 supported Ni 

catalyst for efficient and sustained syngas production via dry reforming of methane. 

The thermodynamics of DRM and major side reactions were studied to get preliminary 

information on the dynamics of the DRM reaction. The fibrous ZSM-5 morphology 

was to enhance metal dispersion which impede crystallite growth for increased activity 

and stability. Introduction of Ta promoter was done primarily to amplify interaction of 

catalyst components for stellar DRM performance. The kinetics and optimization of 

process parameters was conducted to ensure an optimal utilization condition for the 

synthesized catalyst. This thesis therefore consists of five chapters. 
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Research background and problem at hand, hypothesis, objectives, scope and 

significance of this research were discussed in Chapter 1. Chapter 2 presents literature 

review pertaining to possible pathway to CO2 emission and utilization, methane 

sources and conversion routes, catalyst development, challenges of deactivation, 

effects of metal loading method on catalytic performance and the prospects of 

mesostructured catalyst system. Chapter 3 entails the overall description of materials, 

methodology, characterizations and experimental procedures applied during the course 

of the research. Chapter 4 covers the entire results, discussions and their analysis 

conducted. This include results on characterization, activity, stability and selectivity 

of synthesized catalysts. Finally, Chapter 5 provides the conclusions drawn from this 

study and some recommendations proposed for future work. 
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