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ABSTRACT

This thesis presents an original research work on bent multimode fiber sensor 

for refractive index (RI) and temperature sensing. The fiber sensor structure is formed 

by a successive splicing between single mode-multimode-single mode (SMS) fibers. 

A droplet bent shape is introduced in the multimode fiber section for excitation of 

modes into the acrylate coating. The excitation of higher-order modes into the acrylate 

coating is particularly interesting due to high thermo-optic coefficient (TOC) of 

acrylate which could improve temperature sensitivity. While evanescent field 

interaction of modes at the acrylate surface with surrounding material could be used 

for RI and temperature sensing. These modes experienced phase changes due to 

surrounding temperature and refractive index changes, consequently shifting the 

spectra of the sensor. This study covers numerical simulation using BeamPROP, 

sensor fabrication and experimental work. The sensor structure was simulated using 

BeamPROP software to understand light distribution and mode distribution inside the 

bent multimode fiber from the field pattern such that the bent structure is suitable for 

sensing. Different bending radiuses of 3.5 mm, 5 mm, and 7.5 mm were fabricated and 

tested. The highest refractive index sensitivity was obtained from 3.5 mm bent sensor 

with sensitivity of 42.41 nm/refractive index unit (RIU) tested between 1.30-1.395 

RIU. Meanwhile, highest temperature sensitivity of 1.317 nm/°C was attained using 5 

mm bent sensor between 25 °C to 35 °C. The low cost and simple sensor fiber structure 

is desirable in many applications including liquid food industry, and water quality 

monitoring system.
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ABSTRAK

Tesis ini membentangkan karya penyelidikan asal pada sensor gentian mod 

pelbagai yang lengkung untuk indeks biasan (RI) dan penderiaan suhu. Struktur sensor 

gentian dibentuk oleh penyambungan berturut-turut antara mod tunggal- mod pelbagai 

-mod tunggal (SMS). Lengkung berbentuk titisan diperkenalkan di bahagian gentian 

mod pelbagai untuk pengujaan mod ke salutan akrilat. Pengujaan mod aras tinggi ke 

salutan akrilat sangat menarik kerana nilai pekali termosal optik (TOC) akrilat yang 

tinggi dapat meningkatkan kepekaan suhu. Sementara interaksi medan evanescent di 

permukaan akrilat dengan bahan sekitar dapat digunakan untuk pengesanan RI dan 

suhu. Mod ini mengalami perubahan fasa disebabkan suhu sekitar dan perubahan 

indeks bias, seterusnya menganjakkan spektrum sensor. Kajian ini merangkumi 

simulasi berangka menggunakan BeamPROP, fabrikasi sensor dan kerja eksperimen. 

Struktur sensor disimulasikan menggunakan perisian BeamPROP untuk memahami 

pengedaran cahaya dan pengedaran mod di dalam gentian mod pelbagai yang 

lengkung dari corak medan sehingga struktur lengkung bersesuaian untuk 

penginderaan. Jejari lenturan yang berbeza iaitu 3.5 mm, 5 mm dan 7.5 mm telah 

difabrikasi dan diuji. Kepekaan indeks biasan tertinggi diperolehi daripada sensor 

lengkung 3.5 mm dengan kepekaan unit indeks 42.41 nm / induktif (RIU) diuji antara 

1.30-1.395 RIU. Sementara itu, kepekaan suhu tertinggi 1.317 nm / °C dicapai 

menggunakan sensor lengkung 5 mm antara 25 ° C hingga 35 ° C. Struktur gentian 

sensor kos rendah dan mudah adalah dikehendaki dalam kebanyakkan aplikasi 

termasuk industri makanan cecair dan sistem pemantauan kualiti air.
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CHAPTER 1

INTRODUCTION

1.1 Research Background Study

Fiber Optic Sensor (FOS) technology has experienced a tremendously growth 

recently due to their unique characteristics over the conventional electronic sensors 

such as lightweight, immunity to electromagnetic interference (EMI), high sensitivity, 

easy fabrication and cost-effective [1]. There are several types of FOS that are 

available currently including fiber Bragg grating (FBG), fiber laser, fiber 

interferometer and fiber multimode interference (MMI) sensors [2].

Nowadays, fiber optic sensor based on multimode interference (MMI) effect 

has become one of the promising technologies in niche sensing applications. MMI only 

occurs in multimode fiber when the modes that are supported by the multimode fiber 

(MMF) are excited and interfering with each other as it propagates along the MMF.

Implementation of MMI effect based on single mode-multimode-single mode 

(SMS) provides attractive characteristics such as simple preparation, high sensitivity 

and good spectral characteristics. This topic has been actively researched in the 

detection ofdifferent parameters including temperature, refractive index and vibration 

measurements. There are several methods that have been introduced in order to 

improve the SMS fiber sensor sensitivity such as chemical etching [3-5], tapering [6­

9], side-polishing [10-11], liquid core MMF [12], polymer cladding [13], and bending 

[14-18] which demonstrated certain response to particular measurements. This thesis 

performs systematic study on SMS structure in order to obtain clear understanding of 

its operation.
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1.2 Problem Statement

The main sensor criterion emphasized for this research work is fabrication 

simplicity which means sensor can be fabricated using basic optical laboratory 

equipment with straightforward fabrication process. Performance such as sensitivity 

and sensor size are also important and may be varied depending on implementation of 

the technique. Before proceeding to the next discussion, it is convenient to stress that 

most of the available techniques including tapering, etching, side -polishing, polymer 

cladding, and liquid core MMF require relatively complex or lengthy fabrication 

process over the chosen bending technique. Thus, the following discussion only 

focuses on the fabrication process while details on the performance will be discussed 

in Chapter 3.

Etching technique requires the use ofhydrofluoric acid which is dangerous to 

handle and consistently need to be replaced [19]. On the other hand, design that is 

based on tapering process may require the use of specialized fabrication equipment 

with ultra-precise alignment [20]. The highly precise equipment may suggest high cost 

to purchase and maintain the fabrication equipment. For side-polishing, there are 

several techniques available including side polishing such as v-groove polishing, D- 

shaped polishing and wheel polishing [21]. All three side-polishing require multiple 

fabrication stages. One main issue of the polishing techniques is that the difficulty to 

achieve cost-effective way to control the polishing depth in order to achieve high 

measurement sensitivity [10]. The v-groove polishing technique causes permanent 

fiber deformation [21]. It is less suitable for practical point of view. Meanwhile, liquid 

core MMF design involves complex process to fill in hollow fiber with suitable high 

thermo- optic coefficient (TOC) liquid and specifically designed for temperature 

sensing only.

Lastly, the polymer coated MMF design involves time-consuming fabrication 

process where the cladding of the MMF need to remove through etching process and 

replaced with polymer ofhigh TOC. Compare to other techniques, bending technique 

requires the simplest in fabrication process and at the same time may produce 

satisfactory performance [14]. Therefore, bending technique has been chosen as

2



sensitivity enhancement technique for MMI sensor. Even though, the bent MMI fiber 

sensor has been reported previously [14-18], it is found that the presented works are 

lacked of study on the effect of the proposed structure to the sensor sensitivity, less 

thoroughly studied on the sensor potential to be used in other application such as 

refractive index measurement, and unclear understanding on proposed structure 

operation in sensor measurement.

1.3 Research Objectives

Based on the problem statement, the research objectives of this work are set as 

the followings:

(a) To perform numerical analysis on bent SMS structures in order to understand

the effect o f bending to light field distribution and mode distribution using 

BeamPROP.

(b) To fabricate the bent droplet bent MMF fiber sensor for temperature and

refractive index sensing.

(c) To test and verify the proposed system

1.4 Scope of Work

In order to achieve the research objectives, the following works were carried out:

1.4.1 Numerical Simulation

The bent SMS structure was identified to be used as the sensing platform due 

to its simplicity. Simulation work was carried out using BeamPROP software that uses 

finite difference Beam Propagation Method. The analysis focused on light field and

3



mode distribution inside the SMS fiber structure when specific bending is applied. The 

presences of leaky modes need to be confirmed through simulation as it was used as 

the sensing mechanism ofthe structure.

1.4.2 Experiment and Data Analysis

Experimental works comprises o f sensor fabrication, equipment setup and 

sensor testing. The MMI fiber sensor was fabricated by using in-house facilities. The 

sensor head of the MMI fiber sensor was formed by permanent bent of an MMF 

section. Then, the MMI fiber sensors were tested with series of Cargile AAA oil that 

have six different refractive index values of 1.30, 1.32, 1.34, 1.36, 1.38, and 1.395 

RIU. The refractive index values were picked with the increment of 0.02 starts from 

1.30 RIU; therefore, it is choosing up to 1.395 RIU. The refractive index of Cargile 

AAA oil that are available is up to 1.395 RIU, therefore the refractive index that are 

choose is up to 1.395 instead of 1.40 RIU. For the temperature measurement, the 

experiment was conducted at room temperature of 25 °C up to 35 °C with 1 °C 

increment. Finally, the sensor sensitivity was determined based on the wavelength shift 

of the output spectra. MATLAB software was used in the data analysis.

1.5 Significance of Work

It is important that sensor can be produced in bulk quantity in simple and 

economical way which is demanded by industries nowadays. Thus, bending approach 

is chosen in this study due to its simplicity and relatively good sensitivity to the 

targeted parameters. The contributions ofthis study are summarized as follows:

1) This study will contribute to the deep understanding on the effect ofbending to 
the MMI fiber sensor performances.

2) This study helps sensing industry to explore in greater detail on how to improve 
the sensing performance using bending techniques.
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3) This study provides a greater understanding on the properties of light distribution 

and mode distribution inside the SMS fiber structure.

4) This study will provide the understanding on the effect of polymer coating to the 

sensor sensitivity.

1.6 Thesis Outline

Chapter 1 presents the research background of the study, problem statements, 

and objectives, scope of work and general outline of this thesis. Chapter 2 presents 

literature review on related topics which eventually focusing onto sensitivity 

enhancement technique in SMS structure. Chapter 3 presents the research 

methodology that explains procedures implemented in this study. Chapter 3 also 

describes simulation that was carried out using BeamPROP software to investigate the 

light and mode distribution inside the fiber sensor head. Subsequently, this chapter 

provides explanation on the fabrication o f the fiber sensor design which involved 

splicing and bending process. Besides that, the experimental step is also discussed for 

both refractive index and temperature measurements. Chapter 4 presents the outcome 

of simulation and the experiment works. Finally, conclusions and future works are 

presented in Chapter 5.
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