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ABSTRACT

Wireless Network-on-Chip (WiNoC) architectures have recently been proposed to 

address the scalability limitations of conventional multi-hop wired NoC architectures. The 

medium access control (MAC) protocol and routing strategy are critical in determining the 

performance and energy characteristics of a WiNoC. Most conventional WiNoC MAC use a 

daisy-chained ring topology, which limits the performance benefit of using a wireless 

channel since daisy-chaining results in a maximum waiting time when a radio hub misses the 

token before a packet arrives. Furthermore, even when radio hubs are connected to wired 

paths, all cores connected to the WiNoC radio hub prioritise transmission through the radio 

hub, resulting in an uncontrolled load on the wireless channel. Therefore, this thesis’s main 

objectives are as follows. The first objective is to propose a Bidirectional MAC (B���) 

strategy for WiNoC while the second objective is to propose a Distance-Aware (D�) routing 

scheme in conjunction with B��� (D�+B���) to control a single-hop wireless 

transmission exclusive to far away destination cores. The wired metal planar interconnect 

has a higher aggregate bandwidth and is dedicated to short-range communication, whereas 

single-hop wireless channels are dedicated to long-range transmission beyond a certain 

distance threshold. To determine the e�ectiveness of the proposed works, a comprehensive 

validation was performed using the cycle-accurate Noxim simulator. The proposed strategy 

was tested and validated in terms of latency, throughput, and energy consumption using 

synthetic tra�c distributions (random, shu�e, transpose, and hotspot) and real-

application PARSEC (Barnes) and SPLASH-2 (Fluidanimate) traces. Extensive 

simulation results show that B��� can achieve up to 1.84 times faster throughput, while 

D�+B��� can improve up to 11.49 times faster than the WiNoC baseline daisy-chained 

architecture. At the same time, the energy improvement over the baseline daisy-chained at 

the saturated packet injection load is up to 8% for B��� and 15% for D�+B���. The 

proposed MAC and routing protocols increase wireless channel utilisation and balance 

wireless-wired load, resulting in significantly improved 
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to address the scalability limitations of conventional multi-hop wired NoC architectures. 

The medium access control (MAC) protocol and routing strategy are critical in 

determining the performance and energy characteristics of a WiNoC. Most conventional 

WiNoC MAC use a daisy-chained ring topology, which limits the performance benefit 

of using a wireless channel since daisy-chaining results in a maximum waiting time 

when a radio hub misses the token before a packet arrives. Furthermore, even when 

radio hubs are connected to wired paths, all cores connected to the WiNoC radio hub 

prioritise transmission through the radio hub, resulting in an uncontrolled load on the 

wireless channel. Therefore, this thesis’s main objectives are as follows. The first 

objective is to propose a Bidirectional MAC (B���) strategy for WiNoC while the 

second objective is to propose a Distance-Aware (D�) routing scheme in conjunction 

with B��� (D�+B���) to control a single-hop wireless transmission exclusive to far 

away destination cores. The wired metal planar interconnect has a higher aggregate 

bandwidth and is dedicated to short-range communication, whereas single-hop wireless 
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performed using the cycle-accurate Noxim simulator. The proposed strategy was tested 

and validated in terms of latency, throughput, and energy consumption using synthetic 

tra�c distributions (random, shu�e, transpose, and hotspot) and real-application 

PARSEC (Barnes) and SPLASH-2 (Fluidanimate) traces. Extensive simulation results 

show that B��� can achieve up to 1.84 times faster throughput, while D�+B��� can 

improve up to 11.49 times faster than the WiNoC baseline daisy-chained architecture. 

At the same time, the energy improvement over the baseline daisy-chained at the 

saturated packet injection load is up to 8% for B��� and 15% for D�+B���. The 

proposed MAC and routing protocols increase wireless channel utilisation and balance 

wireless-wired load, resulting in significantly improved WiNoC performance over the 

baseline architecture.
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ABSTRAK

Seni bina Rangkaian-atas-cip wayarles (WiNoC) baru-baru ini telah 

dicadangkan untuk menangani had kebolehskalaan seni bina NoC berwayar berbilang-

hop konvensional. Protokol dan strategi penghalaan kawalan capaian media (MAC) 

adalah penting dalam menentukan prestasi dan ciri tenaga WiNoC. Kebanyakan 

MAC WiNoC konvensional menggunakan topologi gelang rantai-daisy, yang 

mengehadkan faedah prestasi menggunakan saluran wayarles memandangkan rantaian-

daisy menghasilkan masa menunggu maksimum apabila hab radio terlepas token 

sebelum paket tiba. Tambahan pula, walaupun hab radio disambungkan ke laluan 

berwayar, semua teras yang disambungkan ke hab radio WiNoC mengutamakan 

penghantaran melalui hab radio, mengakibatkan beban tidak terkawal pada saluran 

wayarles. Oleh itu, objektif utama tesis ini adalah seperti berikut. Objektif 

pertama adalah untuk mencadangkan strategi MAC Dwiarah (B���) untuk WiNoC 

manakala objektif kedua adalah untuk mencadangkan skim penghalaan sedar-jarak (D�) 

bersama-sama dengan B��� (D�+B���) untuk mengawal penghantaran wayarles hop 

tunggal eksklusif untuk teras destinasi yang jauh. Sambungan satah logam berwayar 

mempunyai lebar jalur agregat yang lebih tinggi yang dikhususkan untuk komunikasi 

jarak dekat, manakala saluran wayarles hop tunggal dikhususkan untuk penghantaran 

jarak jauh melebihi ambang jarak tertentu. Untuk menentukan keberkesanan kerja 

yang dicadangkan, pengesahan komprehensif telah dilakukan menggunakan penyelaku 

Noxim tepat kitaran. Strategi yang dicadangkan telah diuji dan disahkan dari segi 

kependaman, daya pemprosesan dan penggunaan tenaga menggunakan taburan trafik 

sintetik (rawak, kocok, transposisi, dan kawasan panas) dan surih aplikasi sebenar 

PARSEC (Barnes) dan SPLASH-2 (Fluidanimate). Hasil simulasi yang meluas 

menunjukkan bahawa B��� boleh mencapai daya pemprosesan sehingga 1.84 kali lebih 

pantas, manakala D�+B��� boleh meningkat sehingga 11.49 kali lebih pantas daripada 

rangkaian-daisy garis dasar seni bina WiNoC. Pada masa yang sama, peningkatan 

tenaga ke atas rantaian-daisy garis dasar pada beban suntikan paket tepu adalah sehingga 

8% untuk B��� dan 15% untuk D�+B���. MAC dan protokol penghalaan yang 

dicadangkan meningkatkan penggunaan saluran wayarles dan mengimbangi beban 

berwayar-wayarles, menghasilkan prestasi WiNoC yang lebih baik berbanding seni 

bina garis dasar dengan ketara.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the era of Chip Multi Processor (CMP), modern processors contain an

ever increasing number of integrated cores, and network-on-chip (NoC) architectures

have gained a strong establishment as a solution for future on-chip interconnect

networks [1–9]. NoC adapts the application of networking theory, which is based

on packet-switching and consists of a number of routers interconnected with point-

to-point links that are arranged to form a specific topology. Currently, NoC is the

preferred choice for chip multiprocessors interconnected networks because it not only

provides substantial enhancements to on-chip interconnect scalability, but also in fault

tolerance and modularity with appropriate design of the routing protocol or the flow

control mechanism [10–15].

In general, the scaling of parallel applications increases the communication-to-

computation ratio when the computation is distributed over a large number of cores [16].

The increase in core density implies a broader selection of possible destinations, making

the tra�c more dynamic with a higher amount of communication and a higher degree

of tra�c heterogeneity [7, 17]. As the number of cores grows, the performance benefit

of the conventional NoC is restricted by the high latency together with high power

dissipation due to long-distance multi-hop communication. Moreover, among the

critical challenges of the growing number of processing cores is the average packet

traversal, which a�ects the time and energy required for data movement across the

chip die. This calls for an innovative alternative architecture that can o�er the shorter

distance between large processing cores.

Nonetheless, as integration levels continue to rise, these NoC interconnects face

serious scalability constraints, inspiring researches into new emerging interconnect

1



technologies such as optical NoC (oNoC) [18–22], three-dimensional (3D) NoC [23–

28], RF-interconnection (RF-I) [29–32], and Wireless NoC (WiNoC) [33–37]. Each

of these on-chip interconnect alternatives has its own unique features as well as their

advantages and disadvantages [34, 38, 39]. Among others, WiNoC communication

has garnered interest in recent research due to its several interesting capabilities [33–

37]. First, this interconnect is Complementary Metal-Oxide Semiconductor (CMOS)

compatible [40] and can be employed for transmission of data across the chip via

a one-hop wireless link with low energy while providing high bandwidth with low

latency at low energy. Furthermore, because wireless transmission does not require

a wireline metal wire or a waveguide, the WiNoC platform provides architectural

flexibility, reducing area overhead and chip design complexity.

WiNoC is the NoC architecture that hybridises wired and wireless interconnects

to alleviate the long latency of wired planar communication through an express long-

range wireless channel [34, 36, 40–46]. Advances in integrated transceivers [47, 48]

and millimetre-wave antennas [49,50] have motivated the development of WiNoC as a

possible complement to conventional NoC [51]. A set of processing cores are integrated

with antennas and transceivers that are able to modulate and transmit data packets for

wireless on-chip transmission. With WiNoC, the long-distant cores can communicate

with one-hop low latency. In addition, beyond a certain source-to-destination distance,

the performance enhancement using the WiNoC wireless channel is greater because

the wireless channel consumes less energy as compared with the multi-hop traditional

metal wires [52–56].

1.2 Problem Statement

The design of low area overhead and e�cient MAC protocol are regarded as

some of the important challenges for WiNoC technology [34,57,58]. In WiNoC, most

existing MAC approaches is the daisy-chained based ring topology, which uses token

passing procedure as an access mechanism to wireless medium due to its simplicity

and collision-free protocol [34,46,59–62]. In the token-passing method, the radio hub

that holds the token is permitted to exclusively utilize the channel for present wireless

transmission. After that, the token is handed o� to the following radio hub nodes in an
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ordered sequence according to the logical ring manner. However, the shortcoming of

this approach is the wireless link access delay caused by token circulation among radio

hub nodes. The token-passing based MAC protocol grants the radio hub that has the

token for exclusively access to the wireless data transmission channel. This restricts the

performance advantages of adopting the wireless channel for the WiNoC architecture

since the flow of token is in a unidirectional manner that is based on circular token

passing for granting the particular radio hub for using wireless communication. As a

consequence, this can cause low network utilization for the WiNoC architecture due to

its restricted wireless channel access. Regardless of the scalability concern, this token

round-trip persists as the cost of additional latency. This is because when the scale

of the daisy-chained ring becomes bigger, it directly implies a longer MAC delay and

token waiting time for circulating the token holder among radio hubs. Nevertheless, the

MAC delay is one of the dominant factors in the overall delay in WiNoC [57, 63–65].

Therefore, reducing the MAC delay for WiNoC is important to sustain the latency

advantage of the one-hop wireless approach.

Because no wired path infrastructure is needed between processing cores, the

flexible architecture of WiNoC makes it an attractive option for future CMPs to tackle

a large number of cores [38, 39, 58, 66]. Most of the WiNoC architectures proposed

in the literature have adopted regular topological structures to take advantage of their

modularity, scalability, and simplicity [37,40,44,67–70]. Each radio hub is composed

of an antenna and a transceiver that are clustered with a set of processing cores with

shared wireless bandwidth among them. However, due to the limited wireless channel

bandwidth, the radio hubs are susceptible to congestion as the wireless channel is

shared with all processing cores [61,69–74]. The waiting time to get access to wireless

channels is the main factor of congestion in radio hubs. This leads to possibility of

radio hub overloading and causing network contention due to multiple access requests

to the wireless channel at the upper layer of WiNoC. Consequently, this deprecates

the benefit of high-speed wireless links o�ered by WiNoC [68–70, 75]. In addition,

from the parallelism standpoint, the bandwidth for a wireless channel is much less than

the aggregate bandwidth of all wired metal interconnects. Hence, to achieve the best

WiNoC performance, there is a necessity to devise a routing mechanism that can select

the use of either wired or wireless channel bandwidth for data packet transmission.
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1.3 Objectives

The aim of this thesis is to improve the network performance of the mesh-

WiNoC architecture by improving the MAC protocol and WiNoC packet routing. The

specific research objectives are as follows:

1. To propose a bidirectional medium access control protocol to improve wireless

access performance at the upper-layer of the mesh-WiNoC architecture. The

bidirectional MAC provides bidirectional links with the control mechanism in

the radio hub that allow the token to turn to its previous adjacent radio hub to

reduce the full round maximum waiting time.

2. To formulate the distance-aware routing mechanism to improve network

performance at the lower-layer of the mesh-WiNoC architecture. This

approach uses a distance-aware routing technique to allow a single-hop wireless

transmission exclusive to source and destination cores beyond a certain distance

threshold for the long-range cores communication.

1.4 Scope of Work

The WiNoC performance validation at the system level requires simulating

CMP with WiNoC interconnection. However, due to the expensive costs involved

in prototyping the WiNoC Integrated Chip (IC), the hardware implementation of the

proposed work is outside the scope of this thesis. Therefore, as the norm in the computer

architecture research, a cycle-accurate full system WiNoC architecture simulation is

employed as evaluation of the proposed works. The scope of work for this thesis is

summarized as follows:

• The investigated architecture is mesh-WiNoC with a system size of 64 cores,

as it is a su�cient size to demonstrate NoC based multicore system-on-chip

(SoC). [2, 3, 76–80].

• Since the investigation in this thesis emphasised on the MAC protocol and

routing techniques, all NoC routers have access to both wired and wireless
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channels as part of the WiNoC topological structure. Single-channel wireless

access is assumed to be available for WiNoC integration.

• The dimension-order XY routing algorithm is adopted because it can provide

the shortest path routing with respect to the mesh-WiNoC topology. In addition,

XY deterministic routing gurantees deadlock and livelock freedom [11–13].

• The proposed designs are developed in C++ and SystemC with an object-

oriented programming (OOP) approach in the Noxim [81] NoC simulator that

supports wireless communication.

• Validation of the proposed works presented in the thesis is evaluated on

the Noxim [81] NoC simulator with synthetic tra�c distributions (random,

shu�e, transpose and hotspot) and existing application specific benchmark

suites (PARSEC [82] and SPLASH-2 [83]) namely Barnes (high-performance

application) and Fluidanimate (interactive animation application) respectively.

• The works are evaluated based on common evaluation metrics analysis [13,

84, 85] for on-chip network system in term of transmission latency, network

throughput and energy consumption .

1.5 Expected Contributions of this Thesis

This work proposes two strategies dedicated for mesh-WiNoC architecture to

accomplish the thesis objectives that can improve the WiNoC performance. The

expected research contributions are as below.

1. Bidirectional MAC protocol for the mesh-WiNoC wireless channel

In this thesis, a bidirectional MAC protocol is proposed as the first contribution

aiming at reducing the maximal token waiting time for the case of token full

round-trip time. At the upper-layer, the MAC mechanism plays an essential

role in ensuring the correct operation of the mesh-WiNoC architecture. This

approach is aimed at improving the MAC delay with the bidirectional links that

enable the token to be given to its preceding hub node rather than completing

a full round of the daisy-chained token ring. A lightweight bidirectional MAC
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protocol is designed, modeled, and evaluated with the baseline implementation

with a set of common tra�c scenarios, seeking to prove the better performance

of the proposed approach over the baseline model.

2. Distance-aware routing scheme for the mesh-WiNoC architecture

As a continuation of the first objective, this thesis formulates the distance-

aware routing scheme at the network layer. Based on the hop distance

between the source and destination pair, this scheme selectively decides the

use of either wired or wireless communication for packet transmission. By

implementing the distance aware routing, a single-hop wireless transmission

can be exploited for far-away cores as an express communication to bypass

the multi-hop transmission between processing cores. Nevertheless, short-

range communications are served through wired metal communication to

accommodate its much greater aggregate communication bandwidth as

compared with a wireless link. As a result, by appropriately balancing the

network workload between wired and wireless paths, the WiNoC performance

is expected to be improved. Furthermore, this work performs a thorough analysis

of the proposed design with a set of synthetic and benchmark (PARSEC [82]

and SPLASH-2 [83]) tra�c workload. It is expected that the integration of

both strategies, bidirectional MAC and distance-aware routing, can provide

profound benefits in terms of the execution speed and a better energy profile for

the mesh-WiNoC architecture.

1.6 Thesis Organization

The remainder of the thesis is structured as follows.

• Chapter 2 provides the fundamental background of WiNoC communication

and taxonomizes the existing literature’s emphasis on MAC protocol and

WiNoC routing before detailing the proposed works and its contributions. This

chapter first describes a brief overview of NoC architecture technologies and

the foundation background of WiNoC. This chapter also discusses the related
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work on the adopted MAC mechanisms and routing strategies in the WiNoC

architecture.

• Chapter 3 presents the bidirectional MAC with the distance-aware routing

mechanism as the thesis’s proposed works. This chapter describes the top-

down perspective of the proposed designs and the research workflow carried

out in this research. This chapter also covers the design platform, software

tools, and performance metrics employed for this thesis.

• Chapter 4 discusses the experimental results with comparative performance

analysis between baseline architecture against the proposed works. This chapter

describes the evaluation environment and analyses the performance of the

proposed works under both synthetic and application specific benchmark tra�c

distributions.

• Chapter 5 concludes the thesis with a summary of lessons learned and pathways

that could be explored as future research work.
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