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ABSTRACT

In conventional FinFET, it becomes difficult to define the doping concentration 
of material over a distance shorter than 10nm and produce high-quality junctions for 
sub 20nm regime which leads to short channel effects. Hence, Junctionless FinFET 
which offers architecture, free from any p-n junction is able to overcome the short 
channel effects. JL FinFET acts like a gated resistor and it has uniform high doping 
(~ 1019 to 1020 cm-3) from source to drain throughout the silicon channel to maintain a 
high drive current in ON state. The prominent advantages of this device include low 
leakage current, low parasitic capacitance, reduced Drain Induced Barrier Lowering 
(DIBL), and excellent Ion/ Io f f  ratio which made them a viable option for low-power 
logic applications. Apart from their advantages, the most important issue for the 
fabrication of Junctionless devices is achieving a uniform doping concentration in the 
device layer, especially in non-planar structures like FinFET. In FinFET, doping of the 
fin region has to be performed in a 3D fashion which results in non-uniform doping 
around the fin. Hence the most general doping profile is the Gaussian which is 
considered as a solution for this doping concern. This work presents the design and 
optimization of the 14nm Gaussian Channel Junctionless FinFET (GC-JLFinFETs) 
using Silvaco TCAD simulator. In this study, the results are validated using the 
conventional FinFET and the structure is optimized to improve the ON current (Ion) 
with a simultaneous decrease in the OFF current (Io ff), Subthreshold Swing (SS), and 
Drain-Induced Barrier Lowering (DIBL). Hence the structure is optimized with respect 
to the device parameters such as high-k spacer dielectric, low-k gate dielectric, and 
spacer width. The Gaussian doping profile in JL-FinFET structure is analyzed with the 
peak of 4 x 1019 cm-3 placed at the sidewalls of Fin and gets reduced gradually towards 
the center of the Fin with the standard deviation of 1nm/dec. The gate work function 
of all the configurations of FinFET was adjusted to obtain a 400mV threshold voltage 
for a meaningful comparison. In order to further reduce the leakage current of the 
device, Punch Through Stop Layer (PTS layer) has been added beneath the channel. 
The IV characteristics are simulated for both n- and p-type FinFET exhibits good 
compliance with the experimental results of Intel. For a fair device simulation, the 
device is carefully calibrated using the experimental results thus validating the 
simulation results. The simulated values interpret that the Ion=101.5^A/ |im is obtained 
for the simulated device structure. The simulated design shows better efficiency in 
terms of short channel characteristics namely DIBL= 25.3 mV/V, SS = 63.88 mV/dec, 
Transconductance =3.621x105S/^m, and the overall efficiency of the device is 
improved by 25.63%. The work is further extended to its application in inverter circuits 
using the SPICE simulator to analyze the circuit level performance of the simulated 
structure. In SPICE level, the circuit is subjected to DC and transient analysis for its 
feasibility in real-time application of the device, and the obtained improvement is 
42.58%.
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ABSTRAK

Dalam FinFET konvensional, agak sukar untuk menentukan bahan kepekatan 
dopan bagi jarak saluran kurang daripada 10nm dan sukar untuk menghasilkan 
simpang berkualiti tinggi untuk rejim sub-20nm yang membawa kepada kesan saluran 
pendek. Oleh itu, FinFET tanpa simpang (JL) yang menawarkan struktur peranti yang 
bebas dari simpang p-n mampu mengatasi kesan saluran pendek ini. JL FinFET 
bertindak seperti perintang berpagar dan ia mempunyai dopan tinggi yang seragam 
(~ 1019 hingga 1020 cm-3) dari source to drain di sepanjang lapisan silikon untuk 
mengekalkan arus pemacu tinggi bagi keadaan ON. Kelebihan utama peranti ini 
termasuk arus bocor dan kapasitans parasit yang rendah, pengurangan terhadap salir 
teraruh sawar menurun (DIBL) dan nisbah Ion/Ioff yang sangat baik yang 
menjadikannya sebagai pilihan yang sesuai untuk aplikasi logik berkuasa rendah. 
Bagaimanapun, proses fabrikasi untuk peranti tanpa simpang adalah bagi 
mendapatkan kepekatan dopan yang seragam pada lapisan silikon bukanlah perkara 
mudah terutamanya pada struktur bukan satah seperti FinFET. Di dalam FinFET, 
pengedopan di sekitar kawasan sirip harus dilakukan dengan cara 3D yang akan 
mengakibatkan pengedopan menjadi tidak seragam di seluruh kawasan sirip. Oleh itu, 
profil pengedopan berbentuk Gaussan diperkenalkan bagi menyelesaikan 
permasalahan ini. Di dalam kerja ini, simulator rekabentuk-berbantukan- teknologi 
komputer (Silvaco TCAD) digunakan untuk kerja-kerja reka-bentuk dan 
pengoptimuman 14nm FinFET tanpa simpang dengan Saluran Gaussan (GC- 
JLFinFETs). Di dalam kajian ini, hasil dapatan dari simulasi ini dibanding dan 
disahkan dengan FinFET konvensional dan struktur peranti dioptimumkan bagi 
meningkatkan arus ON, secara serentak menurunkan arus OFF, sub-ambang berayun 
(SS) dan salir teraruh sawar menurun (DIBL). Oleh itu, struktur dioptimumkan 
berkenaan dengan parameter peranti seperti dielektrik peruang k tinggi, dielektrik get 
rendah k dan lebar peruang. Profil pengedopan Gaussan dalam struktur JL-FinFET 
dianalisis dengan kemuncak 4 x 1019 cm-3 diletakkan pada dinding sisi sirip dan 
dikurangkan secara beransur-ansur ke arah tengah sirip dengan sisihan piawai 
1nm/dec. Fungsi kerja get semua konfigurasi FinFET telah dilaraskan untuk 
mendapatkan voltan ambang 400mV untuk perbandingan yang bermakna. Untuk 
mengurangkan lagi arus kebocoran peranti, lapisan tebuk tembus penghenti (lapisan 
PTS) telah ditambah di bawah saluran. Ciri IV disimulasikan untuk FinFET jenis n- 
dan p- menunjukkan pematuhan yang baik dengan keputusan hasil eksperimen Intel. 
Untuk simulasi peranti yang adil, peranti dikalibrasi dengan teliti menggunakan hasil 
eksperimen seterusya mengesahkan hasil simulasi. Hasil simulasi menunjukkan 
Ion = 101.5^A / |im diperoleh untuk struktur peranti yang telah direka bentuk. Reka 
bentuk yang dicadangkan menunjukkan kecekapan yang lebih baik dari segi ciri 
saluran pendek iaitu DIBL = 25.3 mV/V, SS = 63.88 mV/dec, Transconductance = 
3.62x105 S/^m dan kecekapan keseluruhan peranti meningkat sebanyak 25.63%. Kerja 
ini diperluaskan lagi kepada aplikasinya dalam litar penyongsang menggunakan 
simulator SPICE untuk menganalisis prestasi tahap litar struktur simulasi. Dalam 
peringkat SPICE, litar tertakluk kepada analisis DC dan analisis fana untuk 
kebolehlaksanaannya dalam aplikasi masa nyata peranti, dan peningkatan yang 
diperolehi ialah 42.58%.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

In 1965, Gordon Moore, the co-founder of Intel introduced Moore’s law which 

states that the since the discovery of transistors, the number of transistors present in a 

single chip had been doubled every two years as interpreted in Figure 1.1. This is the 

reason which made Moore anticipate that the same trend would continue for a long 

run. The trajectory of electronics has been transformed radically in the day-to-day 

operations of users for the past 50 years.

Figure 1. 1 Trend of Moore’s law [1]

1



The prophesy of many experts is that due to the economical and physical 

constraints of shrinking the transistors would come to an end by 2017, whereas many 

other experts predict that Moore’s law will hold true for another one or two decades 

[1]. According to ITRS estimations, the 3nm node should be accessible in 2022, but 

the industry is still a long way off. Intel recently disclosed in July 2020 that its plan to 

manufacture the 7 nm node have been postponed until at least 2022. The basic solution 

for consistent progress in the Semiconductor industry based on silicon devices is 

CMOS scaling. As many numbers of transistors can be incorporated on to a single 

chip, more complex computational performance will be enabled with improved circuit 

density and performance.

However, the scaling of the device continues even in the 21st century, it turns 

out that the Moore’s law can’t be maintained by typical device scaling theory. The 

demand in the Silicon-based semiconductor industries is to produce a high performing 

transistor with high drain current and lower consumption of power. Thus, it can be 

achieved by dimensions of the Metal-Oxide-Semiconductor transistor. However, the 

constant reduction in the dimension will not always adhere to the efficiency, 

performance of the device, instead it rises issues. As the size of the transistor is sized 

down to sub 20nm technology, there rises many concerns related to the manufacturing 

and efficiency.

As the transistor is gradually scaled down to sub 20nm regime, it becomes 

difficult to fabricate and various device processing issues arises. These issues are 

arised because of the presence of metallurgical junctions in the transistors with the gate 

length less than 20nm [1-3]. In addition to the above-mentioned problems, the 

transistor is subjected to various Short Channel Effects. Transistors are the main 

components in electronic applications such as calculators, personal computers, 

smartphones etc. The demand for these electronic applications had increased from time 

to time. Therefore, it is crucial to reduce the size of the transistors in order to increase 

the number of transistors on one silicon wafer, leading to high-speed integrated 

circuits. However, by reducing the size of the metal-oxide semiconductor field-effect 

transistors (MOSFETs) into nanoscale regime, the traditional silicon bulk suffers from

2



several short-channel effects such as high leakage current, increased Drain-Induced 

Barrier Lowering and Subthreshold Swing, reduced ON current etc.

1.2 MOSFET Scaling and Limitations

The scaling of transistors is going down to nanometer range from sub-micron 

scale as illustrated in Figure 1.2. However, the substantial reduction in size may not 

always be compatible with device performance, posing issues that have yet to be 

resolved [2]. In order to keep the active power and electric field of the device within 

the optimum range, there is a corresponding rebate in supply voltage, VD D . The 

constraint in the reduction of threshold voltage below a certain limit is that the parasitic 

current contributes a considerable level of power dissipation in the CMOS based HP 

devices. As formerly mentioned, the VD D  of the transistor cannot be reduced below a 

certain limit corresponding to the gate length, across the gate oxide region there is a 

surge in electric field. This could possibly cause damage to the device and thus leads 

to the increase in OFF current.

Figure 1. 2 Scaling of MOSFET gate length [2]

3



The reduction in the size of the transistor unfavorably affects the parasitic or 

passive capacitance and resistance with the cutback in pitch. This in turn affects the 

performance gain of the transistor. Furthermore, the high channel doping required 

poses substantial problems, including as mobility degradation and threshold voltage 

variations caused by random dopants. When the size of the transistor is scaled down 

to nanometer regime it will be a tough task to establish the dopant atoms at the 

specified points. Other problems related to the planar transistors like MOSFET is the 

dissipation of heat due to the creation of hot spots caused by improper dissipation of 

heat from the circuit, interconnect delays [2]. Though several methods like high-k 

dielectric, metal gate and strained silicon are subsequently introduced to overcome the 

previously mentioned problems in MOSFET, the requirement for additional transistor 

scaling will necessitate the evolution of the transistor structure itself. This paves way 

for the introduction of non-planar transistors (such as multiple gates) from planar 

transistors as depicted Figure 1.3.

Figure 1. 3 Planar to non-planar structure [3]

The term non-planar defines that the device is not restricted to only one plane. 

It is also said to be 3-Dimensional in shape as it has a third dimension (z-plane). 

FinFET technology derived its name from the fact that the FET structure that looks 

like a set of fins when viewed. The term FinFET was coined by Chenming Hu et.al [3] 

at the University of California, Berkeley as a result of the shape of the structure. 

FinFETs are non-planar structure that rises above the substrate and resemble a fin. The
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‘fins’ form the source and drain to enable more volume than the traditional planar 

transistor for the same area [3].

Figure 1.4 shows the technology trends of MOSFET [4]. In the recent trends, 

new device structures such as fin-shaped field-effect transistors (FinFETs) and gate- 

all-around field-effect transistors (GAAFETs) are implemented. These device 

structures are introduced to overcome the short channel effects that are found in the 

sub 20nm regime MOSFET structures. In a brief, FinFET devices outperform 

conventional MOSFET technology in terms of short-channel characteristics, density 

of current and time taken for switching.

Figure 1. 4 Technology trends of MOSFET [4]

1.3 Problem Statement

In conventional FinFET it becomes difficult to change the doping 

concentration of a material over distance shorter than 10nm and produce high quality 

junctions for sub 20nm regime which leads to short channel effects [5]. The fact that 

Junctionless FinFET contain no junction, it helps the chipmakers to create smaller 

devices. It has less mobility degradation with temperature and gate voltage than the 

classical MOSFET. SCEs appeared as a result of the device's constant shrinking 

dimensions. The drain voltage has no effect on the maximum value of the voltage 

barrier of the pn junction at the source contact in long channel devices. However, as
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the channel lengthens, the barrier becomes more dependent on the drain voltage, 

affecting all subthreshold device parameters. JL FinFET has better Subthreshold 

Swing and more effectively suppresses short-channel effects (SCEs) than the 

conventional bulk FinFET [5]. It acts as a gated resistor and it has a uniform high 

doping (~ 1019 to 1020 cm-3) from source to drain throughout the silicon channel to 

maintain high drive current in ON state. This device is termed as a Junctionless FinFET 

because it uses bulk conduction when compared to surface conduction in conventional 

MOSFETs. Apart from their advantages, the most important issue for fabrication of 

Junctionless devices is achieving uniform doping concentration in the device layer 

especially in the non-planar structures like FinFET [6].

In FinFET, doping of the fin region has to be performed as a non-uniform 

doping all around the fin. Hence the most general doing profile is the Gaussian which 

is considered as a solution for this doping concern [7]. In addition to the 

aforementioned problems, the device is still affected by the increase in the leakage 

current. It is to be noted that there is no sufficient research work done on the Gaussian 

Channel Junctionless FinFET in SPICE level for evaluating its performance in regards 

to the real time application.

1.4 Research Objectives

The main goal of this research work is to augment the performance of 14nm 

Junctionless FinFET with Gaussian Doped Channel based on the scaling limitations 

and trade-offs in the existing FinFET structure, the research objectives are concluded 

as below

1. To simulate 14nm Gaussian Channel Junctionless FinFET (GC-JLFinFET) 

using Silvaco Atlas Tool.

2. To characterize the electrical properties of 14nm GC-JLFinFET such as 

Subthreshold Swing, Drain-Induced Barrier Lowering, ON current, OFF 

current and ON-OFF current ratio.
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3. To analyse the circuit design parameters such as Power, Delay and Power

Delay Product for the characterized structures and implement in CMOS 

inverter using Synopsys HSPICE.

1.5 Research Scopes

This research focuses on the design and optimization of 14nm Junctionless 

FinFET with Gaussian doped channel. The design parameters and electrical 

characteristics of the device were calibrated as per International Technology Roadmap 

for Semiconductors (ITRS) specifications. This research scopes are as follows:

1. Simulation Work: The simulation work is divided into two sections; Device 

simulation of 14nm Junctionless FinFET with Gaussian doped channel with 

PTS layer in Technology-Computer-Aided-Design (TCAD) simulator and 

Device level circuit simulation of the 14nm GC-JLFinFET in an inverter using 

Hewlett Simulation Program with Integrated Circuit Emphasis (HSPICE). For 

14nm Gaussian Channel Junctionless FinFET, conventional FinFET with ITRS 

set physical parameters for 14nm technology. Later the device is modified to 

make it Junctionless structure. Afterwards, the device simulation of the GC- 

JLFinFET with PTS layer is conducted to analyse the performance of the 

simulated structure. This is further extended to the transistor level 

implementation in an inverter to evaluate the feasibility in complex digital 

circuits.

2. Analysis Work: The physical parameters and dimension of the 14nm GC- 

JLFinFET structure are taken from the previous experimental work performed 

by [23]. However, the gate length of 14nm is chosen to provide a valid 

verification of results against the existing structure [23]. The electrical 

parameters such as ON current, OFF current, SS and DIBL are analysed for the 

simulated work. The analysis work in TCAD level will be carried out to 

compare between the performance of the simulated 14nm GC-JLFinFET with 

PTS layer and previously published work [23]. In order to analyse the
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feasibility of the simulated structure at the circuit level, DC analysis and

transient analysis is conducted in SPICE.

1.6 Thesis Organization

Chapter 1 is the most important part of this research where the MOSFET 

structure background and its development are discussed. The Metal-Oxide- 

Semiconductor Field Effect Transistors (MOSFET) scaling and challenges are 

highlighted. Then, the various types of non-planar structures are introduced and the 

importance of FinFET is found as the demand to the technology advancement in which 

the research’s problem statements are determined. Based on the problem statements, 

the research objectives are simulated and the scope of the research work has been 

identified. Finally, the research contributions have been accentuated.

Chapter 2 discussed the Fin-Field-Effect Transistors where multiple structures 

are identified and its important characteristics are being highlighted. Furthermore, the 

concept of Gaussian doped channel with uniform doping in S/D region is explored. 

Then the SPICE model for Inversion-Mode FinFET and Double-Gate MOSFET 

structure is analyzed for the circuit level implementation.

Chapter 3 covers the research methodology of the work from the general 

flowchart, continued by the specific work flow chart for TCAD and SPICE 

simulations. All the research activities are indexed in this chapter along with tools that 

were used in this research work are highlighted. In addition to the above-mentioned 

points, the details related to the approach of the research simulation work are 

presented. Further the device physical dimensions and parameters in conjunction with 

the device models are also specified. Lastly, the research work is summarized and 

discussed analytically.

In Chapter 4, the simulated results are conferred with the characterization of 

14nm Gaussian Channel JL-FinFET in TCAD and SPICE level. The electrical 

parameters such ON current, OFF current, Drain-Induced-Barrier-Lowering (DIBL),
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Subthreshold Swing (SS), Transconductance are analyzed in TCAD tool. The 

simulation results of the 14nm GC-JLFinFET in an inverter circuit is also presented at 

SPICE level.

Finally, Chapter 5 concludes with all the research findings and research 

contribution of this work. Besides this, the future extension of this work is also 

presented to ensure that the research is continued further for an enhanced contributions 

to this society.
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