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ABSTRACT 

The role of sensors in the future industrial environment is becoming more 

crucial and complex. One of the important sensor characteristics is the multi-parameter 

sensing capability. Fibre interferometer is a type of optical sensor that has been proven 

for its excellent sensing performance, high design flexibility and high capability for 

multi-parameter sensing. This research work assesses the potential use of double 

cladding fibre (DCF) as an interferometric multi-parameter sensor. In light of the 

importance of multi-parameter sensing capability required in future industry 

environment, three novel sensor designs were proposed and experimentally 

demonstrated. These proposed designs incorporated DCF as the main sensor structure 

to maintain high commonality, as well as to fully utilize the unique sensing properties 

of DCF. The first design proposed in this study is the fibre Michelson interferometer 

based on DCF, which is used for refractive index (RI) and temperature sensing. This 

sensor operates based on two sensing mechanisms to detect RI and temperature. RI 

sensing relies on Fresnel reflection at the tip of DCF, whereby RI change is quantified 

from power change in the sensor spectrum. Meanwhile, temperature sensing depends 

on the interference between the core mode and the first cladding modes of DCF. 

Thermo-optic effect causes a change of wavelength in the sensor spectrum. The 

experimental results retrieved from the proposed sensor revealed that temperature and 

RI spectra responses were indeed distinguishable. The second design proposed in this 

study is the Mach-Zehnder interferometer with dual sensing points used for RI and 

discrete liquid level sensing. These two sections are separated by an RI insensitive 

region formed by the DCF section. The sensor can be utilised to measure RI in single- 

or dual-point configuration. The third design proposed in this study is the DCF-based 

Mach-Zehnder used for small curvature (or displacement) and large curvature (or 

circumference) sensing. In this proposed design, two optical paths are paved in the 

core and in the inner cladding of the DCF. The outer cladding of DCF provides 

confinement of light in the inner cladding, hence enabling higher curvature to be 

imposed without any significant optical loss. This research work covers conceptual 

sensor designs, sensor fabrication and experimentation work. At conceptual level, 

mathematical models of particular sensor structures were studied and further 

developed in order to understand the sensor behaviour. The particular sensor structures 

were analysed numerically using BeamProp software to understand its function from 

the field distribution. Systematic fabrication procedures were developed for the sensor 

to ensure high process efficiency and repeatability. Additionally, this thesis contributes 

to the development of experimentation setup and data acquisition process. The 

proposed multi-parameter sensors have great potential to be deployed in various 

industrial applications. 
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ABSTRAK 

Peranan penderia dalam persekitaran industri masa hadapan menjadi semakin 

penting dan kompleks. Antara ciri penting penderia ialah kebolehan penderiaan 

pelbagai parameter. Gentian interferometer adalah sejenis penderia optik yang telah 

terbukti dengan prestasi penderiaan yang cemerlang, kefleksibelan reka bentuk yang 

tinggi dan berkemampuan tinggi untuk penderiaan pelbagai parameter. Kerja 

penyelidikan ini menilai potensi penggunaan gentian salut berganda (DCF) sebagai 

penderia interferometer pelbagai parameter. Mengambil berat mengenai pentingnya 

kemampuan penderiaan pelbagai parameter yang diperlukan dalam industri masa 

hadapan, tiga reka bentuk baru penderia telah diusulkan dan ditunjukkan secara 

eksperimen. Reka bentuk ini menggabungkan DCF sebagai struktur penderia utama 

untuk mengekalkan kesamaan yang tinggi dan juga memanfaatkan sepenuhnya sifat 

unik penderiaan DCF. Reka bentuk pertama yang dicadangkan dalam kajian ini adalah 

interferometer Michelson gentian berdasarkan DCF yang digunakan untuk penderiaan 

indeks biasan (RI) dan suhu. Penderia ini beroperasi menggunakan dua mekanisme 

penderiaan untuk mengesan RI dan suhu. Penderiaan RI bergantung pada pantulan 

Fresnel di hujung DCF, di mana perubahan RI dihitung dari perubahan kuasa dalam 

spektrum penderia. Sementara itu, penderiaan suhu bergantung pada interferens antara 

mod teras dan mod-mod salutan pertama DCF. Kesan termo-optik menyebabkan 

perubahan panjang gelombang dalam spektrum penderia. Hasil eksperimen yang 

diperolehi dari penderia yang dicadangkan menunjukkan bahawa tindak balas 

spektrum suhu dan RI dapat dibezakan. Reka bentuk kedua yang dicadangkan dalam 

kajian ini adalah interferometer Mach-Zehnder dengan dua titik penderia yang 

digunakan untuk penderiaan RI dan aras cecair diskret. Kedua-dua bahagian ini 

dipisahkan oleh kawasan tidak peka RI yang dibentuk oleh bahagian DCF. Penderia 

ini boleh digunakan untuk mengukur RI dalam tatarajah satu-titik dan dua-titik. Reka 

bentuk ketiga yang dicadangkan dalam kajian ini adalah Mach-Zehnder berteraskan 

DCF yang digunakan untuk penderiaan kelengkungan kecil (atau sesaran) dan 

kelengkungan besar (atau lilitan). Bagi reka bentuk yang dicadangkan ini, dua lintasan 

optik tersedia di dalam teras dan di bahagian salutan dalaman DCF. Salutan luaran 

DCF memberikan pengurungan cahaya pada salutan dalaman, sehingga membolehkan 

kelengkungan yang lebih besar dikenakan tanpa kehilangan optik yang ketara. Kerja 

penyelidikan ini merangkumi reka bentuk penderian konseptual, pemfabrikatan 

penderia dan kerja uji kaji. Pada aras konseptual, model matematik struktur penderia 

tertentu dikaji dan dibangunkan lebih lanjut untuk memahami kelakuan penderia. 

Struktur penderia tertentu juga dianalisis secara berangka mengunakan perisian 

BeamProp untuk memahami fungsinya dari taburan medan. Tatacara pemfabrikatan 

sistematik dikembangkan untuk penderia memastikan kecekapan proses dan 

keterulangan yang tinggi. Selain itu, tesis ini menyumbang kepada pembangunan 

persediaan uji kaji dan proses pemerolehan data. Penderia-penderia pelbagai 

parameter yang dicadangkan ini berpotensi tinggi untuk digunakan dalam pelbagai 

aplikasi industri. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Optical Fibre Sensor 

Studies concerning optical fibre sensor that sparked in the 1960s [1] have 

witnessed substantial transformation after several decades of extensive research work. 

The role of optical fibre sensor technology complements the electronic counterpart in 

applications where electronic sensors perform marginally or do not exist. These main 

applications include oil and gas exploration [2,3], structural health monitoring [4–6], 

optical gyroscope [7], and military sonar  [8–10]. Recently, optical fibre sensors have 

been studied across all fields. Fibre optic-based techniques, which provide the basis 

for sensor technology, produce sensors that are lightweight, small, easily 

multiplexable, and immune to electromagnetic interference (EMI). These sensors 

require no electrical power at the sensing point and have the potential to be produced 

at low cost. Performance and functionality of optical fibre sensor have been greatly 

improved with the continuous advancement of key components in fibre optic research 

domain, such as fabrication technique, digital signal processing, sensor materials, and 

specialty optical fibre. Some main fibre processing techniques, such as tapering, 

etching, laser micromachining, grating writing, and chemical deposition, have been 

extensively investigated. The accessibility to optical equipment and components is 

becoming easier because most of the components are available online at affordable 

price. Thus, the duration of product development starting from the initial concept stage 

to the prototype stage has been greatly shortened. Fibre optic sensors have been 

investigated for detection of physical parameters, such as temperature, strain, pressure, 

refractive index (RI), curvature, displacement, and acoustic, to name a few. The 

performance of optical fibre sensors, such as fibre Bragg grating (FBG), fibre 

multimode interference (MMI) devices, fibre interferometer, surface plasmon 

resonance (SPR), Brillouin/Raman scattering, and micro-structured fibres, has been 
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substantially improved through the implementation of innovative techniques and 

modern technologies. 

Various types of specialty optical fibres have been produced by manufacturers 

worldwide, including multicore fibre [11], double cladding fibre (DCF) [12], few 

mode fibre  [13], coreless fibre [14], and photonic crystal fibre [15]. These fibres are 

incorporated into fibre sensor designs to utilise their distinctive sensing capabilities, 

which are absent in typical optical fibre such as single mode fibre (SMF) and 

multimode fibre (MMF). Previously, DCF is relatively unknown in sensing 

application. It possesses features of both SMF and MMF, thus allowing simultaneous 

transmission single mode and multimode. A DCF consists of a core, which is used for 

single mode transmission; an inner cladding (first cladding) used for multimode 

transmission, and an outer cladding layer (second cladding) that encapsulates the inner 

cladding, thus providing consistent surrounding RI.  

Fibre interferometer sensor or interferometric sensor [16] is a type of optical 

sensors that have been proven for their high sensing performance and high design 

flexibility, which denote a growing technology. Fibre interferometer principles 

basically consist of three main mechanisms; (1) splitting of optical wave into two 

paths, (2) perturbations of measurands field on the sensing path, and (3) interference 

between optical wave in the sensing path and optical wave in the reference path. 

Implementation of DCF in interferometer construction deploys both the core and the 

first cladding as the two interferometer paths or arms. The interesting feature of DCF 

is that the first cladding is completely covered by the second cladding layer; hence 

there is no interaction with light through evanescent wave. The first cladding has better 

wave-guiding property than the cladding of conventional fibre, such as SMF. Hence, 

DCF has better control of the cladding modes over the surrounding environment, 

which could be useful in certain sensor designs. 

Essentially, this study assesses the potential use of DCF in multi-parameter 

interferometric sensor, whereby multi-parameter sensing is one of the qualities 

required in the fourth industrial revolution. Three distinctive designs based on DCF 

are proposed in this thesis. The first design caters for temperature and RI sensing, 



3 

which is crucial for several applications such as quality inspection in food 

manufacturing process and contamination detection in environmental monitoring. The 

second design is for RI and discrete liquid level sensing. This design is applicable for 

monitoring liquid quality and level in chemical storage. The third design is specifically 

used for displacement or curvature sensing. With the capability to measure small and 

large curvature, the sensor displays exceptional potential to be deployed in soft robotic, 

wearable medical device, and structural health monitoring applications. The prescribed 

sensing techniques contribute to the needs of the fourth industry revolution. 

1.2 Problem Statement  

The fourth industrial revolution is the latest shift of paradigm discussed 

throughout the academics and industries alike. It is basically a development in the 

manufacturing process to achieve mass production as effective as possible [17]. This 

is attainable through better control of the entire production process. Indeed, the role of 

sensors has increased substantially, mainly because the fourth industrial revolution 

emphasises on the use of high-performance sensors, smart sensors, high compatibility 

sensors, and multi-parameter sensors [18]. Multi-parameter sensing is defined as the 

capability of a sensor to detect or measure more than one parameter. In addition of 

enhanced functionalities, multi-parameter sensors also are capable to provide the 

information of the system state which important for anticipating influence of 

surrounding to measurement [19]. 

A number of multi-parameter fibre sensor structures have been developed 

using different fibre types and components [14,20–23] driven by the availability of 

various types of specialty optical fiber offered in the market. Performance-oriented 

[24–26] and functionality-oriented [27–30] design approaches have been widely 

practiced in most multi-parameter sensor design. The commonality or the standardized 

components used in different sensor structures have yet to be considered in the existing 

multi-parameter sensor designs. The vast selection of available optical fibres has 

promoted the use of various fibre combinations. However, in practice, it is crucial to 

maintain high commonality when developing different sensor structures as it reduces 
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cost [31] and improves productivity by controlling the variation of components [32].  

From this problem statement, this research work is motivated to study and develop 

multi-parameter sensor structures with high commonality. For this purpose, similar 

fibre components were deployed for 3 different sensor applications which are the SMF, 

MMF and DCF. Previously, DCF was used in high power fibre laser [33], multichannel 

data transmission [34] and imaging [35]. In this thesis, the unique properties of DCF 

are utilized for sensing purpose.  

The first multi-parameter capabilities explored in this research work is 

combination of temperature and RI sensing. Information of surrounding temperature 

is important since many optical parameters are temperature dependent. For 

simultaneous temperature and RI sensing, several techniques have been deployed by 

researchers including interferometer structure written with FBG [36–38], capillary 

coated interferometer [39] and discrimination of different resonance dips [40,41]. 

These previous techniques involved with complex fabrication (FBG and capillary 

coating). This thesis proposes a novel and simple interferometer structure for 

simultaneous temperature and RI sensing based on DCF to overcome this limitation. 

The second multi-parameter sensing capabilities studied in this research work 

is detection of both liquid level and RI. From literature review [42–44], there is very 

limited work related to development of sensor for simultaneous liquid level and RI 

sensing. The main reason is because of the difficulty to combine design requirements, 

whereby RI sensing requires a compact sensor head, while liquid level sensing requires 

extended physical coverage over the measured range. In order to fulfil both 

requirements, this thesis proposes a multi-point fibre interferometer sensor with both 

RI and discrete liquid level sensing capabilities. 

This thesis also deals with small curvature (or displacement) and large 

curvature (or circumference) sensing. From literature review, it is found that there is 

lack of research work which focus on large curvature sensing especially in 

interferometer type sensor. Most of the designs are dealing with small curvature 

sensing [45,46]. Large curvature sensing requires very small bent radius of optical 

fiber. In typical fiber interferometer, the cladding modes may experience high 
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radiation loss when small bending applied. To overcome the design issue, this thesis 

proposes an interferometer constructed using DCF. The use of DCF offered better 

confinement of the propagating modes in the inner cladding, thus realising a robust 

fibre curvature sensor. 

This present study demonstrates the suitability of fibre interferometer sensor in 

this new industrial realm by focusing on the development of multi-parameter fibre 

optic sensors. By increasing sensor functionality through novel designs, this study 

explored into new application where the presence of fibre optical sensor is limited. 

Each sensing system component, including sensor head, fabrication process, data 

acquisition system, and sensing model, was thoroughly studied to unravel both existing 

issues and opportunities available.  

1.3 Objectives 

 Based on the research motivations and problem statements listed above, the 

research objectives of this study are given in the following: 

(a) To design new designs of fibre interferometer based on double cladding fibre 

for multi-parameter sensing.  

(b) To carry out systematic fabrication procedure using in-house facilities. 

(c) To evaluate sensors performance through experimental works, subsequently 

verify multi-parameter sensing capability.   

  

 

1.4 Scope of study 

This study focused on the development of fibre interferometer for multi-

parameter sensing using DCF. The development process starts with conceptual sensor 

design, followed by sensor fabrication, and finally, sensor experimentation. The main 
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strength of this research lies in the substantial series of fabrication and experimental 

works. All of the sensor designs employed different fabrication procedure and unique 

setup for performance evaluation. Each of the distinctive scope of this study is further 

described in the following. 

 

1.4.1 Conceptual Sensor Design 

First, the sensor design was produced from the preliminary understanding of 

light behaviour. The sensor structures in drawing form were analysed by using 

BeamProp software. BeamProp analysis gives several important results, including 

optical field distribution and sensor spectrum. Field distribution result provides 

certainty on the functionality aspect in terms of wave splitting and combining. 

Although the software is capable to perform spectra and sensitivity analyses, this 

analysis is limited within field distribution analysis only because of time constraint. 

Related sensing models for specific sensors were developed to determine the sensor 

responses qualitatively. The conceptual sensor design and numerical simulation are 

detailed in Sections 3.3 and 3.4, respectively.  

1.4.2 Sensor Fabrication 

The conceptual sensors were realised into actual device through fabrication 

process carried out using in-house facilities. Systematic fabrication procedures were 

developed for each sensor design to improve the quality and repeatability of 

manufactured sensors. Sensor fabrication process is elaborated in Section 3.5. 

1.4.3 Sensor Experimentation  

Sensor experimentation was executed to quantify the actual sensing 

performance of each proposed design. Sensor experimentation mainly involved the 
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preparation of testbeds and the characterisation process. Each design may require 

different testbeds due to different detected measurands. Meanwhile, the 

characterisation process is related to the procedures of collecting data from the sensor. 

Experimentation works were carried out in controlled environment. For practical 

application, further test may be required in order to validate the repeatability and 

robustness in uncontrolled environment. Sensor experimentation is described in detail 

in Section 3.6.  

1.5 Significant of Study 

Overall, the main contributions of this research work are based on the 

development of three novel sensor designs described in the previous chapters.  

(a) Development of a novel MI based on DCF for temperature and RI sensing. The 

details are described in the following:  

i. Development of a sensing concept, whereby detection of RI relies on 

Fresnel’s reflection at the tip of DCF (hence change of optical power), 

while detection of temperature relies on the thermo-optic property of 

optical fibre (hence change of wavelength and power). By selecting a 

particular reference point, both RI and temperature responses can be 

differentiated.   

ii. Development of a related sensing model for the sensor as presented in 

Section 3.3.1.  

iii. Verification of sensor functionality for temperature and RI sensing 

through experimental work. 

 

(b) Development of a novel MZI based on ESMF and DCF for RI and discrete 

liquid level sensing. The details are described in the following: 

i. Development of a novel sensing concept that combines both 

requirements of RI sensor and liquid level sensor. Two ESMF sections 
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serve as the two discrete sensing points sensitive to the surrounding 

material. The DCF is not sensitive to the surrounding material and it is 

part of the interferometer arm. The sensor provides distinctive 

responses to different RIs and liquid levels.  

ii. Development of a related sensing model for liquid level sensor as 

presented in Section 3.3.2. 

iii. Development a systematic fabrication procedure that involved:  

• Etching process to obtain consistent fibre thickness 

• Splicing between ESMF and DCF/MMF, i.e., between thin 

fibre and normal fibre 

iv. Verification of sensor functionality for RI and liquid level sensing 

demonstrated from single- and dual-point measurements.  

 

(c) Development of a novel MZI based on DCF for small curvature (or 

displacement) and large curvature (or circumference) sensing. The structure 

demonstrates the highest curvature measurement range when compared to all 

the other existing sensors.  

 

1.6 Thesis Overview 

First and foremost, Chapter 1 presents brief introduction of optical fibre sensor 

to provide overview description of the research topic to readers. It is followed by 

research motivation and problem statement which emphasize on the contemporary 

issues concerned by this research work.  Based on the problem statement, the research 

objectives were formulated. Chapter 1 also covers the scope of study and summary of 

contributions of the research work. Chapter 2 presents the literature review related to 

this research work. Initially, the review is focused on general topics, such as the types 

of optical fibre, the concept of fibre interferometer, and the construction method of in-

line fibre interferometer. Next, the review focuses on sensor designs. The literature 

review is composed of three parts based on the three sensor designs proposed in this 

study, namely for (i) temperature and RI sensing, (ii) RI and discrete liquid level 

sensing, as well as (iii) displacement and curvature sensing. The research gap, novelty, 
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and contribution of the proposed designs are clearly identified through comprehensive 

and critical review. Chapter 3 describes the methodology implemented for the main 

research components, including conceptual design and theoretical model, numerical 

simulation, fabrication, experiment setup, and experiment procedure. Chapter 4 reports 

the experiment results for all sensor designs. Section 4.2 presents the novel Michelson 

interferometer (MI) sensor based on DCF for temperature and RI sensing. In this 

design, two sensing mechanisms were utilised; first, detection of temperature based on 

the thermo-optic effect of fibre, and second, RI based on Fresnel’s reflection at the 

fibre tip. The sensor should detect temperature change through wavelength shift of the 

sensor reflection spectra, while RI shift from the power shift of the reflection spectra. 

Section 4.3 reports the novel Mach-Zehnder interferometer (MZI) with dual compact 

sensing points for RI and discrete liquid level sensing. In this novel design, two 

sections of etched single mode fibre (ESMF) were utilised as the discrete sensing 

points to enable RI and liquid level sensing. Section 4.4 reports a novel MZI based on 

DCF for a wide range of curvature sensing. The sensor should operate within the 

smallest radius possible (the largest possible curvature) before the breaking point of 

the fibre. Lastly, Chapter 5 presents the conclusion, and future endeavours, of this 

research topic. 
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