
DEVELOPMENT OF AN INTEGRATED TISSUE ENGINEERING 

BIOREACTOR SYSTEM FOR MICROVESSEL DEVELOPMENT IN A 3D 

ENVIRONMENT 

 

 

 

 

 

 
 

MOHD RAMDAN BIN MOHD ROFI 

 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Biomedical Engineering) 

 

 

 

 

 

 

 

 
School of Biomedical Engineering and Health Sciences 

Faculty of Engineering 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

 

 

JANUARY 2020 



v iv  

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
First and Foremost, thankful to Allah The Almighty 

 

 

 
To my beloved wife, Siti Marhaida binti Mustafa, 

children Muhammad Zaid and Siti Sufiyyah, parents, family and friends, 

thank you very much for the endless support 



v v  

ACKNOWLEDGEMENT 

 

 

 

First and foremost, thankful to Allah SWT for His blessing that strive me up to 

complete my thesis. All praises to Allah SWT, the Most Merciful, who is All Knowing 

for all my words and prayers. I am deeply indebted to my beloved wife, Siti Marhaida 

binti Mustafa the most supportive person throughout this PhD journey. Thank you very 

much for always being my side through my ups and downs, relief my worries and 

comfort me with priceless words. By saying that Allah is everything to us is all enough. 

My children, Muhammad Zaid and Siti Sufiyyah, I would say that this thesis is yours 

too. Thank you for sharing this PhD journey with lots of patience. 

 
I am really honored and appreciate my supervisor, Professor Dato' Ir. Dr. 

Mohammed Rafiq Bin Abdul Kadir, whose help, stimulating suggestions and 

encouragement helped me in all the time of research and writing of this thesis. 

Appreciation is also given to my co-supervisor, Associate Professor Dr Ardiyansyah 

Bin Syahrom. They have generously allocated and shared their time to enable me to 

complete this study and have been in invaluable source of counsel and confidence 

throughout my research effort. I would also like to thank all the personnel and 

technicians in the School of Biomedical Engineering for their assistance during the 

laboratory tasks. Finally, I am forever indebted and immensely grateful to my parents, 

Mohd Rofi and Late Halimah, as well as parents-in-law, Haji Mustafa Bin Che Harun 

and Hajah Minah binti Mat Saman for their continuous support. My most sincere 

appreciation and gratitude also go to my siblings, family, in-laws and friends. To those 

who had contributed assistance and advices in this study, either directly or indirectly, 

yet their names are not cited here, they deserve my greatest gratitude. Million thanks 

to all. 



v vi  

ABSTRACT 

 

 

 

The development of functional and matured microvessels within constructed 

tissue is a great challenge in tissue engineering. It is crucial to allow better nutrient and 

oxygen supply as well as waste removal within the core of tissue construct. It is one of 

the main reasons why only few tissue substitutes are available for clinical replacement. 

Therefore, tissue engineering bioreactor could be as possible component to potentially 

improve the in vitro engineering of living tissues that can facilitate better mechanisms 

in governing physical, chemical and biological processes in a developed three- 

dimensional (3D) tissue culture environment. A pulsatile perfusion bioreactor was 

designed, built and validated to support in vitro cells growth and proliferation. This 

system enables the monitoring and controlling of the pressure, flow rate, temperature, 

dissolved oxygen (DO) concentration, pH, frequency and waveform of the pulsatile 

pressure, for the purpose of both physiological and non-physiological conditions 

simulation. All the parameters were controlled and adjusted to be stable similar to the 

in vivo condition (in the human body). This system was also designed to be an 

incubator independent, mobile, sterilizable (autoclavable) and compatible with a 

variety of cell or tissue scaffold configuration, geometry and size. Human Umbilical 

Vein Endothelial Cells (HUVECs) with a concentration of 1x105 cells/ml were 

attached in 20 mm x 20 mm x 2 mm fibrin gel made in the Flow Culture Chamber 

(FCC) to be utilized as the 3D model system and connected either in the bioreactor, 

simple dynamic or static system (control). After 2 and 4 days analyses, the HUVECs 

cultured in the bioreactor system showed significantly higher proliferation and 

migration rate compared to the HUVECs cultured under the static and simple dynamic 

conditions. The development of cell-cell connection and the formation of microvessel 

under the bioreactor condition were also found to be faster than the performance under 

the simple dynamic and static conditions. The HUVECs were co-cultured with human 

fibroblast and vascular endothelial growth factor (VEGF) in another set of bioreactor 

experiment to improve the maturation and better formation of microvessel. The 

formation of microvessels and assessment of lumen formation were appraised using a 

fluorescent fibrin matrix, histology and confocal microscopy. The fluorescent and 

histology analyses confirmed the formation of matured microvessel-like structure. The 

utilization of fibroblasts and VEGF significantly improved the maturation of the 

microvessels compared to the samples without fibroblasts. In conclusion, the HUVECs 

were successfully cultured in the bioreactor, with a potential growth of microvessels 

in 3D tissue culture environment. 
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ABSTRAK 

 

 

 

Perkembangan mikrovesel yang berfungsi dan matang dalam tisu yang 

dibentuk adalah satu cabaran besar dalam kejuruteraan tisu. Ianya adalah penting untuk 

memastikan pembekalan nutrien dan oksigen yang lebih baik serta penyingkiran bahan 

buangan dalam teras tisu yang terbentuk. Ini adalah salah satu sebab utama mengapa 

hanya beberapa pengganti tisu tersedia untuk penggantian klinikal. Oleh itu, bioreaktor 

kejuruteraan tisu boleh menjadi komponen yang mampu untuk meningkatkan potensi 

kejuruteraan in vitro tisu hidup yang dapat menghasilkan mekanisma yang lebih baik 

untuk mengawal proses fizikal, kimia dan biologi dalam persekitaran kultur tisu tiga 

dimensi (3D). Bioreaktor perfusi serba boleh direkabentuk, dibina dan disahkan untuk 

menyokong pertumbuhan dan perkembangan sel-sel in vitro. Sistem ini membolehkan 

pemantauan dan pengawalan tekanan, kadar aliran, suhu, kepekatan oksigen terlarut, 

pH, frekuensi dan bentuk gelombang tekanan, bagi tujuan simulasi keadaan fisiologi 

dan bukan fisiologi. Semua parameter dikawal dan diselaraskan supaya stabil seperti 

keadaan in vivo (dalam tubuh manusia). Sistem ini juga direka untuk menjadi 

inkubator bebas, mudah alih, boleh disteril dan serasi dengan pelbagai perancah sel 

atau tisu konfigurasi, geometri dan saiz. Sebanyak 1 x 105 sel-sel Endothelial Vena 

Umbilikal Manusia (HUVECs) dihidupkan dalam 20 mm x 20 mm x 2 mm gel fibrin 

di dalam Bilik Aliran Kultur (FCC), di mana ia digunakan sebagai sistem model 3D 

dan disambung sama ada dalam sistem bioreaktor, dinamik asas atau statik (sebagai 

kawalan). Selepas analisis 2 dan 4 hari, HUVECs yang dikulturkan di bawah sistem 

bioreaktor menunjukkan kadar pertumbuhan yang lebih tinggi berbanding HUVECs 

yang dikulturkan di bawah keadaan dinamik asas dan statik. Perkembangan 

pencantuman sel-sel dan pembentukan mikrovesel di bawah keadaan bioreaktor 

didapati juga lebih cepat berbanding keadaan dinamik asas dan statik. Dalam 

eksperimen bioreaktor berasingan, HUVECs dikultur dengan fibroblas manusia dan 

faktor pertumbuhan endotelial vaskular (VEGF) untuk meningkatkan pematangan dan 

pembentukan mikrovesel yang lebih baik. Pembentukan mikrovesel dan penilaian 

pembentukan lumen dinilai menggunakan matriks fibrin neon, histologi dan 

mikroskopi konfokal. Analisis pendafluor dan histologi mengesahkan pembentukan 

struktur seperti mikrovesel yang matang. Penggunaan fibroblas dan VEGF dengan 

ketara dapat meningkatkan kematangan mikrovesel berbanding sampel tanpa 

fibroblas. Kesimpulannya, HUVECs berjaya dikulturkan di dalam bioreaktor, dan 

berpotensi membentuk mikrovesel dalam persekitaran kultur tisu tiga dimensi (3D). 
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CHAPTER 1 

 

 

 
INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

Tissue engineering is defined by National Science Foundation in 1987 as 

interdisciplinary field that combines the life sciences and engineering principles. This 

combination was developed towards the biological substitutes that able to restore, 

maintain or improve tissue function (Sukmana, 2012). In addition, Atala (2004) 

reported that tissue engineering is the platform for repairing and restoration of various 

tissue and organ function (Atala, 2004). These actions were achieved through 

application of 3D scaffolds for cells and biomolecules delivery that limits the host 

rejection and side effects for the patients. 

 

The process of developing and producing engineered tissue in-vitro addresses 

many challenges within the health science (Ikada, 2006). Soft tissues (skin, cartilage, 

bladder and vascular), hard tissues (bone, ligaments) as well as complex organs (heart, 

lung and kidney) have the potential to be reconstructed from a bulk of cells. The newly 

constructed tissues and organs will finally replace the damage or loss of the original 

tissues. Tissue engineering basically consists of five phases including cell harvesting, 

cell expansion, scaffold seeding, bioreactor culturing, and implantation. Each phase is 

still under further research and there are no definitively established protocols yet. 

 

One of the main possible approach to regulate growth of cells and tissues is via 

three steps of creating, controlling and monitoring an in-vivo environment that 

represents the biochemical and mechanical signals. This approach can be attained 

using a bioreactor system. The bioreactor system applied in tissue engineering is 

differed to the industrial bioreactor that attempts to stimulate a physiological 

environment to promote cell or tissue growth through in vitro culture. 
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The aims of the bioreactor system is to create spatially uniform cell 

distributions on 3D scaffolds, to maintain a desired concentration of gases and 

nutrients in the culture medium, and to expose the developing tissue to appropriate 

physical stimuli which are important parameters to grow functional cells and tissues 

for transplantation (Junjie Zhao et al., 2016). 

 

Application of bioreactor is overwhelming in 3D tissue engineering substitutes 

since they allow the modulation of cell culture environments hydrodynamic. This 

condition plays important roles in growth, development, and function of tissues. The 

bioreactors function in several ways for tissue engineering purposes such as enabling 

in vitro condition that mimic the cells exist in vivo. This could give better 

understanding of normal cell and molecular physiology. Besides, cells harvested from 

bioreactor system offers benefits for clinical use such as in gene and cell therapies. 

This condition mimics a pathological state where the pathophysiology could be 

explored. The ability of bioreactor system as potential treatment for establishing new 

therapeutic targets offers more realistic setting than in vitro conventional culture which 

has simpler function (Selden and Fuller, 2018). 

 

Utilizing bioreactors for tissue engineering is believed to be truly significant to 

the next generation. The bright future in this area would not only contributes beneficial 

alternatives for reconstruction and replacement of cells, but able to reduce burden of 

animals’ usage in pharmacological testing. Therefore, this study was initiated to 

develop an integrated bioreactor system for simple and complex tissue engineering 

application. Sukmana (2012) mentioned that tissue engineering research relies on the 

increasing knowledge of angiogenesis and vasculogenesis mechanism occurs during 

capillary tube formation and blood vessel development. Thus, the application of 

bioreactor is essential to overcome the bottleneck of complex interplay between 

various factors that influencing tissue vascularization. 
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1.2 Problem Statement 

 

The main purpose of tissue engineering is to produce functional tissues and 

artificial organ in vitro. Subsequently, the tissue would be utilized as transplants or 

implants in in vivo as well as clinical test systems. Indeed, current clinical strategies 

offers many benefits for replacement and repair of damaged organs or tissues by 

transplanting the in vitro constructed functional tissue. Although tissue engineering 

techniques have shown as a promising strategy, lack of clinical scale engineered tissue 

for in vivo implantation is the major problem. The size of engineered tissues is 

insufficient for clinical application due to lack of microvascular network as similar to 

the natural tissue. The lack of nutrient that diffuse from outside and forming of waste 

material inside the scaffold would limit the formation of mature and strong networking 

of microvascular. 

 

On the other hand, there are some limitation with the in-vitro conventional cell 

culture techniques which were cultured of scaffolds and placed inside incubator (static 

and 2D condition). It produces a non-homogeneous growth of cells that limit the long- 

term growth of tissue and reduce the functionality of constructed tissue. One of 

possibility to overcome this problem is through placing the cultured cells scaffold in a 

bioreactor system that enables the culture media (fluid) passing through the scaffold. 

Currently, the available bioreactors have limitations in terms of supporting large-scale 

and long-term cells/tissue culture. A main challenge is to design a tissue culture 

bioreactor system that efficiently supports tissue-based construction. Thus, in this 

study a continuous pulsatile flow bioreactor system was designed and developed to 

meet the pre-requisite features in order to build and produce mature and functional 

engineered tissue or artificial organ. 

 

Using this complete automated bioreactor system, the effect of mechanical 

stimulation on cellular guidance and microvessels development could be further 

investigated in order to find the optimum parameters. The effect of co-culture system 

and angiogenic growth factor in dynamic conditions was also crucial to be investigated 

to improve the maturation and functionality of constructed microvessels. 
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1.3 Research Objectives 

 

 
The objectives of this study are as follows: 

1. To design and develop a 3D dynamic bioreactor system for cell culture and 

growth of tissue. 

2. To determine the effect of 3D dynamic bioreactor system on cell response 

and behavior. 

3. To determine the effect of 3D dynamic bioreactor system on microvessel 

development. 

4. To analyze the potential of 3D dynamic co-culture system and angiogenic 

growth factor on cellular function and microvessel formation. 

 

 

 
1.4 Scopes of Research 

 

Experimental works of this study was started with the development of two 

types of dynamic culture system which were simple dynamic culture and pulsatile 

perfusion bioreactor (integrated) system. The simple dynamic system was used to 

obtain the appropriate dynamic flow parameter like flow rate and shear stress for 

HUVECs growth and microvessel formation. The integrated bioreactor was designed 

and fabricated with heat and gas exchanger units in order to maintain and control 

temperature (37℃), pH (7.4) and dissolved oxygen (DO) concentration (13 mg/L). All 

the components/parts of bioreactor were biocompatible, reusable, autoclavable and 

easy to handle. 

 

The cell proliferation, migration, cell-cell connections and lumen formation 

(tube-like structures) were compared between static (control), simple dynamic culture 

and integrated bioreactor system for 2- and 4-days culture duration. The cell growth 

and microvessel formation were improved by co-culturing of HUVECs with fibroblast 

and supplemented with vascular endothelial growth factor (VEGF). The 

immunofluorenscene and histological staining were used to analyse the formation of 

lumen (tube-like structure) inside the microvessel development. 
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1.5 Hypothesis of Research 

 

 
The effect of dynamic and 3D conditions over microvessel development was 

investigated in this study using the integrated bioreactor system. Previous study stated 

that the dynamic parameters (flow rate, shear stress, pressure) would affect the 

behaviour and morphology of endothelial cell. On the other hand, dynamic shear stress 

also possibly enhances the formation of microvessel. Meanwhile, the perfusion 

dynamic culture and pulsatile condition would affect the cellular response of 

microvessel development in the bioreactor system. It is crucial to ensure that the 

application of bioreactor system would fulfil the requirements of the constructed 

tissue. Other factors like co-culture and angiogenic growth factor have the potential to 

improve the cells and tissues growth. 

 

 

 
1.6 Significance of Research 

 

 
This investigation offers several contributions mainly in tissue engineering 

field and as a wide range of biomedical applications. The application of bioreactors 

for the next generation of functional tissue replacements are truly needed and being as 

a matter of interest by scientist. Cultivation of cells in the bioreactor is important as 

the culture parameters such as temperature, pH, pressure, oxygen concentration, waste 

removal, pulsation and nutrient transfer can be adjusted to have to the optimum 

condition. At the same time, bioreactor could be as a beneficial platform to find the 

optimal biological, chemical and mechanical stimuli, that able to support cell 

vascularization. Bioreactors can also enable control over the mechanical stimulation 

for cellular guidance inside the scaffold in order to improve tissue vascularization. The 

endothelial cells are lining the inner surface of blood vessels of the entire capillary and 

circulatory system, they experience fluid shear stress and dynamic flow conditions to 

allow mechanical stimulation upon utilization of grown tissue construct. 

 

The optimization of parameters like flow rate, pressure and pulsation were 

believed to be able to achieve dynamic culture condition. The in vivo mimic conditions 

are important to produce better cellular organization and mechanical properties as 
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compared to the constructs culture in static condition. The structural organization of 

smooth muscle cells was improved through the usage of pulsatile flow. The optimal 

condition achieved was important for the vascularization process. Overall, bioreactor 

operations offer a rational basis for the structural and functional design of engineered 

tissues for the use as model systems, to reduce time of innovation, discovery, and 

production in biological and clinical research. The use of bioreactors should accelerate 

the development, evaluation, and delivery of engineered tissue products to patients. 

 

 

 
1.7 Thesis Structure and Organization 

 

 
This thesis is divided into five chapters. Chapter 1 covers the overview of the 

research background, problem statement, objective with its related scopes and 

significance of the study. 

 

Chapter 2 describes and introduces tissue engineering as beneficial tools in 

biomedical application. The bioreactor design requirement and its classification in 

tissue engineering field are critically reviewed. The chapter also highlights the 

application of three-dimensional (3D) culture system as a dynamic condition for 

microvessels development and a new integrated bioreactor system. 

 

Chapter 3 presents the materials and methodologies to design the three- 

dimensional (3D) culture system for the umbilical cord cells, starting with cells and 

fibrin gels preparations and proceed until bioreactor performance testing for a good 

system development. 

 

Chapter 4 denotes the comprehensive results and discussion on the 

performance of three-dimensional (3D) culture as an integrated bioreactor system on 

cellular function and microvessels development. 

 

Chapter 5 summarizes and concludes the research findings and suggests 

relevant recommendations for future works. 
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