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ABSTRACT 

Environmental Impact Assessment analysis is generally restricted to 

neighbourhood scale air pollution simulation using the Gaussian Plume model (GPM). 

This approach expected to enhance the resolution of ground level concentration in the 

conventional GPM based software up to building scale by using Computational Fluid 

Dynamics (CFD) model alongside the GPM.  The aim of this study was to develop an 

air pollution prediction algorithm for air pollutants release from industrial stacks. It 

was used to estimate, simulate and control air pollution in urban industrial park using 

integrated GPM and CFD model. The GPM was used for regional air pollutant level 

prediction to find high pollutant concentration zones. Whereas, CFD model was used 

for detailed simulation on respective polluted areas. In order to achieve this, a building 

detection algorithm from satellite image based on building footprint detection and 

height estimation from shadow thickness has been proposed to reduce pre-processing 

effort of the present CFD solver. The present CFD algorithm were based on Fractional 

Step Method for efficient steady state solver and Prandtl Mixing Length turbulence 

model for low cost turbulence calculation. The accuracy of the CFD algorithm has 

been tested and verified against benchmark problems (less than 3% error for lid-driven 

cavity problem, less than 8% for flow over isolated cube). It was discovered that CFD 

algorithm developed in this study is sufficiently accurate as other wind flow models 

with slight over prediction in wind speed by 1.04 m/s (15.6% are below 10% error) 

and able to predict the wind direction correctly within 60° angle (37.5% are within 15° 

angle) compared to measurement data. Air pollutant release from major stacks in Pasir 

Gudang Industrial Park was studied using GPM and high NO2 concentration zone 

(1800 µg/m3) was found in Taman Air Biru. Results suggest that 24-hour averaged 

SO2 and PM10 maximum ground level concentration are well within Ambient Air 

Quality Standard (AAQS) limits with 8.9 µg/m3 (8.4%) and 11.4 µg/m3 (7.6%) 

respectively. Meanwhile, 24-hour averaged NO2 concentration exceed AAQS limit 

with 270.3 µg/m3 (360%). The detailed CFD simulation of wind distribution and 

pollutant dispersion process within the area was presented. Present CFD model (1800 

µg/m3) over predicted 1-hour averaged NO2 ground concentrations by a factor of 3 

compared to the present GPM (700 µg/m3) but it provides more information on wind 

distribution as well as pollutant dispersion process. A new atmospheric dispersion 

solver has been developed that is able to simulate pollutant dispersion on both regional 

scale using GPM and building scale using CFD model.  
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ABSTRAK 

Analisis Penilaian Kesan Alam Sekitar umumnya terhad kepada skala 

kejiranan bagi simulasi bahan pencemar udara menggunakan model Gaussian Plume 

(GPM). Kaedah ini menambahbaik resolusi simulasi kepekatan bahan pencemar atas 

tanah dalam perisian konvensional GPM kepada skala bangunan dengan 

menggabungkannya bersama model Dinamik Bendalir Berkomputer (CFD). Kajian ini 

bertujuan untuk membangunkan algoritma ramalan pencemaran udara bagi pelepasan 

bahan pencemar daripada cerobong asap industri. Ia digunakan untuk meramal, 

mensimulasi dan mengawal pencemaran udara di kawasan perindustrian bandar 

dengan menggunakan GPM dan model CFD yang disatukan dalam satu algoritma. 

GPM digunakan untuk meramal tahap pencemaran udara secara kasar bagi mencari 

kawasan berkepekatan tinggi. Model CFD pula digunakan untuk simulasi terperinci di 

kawasan berkepekatan tinggi tersebut. Algoritma pengesanan bangunan dari imej 

satelit menggunakan teknik pengesanan tapak bangunan dan anggaran ketinggian 

bangunan berdasarkan ketebalan bayang telah dibangunkan untuk meringkaskan pra-

pemprosesan model CFD. Dalam tesis ini, algoritma CFD menggunakan kaedah 

fractional step untuk penyelesaian secara efisien dan model pergolakan Prandtl 

Mixing Length untuk pengiraan yang pantas. Ketepatan algoritma ini telah diuji dan 

disahkan menggunakan data eksperimen piawai dan kajian eksperimen secara 

berperingkat (kurang 3% untuk kaviti, kurang 8% untuk pergerakan udara merentasi 

kiub). Hasil kajian menunjukkan algoritma CFD yang dibangunkan adalah cukup tepat 

kerana model pergerakan angin meramal sebanyak 1.04 m/s (15.6% mempunyai 

sisihan kurang 10%) lebih tinggi daripada dapatan eksperimen dan dapat meramalkan 

arah angin dengan betul dalam lingkungan sudut 60° (37.5% mempunyai sisihan 

kurang 15°) berbanding dengan data piawai. Pencemaran udara dari cerobong asap 

utama di Taman Perindustrian Pasir Gudang telah dikaji menggunakan GPM dan zon 

kepekatan NO2 yang tinggi terdapat di Taman Air Biru. Keputusan mencadangkan 

bahawa kepekatan purata 24-jam SO2 dan PM10 adalah di bawah had kualiti udara 

(AAQS) iaitu sebanyak 8.9 μg/m3 (8.4%) dan 11.4 μg/m3 (7.6%). Sementara itu, 

kepekatan purata 24-jam NO2 melebihi had AAQS sebanyak 270.3 μg/m3 (360%). 

Simulasi CFD yang terperinci terhadap pergerakan angin dan proses penyebaran 

pencemar di kawasan ini telah dibentangkan. Model CFD dalam kajian ini (1800 

µg/m3) terlebih anggar kepekatan purata 1-jam NO2 dengan faktor 3 berbanding GPM 

(700 µg/m3) tetapi ia mempunyai data yang lebih lengkap mengenai taburan angin dan 

juga proses pergerakan bahan pencemar udara. Algoritma penyebaran bahan pencemar 

udara yang baru telah dibangunkan bagi mensimulasikan penyebaran bahan pencemar 

udara pada kedua-dua skala serantau menggunakan GPM dan skala bangunan 

menggunakan model CFD.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Air pollutant release from transportation and industries have been major threat 

to human health and wellness in rural and urban areas (Tian et al., 2019). Air pollutants 

are the early origin of respiratory diseases (Kim et al., 2018) that need to be constantly 

monitored to preserve air quality and environment.  One of the methods to control air 

pollution is by regulating law to limit permissible amount of harmful gases into the 

atmosphere. In order to do so, air pollution dispersion simulation is needed to estimate 

the allowable release amount and assess the impact of unhealthy chemical releases to 

the surrounding ambient atmosphere.  

In environmental town planning, air pollutant prediction and simulation in 

urban industrial park is important to identify critical areas where pollutant entrapments 

are taken place due to vehicle emissions, industrial release, agricultural waste and 

construction dusts. They are used by urban planners for long-term air pollution risk 

and health assessments, evacuation plan during accidents and assists in smart city 

design with good ventilation resulting in effective natural pollutant removal process. 

Besides, the analysis prevents failed urban design such as developing residential areas 

around polluted areas as well as evade late warnings of severe pollution levels that 

adversely affect health of citizen in the long run. In addition, detailed simulation can 

also be used to locate strategic station for air cleaning devices in urban areas. 

In practical use, air pollutants dispersion software are developed based on 

Gaussian Plume model. They are based on conical plume assumption in which the 

concentration across the plume cross-section has a Gaussian (normal) distribution. 

Those software are used to estimate the pollutant concentration on the ground around 

industrial stack such as the well-known U.S. Environmental Protection Agency (EPA) 
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Regulatory Model (AERMOD). This model is widely used for Environmental Impact 

Assessment (EIA) because it is sufficiently accurate, relatively simple to run with short 

computing time and low computer requirement. On average computer, for 50 x 50 

number of grids with 200m distance between each grid (10 km x 10 km simulation 

area), those software usually take seconds to calculate 1 hour ground-level pollutant 

concentration (GLC) and approximately 15 to 40 minutes to calculate 1 year GLC. The 

Random Access Memory (RAM) used is relatively low compared to other advanced 

models since Gaussian Plume model can be run effectively with lower than 5000 

number of grid points. However, Gaussian Plume model falls short in complex built 

environment due to flat terrain assumptions that were used during model development.  

For complex urban structures, Computational Fluid Dynamics (CFD) models 

are better in handling three-dimensional (3D) air flow and pollutant dispersion within 

building configurations but it is less popular among environmental modellers due to 

high computing load required, complexity of the setup and long simulation times 

(Antonioni et al., 2012). In practice, CFD models are only able to conduct simulation 

on approximately 1 km x 1 km x 1 km computational domain with lower than 10 m in 

grid size (approximately 1 million grid points). Though, it may take more than 1 hour 

to complete the calculation for steady flow and up to days and months for unsteady 

and transient flow. Moreover, the simulation times might increase significantly for 

larger CFD mesh (discrete grid points to solve air/fluid equations). In common, such 

simulations can take more than 1 GB of RAM usage on average computer. For these 

reasons, CFD analysis are generally not included in EIA analysis. Although air 

pollutant prediction and simulation has been studied extensively, no attempt has been 

made to analyse detailed wind distribution and pollutant dispersion process on high 

concentration zones in urban industrial park (network of stacks with nearby residential 

areas) predicted from conventional Gaussian Plume model. 

In this study, both models are developed together in a single algorithm to 

complement their limitations. Due to poles apart models' structure, fundamental 

equations, coding architectures and massive programming effort to integrate both 

models in a single algorithm, there is no effort found in the literature on integrating 

both models as one. The primary advantage acquired by integrating both models in the 
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same algorithm is that it allows user to find the high concentration zones using 

Gaussian Plume model and further investigate pollutant dispersion process within the 

areas using CFD model. In this study, the code of both models are written from scratch 

to ensure unified programming structure in order to carry out the integration. The main 

difficulty of this study lies on figuring out coding implementation of collective 

governing equations and assuring accuracy, stability, efficiency and robustness of the 

algorithm. Integrated Gaussian and CFD model allow multiple scale air pollutant 

dispersion prediction commencing from regional/neighbourhood estimation of air 

pollution level using Gaussian Plume model in neighbourhood scale (104 m in 

computational domain size) up to detailed building scale simulation (103 m) using CFD 

model as shown in Figure 1.1 (residential area in Pasir Gudang)  (Cui et al., 2016). 

Hence, ability of the present algorithm developed in this study ranging from 

conducting routine air pollution assessment for regional estimation of air pollution 

level to more detailed wind flow analysis within building structures in the urban 

industrial park. 

 

(a) 
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                                (b)                                                                 (c) 

Figure 1. 1 (a) Location of Pasir Gudang Industrial Park (b) Neighbourhood scale 

(104 m or 10 km x10 km using Gaussian Plume model) (c) Building scale (103 m or 1 

km x 1 km using CFD model) (Google Maps, 2019). 

 

Applying CFD models on complex urban structures requires extra task to 

remodel the buildings. Although accuracy of CFD models are satisfactory in recent 

years, generating urban 3D building models for CFD solvers still require manual effort 

especially in highly populated areas with multiple building configurations. In 

commercial software such as the well-known ANSYS Fluent software, users need to 

manually model the buildings using third-party software such as SOLIDWORKS 

(Bock, 2015). In the present CFD model, a smart function to automatically generate 

CFD mesh consisting urban buildings using image processing of satellite image is 

developed. Even though modellers are able to obtain the building data from 

Geographic Information System (GIS) data centre, several limitations of GIS approach 

restrict the convenience of the process. Those constrains include digitizing accuracy, 

incomplete data for rural and remote areas, costly and time consuming to obtain the 

data, manual update that causes human error and require good understanding on 

software architecture to extract available information before data manipulation 

(Schmit et al., 2006). 

In contrast, this study proposes a more reliable and effective way to generate 

building geometries using satellite image for CFD simulation. This approach analyses 

building footprints information and estimates the height using shadow length to 
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produce urban geometries by extruding the footprints detected beforehand. 

Furthermore, this technique only requires Red Green Blue (RGB) satellite image (.jpg, 

.jpeg, .png) to process which is much easier to obtained, low in cost, faster data 

acquisition, good availability, low memory requirement, efficient building generation 

process, partially automated and suitable for repetitive building extraction for entire 

city mapping application. From our observation, upcoming technological utilization 

that are predicted to be impacting environmental modelling study is CFD and 

automatic building generation from satellite image. This study attempts to merge 

unique capabilities of both research areas to produce a smart algorithm that ease 

modelling in environmental studies. 

In short, this study emphases on integrating Gaussian Plume algorithm 

alongside air flow and pollutant dispersion solver based on CFD model. Additional 

unique features on CFD model mesh generation for automatic building construction 

from satellite image is developed using building footprint detection and height 

estimation technique. 

1.2 Problem Statement 

In standard practice, Gaussian Plume model (regional estimation of air 

pollution level in EIA analysis) and CFD models (detailed air flow and pollutant 

dispersion simulations) are used in different applications and purposes. Gaussian 

Plume models generally applied in predicting ground concentration from industrial 

stack release in EIA analysis, whereas CFD models are used to attain detailed wind 

flow and pollutant simulation in urban areas. By having both models in the same 

algorithm, town planners will be able to find areas in urban industrial park with severe 

pollutant concentration and further investigate those regions using CFD model. In 

order to achieve this, a new algorithm are developed from scratch as both models are 

developed separately due to dissimilar approaches, assumptions, fundamental 

principles, governing equations and parameters used in the models. The present 

algorithm is not restricted to provide regional estimation of air pollution level (as in 

commercial software packages), but also able to present detailed wind distribution, 
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pollutant dispersions and entrapment zones within respective areas that is crucial to 

monitor in the long run. Existing commercial atmospheric dispersion software is not 

capable to do so.  

For air pollutant simulation across complex building structures, building data 

such as stored in GIS are hard to acquire, expensive in cost and usually less accurate 

for small cities and undeveloped areas. GIS data require manual update on regular 

basis to stay updated with newly developed areas and a large number of GIS personnel 

are needed to cover data for all cities. In addition, manual data update practice in GIS 

may cause human error as well as labour and time consuming. As for current CFD 

commercial software, users need to remodel buildings and obstacles which results in 

repetitive and tedious process for air pollutant mapping in town planning application. 

To our knowledge, an effective tool that is able to automatically produce CFD mesh 

from satellite image integrated with air pollutant simulation solver for urban planners 

is still unavailable. Besides, studies on CFD analysis on high concentration zones 

predicted by Gaussian Plume model within urban industrial park is lacking in the 

literature.  

For that, present study integrates both Gaussian and CFD model with 

automated building generation algorithm from satellite image and apply the algorithm 

in high pollutant concentration zone in urban industrial park.  

1.3 Research Objectives 

The objectives of the present study are: 

(a) To integrate urban building generator from satellite image, Gaussian Plume 

and CFD model. 

(b) To evaluate performance of the developed satellite image urban building 

generator, Gaussian Plume and CFD algorithms. 
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(c) To analyse wind flow, air pollutant dispersion and critical zones at high 

ground-level concentration areas in urban industrial park. 

 

1.4 Significance of Study 

This study improves conventional air pollutant regulatory model by providing 

detailed analysis of wind flow and pollutant dispersion process at high concentration 

zones predicted by the Gaussian plume model. It enhances usage of CFD model 

alongside Gaussian Plume model for air pollutant modellers by providing relatively 

accurate and fast CFD solver using the least expensive turbulence model coupled with 

automated CFD urban mesh generator from satellite image. As a result, an integrated 

Gaussian and CFD solver is produced that is practical for regulatory use united with 

additional capabilities to get detailed simulation on highly concentrated areas. This 

study encourages the use of CFD model in EIA analysis to complement data provided 

by Gaussian Plume model. 

1.5 Scope of Study 

In this study, Gaussian Plume and CFD model are used. In the CFD model, 

Fractional Step Method is used as the steady-state wind flow solver, Prandtl Mixing 

Length model is used for turbulence calculation. In urban building generator 

algorithm, colour separation technique is used for building detection process whereas 

shadow length estimation is used for building footprint height extrusion. 

This study focuses on simulation of non-reactive air pollutants (SO2, NO2 and 

PM10) released from major industrial stacks in Pasir Gudang Industrial Park, Johor 

towards nearby residential areas. In the simulation, only industrial stacks emissions 

are considered without background pollutant concentration (previous day, month and 

year concentration) and external pollutant sources such as vehicular emissions and 
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construction sites are not taken into account. In this study, the air pollutants are 

assumed to be released towards a completely clean ambient atmosphere thus the 

ground pollutant concentration exerted to the nearby residential areas in Pasir Gudang 

are only contributed by respective industrial stacks emissions. 

It is assumed that all buildings are on flat terrain without elevation (hills and 

mountains), no trees and bushes are considered and all buildings have flat rooftops in 

which building geometries are dependent on their footprint shapes for building 

extrusion process. 
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