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ABSTRACT 

Previous models of Ebola epidemic growth in the affected populations of West 
Africa such as found in the literature have insufficient consideration of the 
preventive and control compartments for the models.  This had led to inaccurate 
estimation of Ebola virus disease reproduction number and insufficient quantitative 
information for policy decision making of Ebola outbreak control.  An 
improvement over those models by using additional class specifications that fully 
represent the Ebola epidemic dynamics is necessary.  In this research, a new 
deterministic epidemic growth model which explains Ebola growth dynamics 
alongside preventive and control strategies was proposed. The Susceptible-
Vaccined-Exposed-Quarantine-Infected-Hospitalised-Funeral-Recovered 
(SVEQIHFR) stability analysis showed that the disease-free equilibrium and the 
unique endemic equilibrium are asymptotically stable both locally and globally.  
Next generation matrix was used to determine the model threshold parameter.  The 
threshold was found to represent the average individuals infected due to 
transmission from the community, hospitals and funeral events.  The SVEQIHFR 
model was fitted to the Ebola cumulative incidence and death data of Guinea, 
Liberia and Sierra Leone outbreaks, collected from World Health Organization 
(WHO) and Center for Disease Control (CDC). Nonlinear least square method was 
used to estimate the model parameters and their confidence intervals were 
calculated using the bootstrapping method. Ebola epidemic growth threshold 
was estimated to be 1.28, 1.72 and 1.89 for outbreaks in Guinea, Liberia and 
Sierra Leone respectively.  The model predicted the Ebola epidemic final size in 
Guinea, Liberia and Sierra Leone with 98%, 99.03% and 98.4% precision and 
Root Mean Square Error (RMSE) values of 0.1135, 0.1216 and 0.1167, 
respectively.  Meanwhile the Mean Average Percentage Error (MAPE) were 
22.1%, 33.2% and 20.2% for infected cases in the respective countries.  Latin 
Hypercube Sampling (LHS) or Partial Rank Correlation Coefficient (PRCC) 
procedure was implemented to carry out uncertainty analysis for the model’s 
estimated parameters of Ebola transmission and prevalence outcome variables. It 
was proven that transmission coefficients and effective isolation, safe burial, 
effective identification and tracking of Ebola victims are critical to breaking Ebola 
transmission and prevalence.  This model has comprehensively represented the 
dynamics of Ebola virus disease growth in the populations.  It can help 
international agencies and affected countries’ public health administrators to plan 
for prevention and control of the spread of Ebola virus disease.  The model 
can also be used to study similar outbreaks in the future. 
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ABSTRAK 

Model-model  terdahulu  bagi  pertumbuhan  epidemik  Ebola  dalam  kalangan  
populasi  Afrika  Selatan yang  terjejas  seperti  yang  terdapat  dalam  literatur  
mempunyai  aspek  pencegahan  dan  kawalan  yang kurang  mencukupi  bagi  
model  tersebut.  Ini  telah  membawa  kepada  ketidaktepatan  anggaran  angka 
pembiakan  penyakit  Ebola  dan  ketidakcukupan  data  kuantitatif  untuk  
penggubalan  dasar  bagi pengawalan  wabak  Ebola.  Penambahbaikan  ke  atas  
model-model  tersebut  dengan  menggunakan spesifikasi  kelas  tambahan  yang  
mewakili  dinamik  epidemik  Ebola  sepenuhnya  adalah  diperlukan. Dalam 
kajian ini, satu model baharu pertumbuhan epidemik berketentuan yang  
menerangkan tentang dinamik pertumbuhan Ebola di samping strategi pencegahan 
dan kawalan telah dicadangkan. Analisis kestabilan  Susceptible-Vaccined-
Exposed-Quarantine-Infected-Hospitalised-  Funeral-Recovered (SVEQIHFR)  
menunjukkan  bahawa  keseimbangan  bebas-penyakit  dan  keseimbangan  wabak  
unik adalah stabil secara asimptot, kedua-duanya secara tempatan dan sejagat. 
Matriks generasi mendatang telah  digunakan  untuk  menentukan  model  
parameter  ambang.    Nilai  ambangnya  didapati  mewakili purata  individu  yang  
dijangkiti  akibat  daripada  aktiviti  penjangkitan  melalui  komuniti,  hospital  
dan acara pengebumian  mayat.   Model SVEQIHFR  telah dipadankan dengan  
data  kejadian  dan kematian terkumpul Ebola di Guinea, Liberia dan Sierra 
Leone, dikumpul daripada Pertubuhan Kesihatan Dunia (WHO) dan Pusat 
Kawalan Penyakit (CDC).  Kaedah kuadrat terkecil tak linear telah digunakan 
untuk menganggar parameter model dan selang keyakinannya dihitung 
menggunakan kaedah tarikan gantian rawak.  Nilai  ambang  pertumbuhan  
epidemik  Ebola  dianggarkan  bernilai  1.28,  l.72  dan  1.89  bagi wabak masing-
masing di Guinea, Liberia dan Sierra Leone. Model tersebut meramalkan saiz 
terakhir epidemik Ebola di Guinea, Liberia dan Sierra Leone masing-masing  
dengan  ketepatan  98%,  99.03% dan  98.4%  dan  nilai  Ralat  Punca  Min  
Kuasa  Dua  (RMSE)  pada  0.1135,  0.1216  dan  0.1167. Manakala,  Ralat  
Peratusan  Purata  Min  (MAPE)  adalah 22.1%, 33.2% dan 20.2% bagi kes 
jangkitan di  negara  masing-masing.  Tatacara  Hiperkubus  Latin  (LHS)  atau  
Pekali  Korelasi  Pangkat  Separa (PRCC)  telah  digunakan  bagi  menjalankan  
analisis  ketakpastian  ke  atas  model  parameter  anggaran bagi  pembolehubah-
pembolehubah  anggaran  penjangkitan  dan  hasil  penyebaran  Ebola.    Terbukti 
bahawa  pekali-pekali  penjangkitan  dan  pengasingan  yang  berkesan,  
pengebumian  yang  selamat, pengenalpastian  dan  penjejakan  mangsa  Ebola  
yang  berkesan  sangat  penting  dalam  menyekat penjangkitan  dan  penyebaran  
Ebola.  Model  ini  telah  dapat  mewakili  secara  komprehensif  dinamik 
pertumbuhan  virus  penyakit  Ebola  dalam  kalangan  populasi-populasi.  Ia  
boleh  membantu  agensi- agensi antarabangsa dan kementerian kesihatan awam 
di negara-negara yang terjejas untuk merancang pencegahan dan pengawalan 
sebaran virus penyakit  Ebola.  Model  ini  juga  boleh  digunakan  untuk 
mengkaji  wabak  serupa  pada  masa  akan datang.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.0 Introduction 

This chapter introduces the thesis.  It describes the background to the research 

problem.  It further explains the research problem statement, the aim and objectives 

of the study, scope and limitation of the study, significance and motivation of study.  

The chapter finally outlines the thesis structure by summarizing each chapter. 

 

 

 

 

1.1  Motivation 

  The Guinea Ebola outbreak infected over 28,000 individuals and killed 

nearly half the number infected in the West African region.  Even though WHO 

declared West Africa Ebola epidemic to be a ‘public health emergency of 

international concern',  on August 8th, 2014 (WHO Ebola Response Team, 2014), it 

spread to more than 5 countries in the region (Guinea, Liberia, Sierra Leone, Nigeria 

Mali and Senegal), adversely affecting Guinea, Sierra-Leone, and Liberia.  It became 

clear for every nation to be watchful and proactively plan to contain the epidemic, 

should the disease be transmitted into a country (Gomes et al., 2014).  Ebola is an 

extensively, severe and uncontrollable infectious disease (Poletto et al., 2014; 

Shrivastava et al., 2015) that broke out from 22nd March 2014 until September 2015. 

 

 

Ebola outbreaks have been studied based on SEIR-variant epidemic models 

(Legrand et al., 2007; Althaus, 2014; Rivers, 2014; Browne et al., 2015; Shen et al., 

2015; G. Chowell et al., 2015).  Re-emergent of Ebola outbreak and its rapid spread 
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across borders having high case fatality rate makes it suitable for investigation.  

Ebola epidemic outbreak is currently ravaging the Democratic Republic of Congo 

(Gatherer, 2018; Barry et al., 2018). 

 

 

The need for quantitative information is enormous for epidemic control 

decisions.  How brief and sufficient information is, depends on the dimension of an 

epidemic model.  If a model considered more disease stages, control measures and 

population dynamics, the model will explain the biological reality of the disease 

better, and the derived information will accurately gauge control decisions. 

 

 

Ebola epidemic model should have sufficient parameters characterising 

preventive and control strategies, disease characteristic and population dynamics.   It 

should also accurately assess final outbreak scale and the sensitivity of the model to 

changes in the model parameters.  Therefore epidemic model should be refined, 

without compromising reality with simplification, to include disease characteristic in 

the population amidst preventive or control measures. 

 

 
Until recently, Ebola had no vaccine, among other interventions for effective 

prevention of the outbreak.  Assessing the impact of this measure will provide 

information on the effective plan for providing vaccine among the affected 

populations. 

 

 

 

 

1.2 Research Background 

Outbreaks of detected and undetected infectious diseases will continue to 

shock humanity.  Knowledge has to envision the future and carry out investigations 

to cope with dreadful or tragic days of epidemic outbreaks.  Therefore studies to 

overcome epidemic predicament by proactively modelling epidemic dynamics in 
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order to optimally quantify preventive and controls interventions strategies for 

stalling ongoing or future outbreaks is necessary. Moreover, when an epidemic 

spreads relatively quickly across a large number of susceptible individuals, public 

health administrators need timely and accurate information that enables them to 

effectively manage the growth of the epidemic.   

 

 

At the onset of Ebola virus disease outbreak, there had been attempts by 

researchers, making use of interim data, to study and estimate disease incidences 

using different epidemiological methods.  Their findings had helped determine the 

type and degree of intervention control measures required to prevent the spread of 

Ebola disease. 

 

 

Foretelling the future of epidemic is important in assessing the impact of 

preventive or control practices upon the disease growth.  Correct prediction depends 

on correct estimation of model parameter values using the existing outbreak data.  

Therefore appropriate choice of parameters to be estimated or prefixed will 

essentially reduce epidemic forecast imprecision.  Epidemic models that incorporated 

sufficient disease state variables and parameters can provide a high forecast precision 

of Ebola epidemic growth. 

 

 

Until recently there had not been vaccines for Ebola epidemic among humans 

except for animals (Ye and Yang, 2015) with the trial for humans being underway, 

Galvani et al.(2014) attempts to model disease control using vaccine.  Trials of Ebola 

vaccine had been conducted in Guinea, Liberia and Sierra Leone (Bellan et al., 2014; 

Henao-restrepo et al., 2015; David et al., 2017) with some degrees of efficacy.  

While some studies had considered some control measures (Chowell and Nishiura, 

2014; Rivers et al., 2014; Eisenberg et al., 2014; Webb et al., 2015), they did not 

incorporate all technically feasible intervention and control measures that were 

deployed.  Therefore controlling Ebola epidemic requires concerted efforts through 

aggressive implementation of more comprehensive control strategies including 

public enlightenment, contact tracing, isolation and reformed burial practices. 
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Undertaking an erroneous procedure to investigating a disease dynamics will 

adversely affect planning and efficient management of the outbreaks.  Consequently, 

studies have to formulate models and accurately assess the growth of Ebola based on 

comprehensive implementable prevention and control factors including vaccine, 

contact tracing, quarantine, isolation and safe burial.  In addition to understanding the 

transmission dynamics of Ebola, the epidemic models will provide quality and 

quantitative information for proper management of the outbreak.  This study attempts 

to incorporate intervention measures than were ever attempted. 

 

 

 

 

1.3  Problem Statement 

Studies had been undertaken to investigate growth of Ebola disease outbreak 

in populations.  These attempts to model Ebola are based on some factors while not 

considering some disease and prevention or control compartments, thereby 

inadequately representing disease dynamics amidst population and control factors.  

Such models do not provide detail quantitative information for managing Ebola 

outbreak.  In the high-dimensioned Ebola dynamics models there had not been 

analytical proves of stability to validate the application of the model on the growth 

dynamics of Ebola in a population. 

 

 

  Due to some model structures and assumptions adopted in estimating model 

parameters and epidemic size in other studies, the Ebola disease transmission rate 

and Ebola epidemic size in the affected populations had been inaccurately estimated.  

Furthermore, sensitivity analysis of Ebola prevalence to model parameter changes, 

which can help understand behaviour of the endemic equilibrium state of infectious 

state variables, have never been attempted for Ebola outbreak analysis.    
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This study will model Ebola outbreak based on comprehensive preventive 

and control factors employed amidst the population dynamics.  The study will proof 

the stability of the high-dimensioned epidemic model at both disease-free and 

endemic equilibria.  Furthermore a newer technique for sensitivity analysis of the 

model's state variables at endemic equilibrium points will be developed to investigate 

the changes of endemic equilibrium points as model parameters change. 

 

 

 

 

1.4  Research Questions 

The study seeks to respond to the following research questions: 

 

 

i. Is the Ebola growth dynamics model stable at both disease free equilibrium and 

endemic equilibrium? 

ii. How accurate can Ebola growth dynamics model estimate the final size of the 

outbreak?  

iii. How influential are model parameters to Ebola virus disease transmission and 

prevalence? 

iv. How significant is the uncertainty associated with a model parameter to model 
outcome variables' estimation? 

 

 

 

 

1.5 Objectives of the Study 

The objectives of this study are to: 

 

i. Design and construct an Ebola epidemic growth model for West Africa Ebola 

outbreak that is stable and robust 

ii. Prove the model stability at disease-free and endemic equilibrium 
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iii. Design a new algorithm that optimises the model parameters using Least 

Squares Method  

iv. Perform uncertainty and sensitivity analysis (perturbation) for determining the 

most influential parameters affecting Ebola disease transmission and 

prevalence. 

 

 

 

 

1.6 Scope and Limitation of Study 

In the past, several Ebola outbreaks had been recorded on different scales and 

geographic spread, but the extent of West Africa Ebola outbreak had surpassed all.  

Therefore Ebola outbreak cannot be fully investigated due to diversity and 

complicity in the outbreaks across different countries and continents.  This study 

focuses on the three most affected countries - Guinea, Liberia, and Sierra Leone.  

This is partly justified by the severity of the outbreak, volume and availability of data 

from these countries compared to other affected West African countries like Nigeria, 

Mali, Senegal and Cote d'Ivoire. 

 

 

The model is structured based on SEIR-variant epidemic model structure.  

Though there are other forms (object, droplet, aerosol, reservoir-to-human, 

environment-to-human)(Judson et al., 2015) through which Ebola virus can be 

transmitted, the model considered the human-to-human transmission of Ebola virus 

in the community, hospital and during funeral by coming in contact with body fluid 

of infected infectious individual or Ebola-induced death victim. 

 

 

This research covered 541 days of Ebola epidemic starting from 22nd March 

2014 to 14th September 2015.  This study uses outbreak dataset of cumulative 

infected and deaths case collected from Centre for Disease Control (CDC, 2016).  

The data is used to estimate parameters for the disease progression and control 

parameters in the affected countries.  Though our model made use of data covering a 
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long period of the outbreak, our estimates could be marred with some degree of 

errors that affected data collection.   It is due to the fact that Ebola incidence and 

deaths cases are collected while the outbreak was ongoing, under extreme conditions 

therefore inherent data collection errors will affect epidemic size estimates. 

 

 

Deterministic epidemic models provide quantitative information for large 

community or population, in deterministic models disease states and control factors 

are compartmentalized. In stochastic models, states of individuals change at every 

discrete-time step in a probabilistic manner.  Though stochastic modelling of disease 

is preferred when studying a small community, deterministic epidemic models are 

suitable for large scale spatiotemporal epidemic outbreak analysis. 

 

 

Assumptions influence epidemic model formulation and performances 

because they specify and limit approaches to formulation and analysis procedure.  In 

this study homogenous mixing among the population, immunity after recovery from 

the disease, and methods of disease transmission also dictated the Ebola virus disease 

model structure. 

 

 

The uncertainty associated with prefixed parameters influences performances 

of epidemic models.  In this study simulation is carried out using a range of 

parameter's value, in order to minimize the influence of variance on estimated 

parameters.  Analyzing the uncertainty and sensitivity of the model performance to 

parameter changes only provides insight but not correcting the deviation.  This study 

provided a wider overview of uncertainty analysis of parameter changes to model 

response variables in order to ascertain the influence of model parameters changes. 
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1.7 Significance of the Study 

The Ebola outbreak in Guinea had prompted researchers to model the 

outbreak dynamics by incorporating preventive and control intervention strategies.  

In attempting to contain Ebola outbreak empirically, the evaluation of dynamics and 

growth of epidemic will be needed to provide quantitative information for policy 

making or outbreak management decision making.  Estimated Ebola epidemic 

control parameter values will inform public health administrators on how much 

resources is required for Ebola control. 

 

 

Over the years disease control agencies like the World Health Organization, 

(WHO) and Centre for Disease Control and Prevention (CDC) decide on optimal 

resource allocation for effective intervention, control implementation plans to 

contain epidemic outbreaks. They were been able to do so because of findings from 

studies that comprehensively modelled Ebola with control interventions amidst 

disease and population dynamics.  Hence findings of this study will contribute to 

effective preventive or control interventions deployment strategy. 

 

 

While SEIR epidemic model, had broadly classified epidemic dynamics of 

diseases, SEIR- variants are usually formulated to incorporate prevention and control 

factors that resulting into more compartments that represent the disease 

characteristics.  This study adopted this advantage in order to investigate the Ebola 

growth in Guinea, Liberia and Sierra Leone.  This study advances the course of 

research on infectious disease transmission dynamics.  The model is expected to be 

used to study similar infectious disease outbreak in the future.    Publications of this 

study will add to the literature of Ebola epidemic growth dynamics. 
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1.8 Thesis Organization 

This section outlines the research process.  It summarizes what is done in 

each chapter. 

 

 

Chapter 1 introduces the thesis.  It describes the overall research background.  

It describes the research problem statement, aim and objectives of the study, scope 

and limitation of the study, significance of the study and motivation. This chapter 

provides the overview, goal and purpose of this research. 

 

 

Chapter 2 reviews related literature of this study, the review guided the 

development of the research problem and objectives.  It reviewed methodologies, 

techniques, and guidelines that have been used to solve similar studies of Ebola 

growth.  The disease epidemic and brief exposition on the cases of study is 

highlighted in this chapter. The review helped determine the solution approach 

adopted for the investigation of Ebola epidemic growth in this study. 

 

 

Chapter 3 explains the methodology of the research including Ebola growth 

modelling process and mathematical background steps for performing epidemic 

model stability analysis.  The chapter explained the next-generation matrix approach 

for determining the epidemic model threshold.  Algorithm for least square parameter 

estimation, implementing Nelder-Mead simplex was also explained.  The chapter 

also explained the methodology for normalized sensitivity index of state variables at 

endemic equilibrium points and Latin hypercube sampling/partial rank correlation 

coefficient (LHS/PRCC) procedure that is used for carrying out sensitivity and 

uncertainty analysis of Ebola epidemic model. 

 

 

Chapter 4 accounts for the modelling process of Ebola growth.  It provides a 

schematic flow diagram of the disease transmission and transition rates resulting into 

a system of ordinary differential equations explaining the dynamics of Ebola growth.  
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In this chapter, the threshold of Ebola model is determined using next-generation 

matrix approach.  The model stability analysis is performed by proving mathematical 

theorems using the Routh-Hurwitz criterion and construction of Lyapunov functions. 

 

 

Chapter 5 accounts for Ebola epidemic growth model parameter estimation. 

The estimation made use of nonlinear least square method that implemented the 

Nelder-Mead simplex (NMS) algorithm.  In this chapter, the basic reproduction 

number of Ebola outbreaks in the affected countries is estimated.  The 95% 

confidence interval of the estimated parameter and the basic reproduction are 

determined.  Furthermore forecasting Ebola outbreak epidemic final size for each 

country is determined with forecast performance and forecast precision error of the 

model aptly evaluated. 

 

 

In Chapter 6, sensitivity and uncertainty analysis of the model response to its 

parameter changes are analyzed.  Sensitivity index of disease transmission and 

disease prevalence to model parameter changes are determined.  For the sensitivity 

index of Ebola prevalence, a new approach is implemented to assess the sensitivity 

index of the state variables at equilibrium points. For uncertainty analysis, Latin 

hypercube sampling and partial rank correlation coefficient procedure are 

implemented to assess the strength and relationship of uncertainty in model 

parameters changes to model outcome variables (disease transmission, the total 

number infected and the total number hospitalized). 

 

 

Finally, Chapter 7 summarizes the research, by providing the summary, 

conclusion and an outlined research findings and contributions to knowledge.  It 

further suggests studies that can resolve some limitations of this research work in the 

future. 
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