
INTERLEAVED INCREMENTAL-DECREMENTAL SUPPORT VECTOR

MACHINE FOR EMBEDDED APPLICATIONS

JEEVAN A/L SIRKUNAN

UNIVERSITI TEKNOLOGI MALAYSIA



INTERLEAVED INCREMENTAL-DECREMENTAL SUPPORT VECTOR

MACHINE FOR EMBEDDED APPLICATIONS

JEEVAN A/L SIRKUNAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

School of Electrical Engineering

Faculty of Engineering

Universiti Teknologi Malaysia

JULY 2022



ACKNOWLEDGEMENT

First and foremost, I would like to thank God for giving me the strength to

complete this thesis. I would also like to express my greatest appreciation to my

supervisor, Associate Professor Ir. Dr. Muhammad Nadzir Bin Marsono, for allowing

me to work in an amazing field of research. With his continuous encouragement,

criticism, and guidance, I completed my research. Thanks to him, I realized my full

potential in academics and other aspects of life. Besides that, I would like to thank

my co-supervisor, Associate Professor Dr. Shaikh Nasir @ Nasir bin Shaikh Husin for

commenting and guiding me on my work and involving me in external projects, which

expanded my horizon in this field.

My sincerest appreciation goes to my fellow lecturers Dr. Jasmine Hau Yuan

Wen, Prof Dr. Mohamed Khalil Hani, Dr. Usman Ullah Sheikh, for their support

and technical advice. I would also like to thank my all fellow researchers Mohammed

Sultan Mohammed, Dr. Mohd Shahrizal Rusli, Dr. Mosab Hamdan, Dr. Tang Jia Wei,

Dr. Lee Yee Hui, Dr. Loo Hui Ru, Tan Tze Hon and Tei Yin Zhen for accompanying,

improving and supporting me through hard times during my study here.

I would also like to thank the utmthesis LATEXproject developers for making the

thesis writing process a lot easier for me. Thanks to them, I could focus on the content

of the thesis and not waste time on formatting issues.

Finally, I would like to thank my family for always being there for me through

thick and thin. Especially my parents, who never gave up believing in me. Their role

in my life is something I will always need and constantly appreciate.

v



ABSTRACT

Incremental Decremental Support Vector Machine (IDSVM) is one of the

widely used incremental learning algorithms known for its high accuracy for data

stream analytics and high computational complexity. One of the biggest problems of

IDSVM is that the model scales with the input data set size that directly correlates with

the computational and memory resources. In order to deploy IDSVM in an embedded

system with limited memory, a moving window architecture is needed to limit the kernel

sizes. However, this also increases the overall complexity of the algorithm since each

data instance needs to be unlearned when exiting the window. This thesis proposes an

Interleaved IDSVM (IIDSVM) algorithm that performs incremental and decremental

learning concurrently. The interleaved method can reduce the overall kernel size and

consume less memory. This thesis also proposes a reduced-division IIDSVM algorithm

that replaces the more complex division operations with simpler inverse multiplications.

Certain IIDSVM tasks can be simplified by replacing most of the complex divisions

with inverse multiplication that can achieve a similar outcome since only a single

sample variation value is used to update the weights.Finally, a Radial Basis Function

(RBF) kernel, which is a widely used kernel in SVM, is proposed to be implemented as

a hardware accelerator to speed up the computation time of the IIDSVM. Based on our

experiments, the proposed IIDSVM achieved a speedup of 2.5 - 4.2× on computation

time while producing similar accuracy as IDSVM and LIBSVM. Furthermore, the

reduced-division IIDSVM can improve computation time up to 1.4× on a Nios II

embedded platform for certain data sets. The RBF kernel’s hardware implementation

is analyzed on the Stratix V Field Programmable Gate Array (FPGA) platform. It can

perform up to four orders of magnitude faster than the software implementation on the

Nios II embedded processor for data sets with 8, 12, and 16 feature sizes. Besides that,

the proposed architecture RBF kernel can maintain a maximum operating frequency of

approximately 200Mhz for feature sizes 8, 12, and 16. Collectively the proposed works

can improve the runtime of incremental SVM compute-intensive data stream analytics.

vii



ABSTRAK

Mesin Vektor Sokongan Tokokan dan Susutan (IDSVM) ialah salah satu

algoritma pembelajaran tokokan yang digunakan secara meluas dengan ketepatan

yang tinggi untuk analitik aliran data tetapi mempunyai kerumitan pengiraannya yang

tinggi. Salah satu masalah terbesar IDSVM ialah model berskala dengan saiz set data

input yang berkorelasi secara langsung dengan sumber pengiraan dan memori. Untuk

menggunakan IDSVM dalam sistem terbenam dengan memori terhad, seni bina seakan

tetingkap bergerak diperlukan untuk mengehadkan saiz kernel. Walau bagaimanapun,

ini juga meningkatkan kerumitan keseluruhan algoritma kerana setiap tika perlu

dilupakan apabila keluar dari tetingkap. Tesis ini mencadangkan algoritma IDSVM

antara kembar (IIDSVM) yang melaksanakan pembelajaran tokokan dan susutan secara

serentak. Kaedah antara kembar boleh mengurangkan saiz kernel keseluruhan dan

menggunakan memori yang lebih kecil. Tesis ini juga mencadangkan algoritma

IIDSVM dengan pengurangan pembahagian dan menggantikan operasi bahagi yang

kompleks dengan pendaraban songsang yang lebih mudah. Tugas-tugas tertentu dalam

IIDSVM boleh dipermudahkan dengan menggantikan sebahagian besar pembahagian

kompleks dengan pendaraban songsang bagi mencapai hasil yang serupa kerana hanya

satu nilai variasi sampel digunakan untuk mengemas kini pemberat. Akhir sekali,

kernel Radial Basis Function (RBF), yang merupakan kernel yang digunakan secara

meluas dalam SVM, dicadangkan untuk dilaksanakan sebagai pemecut perkakasan

untuk mempercepatkan masa pengiraan daripada IIDSVM. Berdasarkan eksperimen

kami, IIDSVM yang dicadangkan mencapai penambahbaikan 2.5 - 4.2× pada masa

pengiraan sambil menghasilkan ketepatan yang serupa seperti IDSVM dan LIBSVM.

IIDSVM pembahagian berkurang boleh meningkatkan masa pengiraan sehingga 1.4×
pada platform terbenam Nios II untuk set data tertentu. Pelaksanaan perkakasan

kernel RBF dianalisis pada platform Stratix V Tatasusunan Get Boleh Program Medan

(FPGA). Pemecut perkakasan RBF boleh melakukan sehingga empat urutan magnitud

lebih pantas daripada pelaksanaan perisian pada pemproses terbenam NiosII untuk set

data dengan saiz ciri 8, 12 dan 16. Selain itu, kernel RBF seni bina yang dicadangkan

boleh mengekalkan kekerapan operasi maksimum kira-kira 200Mhz untuk saiz ciri 8,

12, dan 16. Secara kolektif kerja-kerja yang dicadangkan boleh meningkatkan daya

pemprosesan bagi pengiraan intensif analitik aliran data SVM.

viii



TABLE OF CONTENTS

TITLE PAGE

DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
ABSTRACT vii
ABSTRAK viii
TABLE OF CONTENTS ix
LIST OF TABLES xiii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xix
LIST OF SYMBOLS xx

CHAPTER 1 INTRODUCTION 1
1.1 Embedded Incremental Learning 2

1.2 Problem Statement 3

1.3 Objectives 5

1.4 Scope of Work 6

1.5 Contribution 8

1.6 Thesis Structure 8

CHAPTER 2 LITERATURE REVIEW 11
2.1 Training for Supervised Machine Learning 12

2.2 Batch-Incremental versus Instance-Incremental Learning 14

2.3 Embedded System Machine Learning 15

2.4 Support Vector Machine 17

2.4.1 Linear Support Vector Machine 17

2.4.2 Nonlinear SVM 22

2.4.3 Regression SVM 23

2.5 IDSVM Learning and Unlearning Algorithm 25

2.6 Related Works on Incremental SVM 31

ix



REFERENCES 145
LIST OF PUBLICATIONS 155

xii



LIST OF TABLES

TABLE NO. TITLE PAGE

Table 2.1 Summary of related works on incremental SVM 43

Table 3.1 Stratix V device specification. 56

Table 3.2 LIBSVM parameter configuration. 59

Table 3.3 Abalone data set details (8 features, 4177 data points). 60

Table 3.4 Cadata data set details (8 features, 20,640 data points). 61

Table 3.5 Cpusmall data set details (12 features, 8,192 data points). 61

Table 3.6 Stockmid data set details (16 features, 9,970 data points). 62

Table 4.1 Least Variation (Lc1, Lc2, Ls, Le, Lr) summary. 72

Table 4.2 Validation Data Sets attributes. 88

Table 4.3 Minimum, maximum and average and prequential MAE for

LIBSVM, IDSVM and IIDSVM. 89

Table 4.4 Timing evaluation for IDSVM and IIDSVM. 91

Table 4.5 Memory requirement of IDSVM and IIDSVM. W is the

size of window and ls is the size of the Sv_set. 92

Table 5.1 Time elapsed (s) for learning and unlearning for proposed

reduce division IIDSVM on Nios II embedded system. 111

Table 5.2 Number of division operations for the Least Variation

and Min Variation tasks for the proposed reduced-division

algorithm 112

Table 5.3 Number of multiplication operations for the Least Variation

and Min Variation tasks for the proposed reduced-division

algorithm 112

Table 5.4 Number of occurrence of division by one and division by

variable in Least Variation task 114

Table 6.1 Runtime performance analysis between the proposed

hardware and software implementation with various

window size and number of features. 133

xiii



Table 6.2 Minimum, maximum and average prequential MAE of

hardware and software implementation of RBF kernel on

for abalone, cpusmall, cadata and stock_mid data sets. 134

Table 6.3 Resource and maximum operating frequency analysis for

RBF kernel hardware with various window size and number

of features. 138

Table 6.4 Comparison of related works on SVM FPGA based

hardware implementations 140

xiv



LIST OF FIGURES

FIGURE NO. TITLE PAGE

Figure 2.1 Categorization of Machine learning. 12

Figure 2.2 Determining optimal separating hyperplane with maximum

margin between two classes. 18

Figure 2.3 The maximum margin error � and slack variables ζ, ζ∗ on

regression SVM decision function. 24

Figure 2.4 Location of Sv_set, Er_set and Re_set sets in the SVM

regression model. 25

Figure 2.5 Flow chart for learning and unlearning for IDSVM. θ are

the weights, � is the margin of tolerance and b is the bias. 26

Figure 2.6 IDSVM Learning. Hc < � . Candidate sample move to

Re_set. 28

Figure 2.7 IDSVM Learning. Hc > � . Changes of data sample set in

Sv_set, Er_set and Re_set. 28

Figure 2.8 IDSVM Learning. Hc > � . Candidate sample move to

Sv_set or Er_set. 29

Figure 2.9 IDSVM unlearning. Candidate sample from Re_set and

removed from the model 30

Figure 2.10 IDSVM unlearning. Candidate sample not from Re_set.

Changes of data sample set in Sv_set, Er_set and Re_set. 30

Figure 2.11 IDSVM unlearning. Candidate sample not from Re_set.

Candidate sample is removed from the IDSVM model 31

Figure 2.12 Related works on incremental SVM. 32

Figure 2.13 Shao et al. proposed IDSVM framework. 42

Figure 3.1 IIDSVM top-level overview. 50

Figure 3.2 Flow chart overview of research approach 51

Figure 3.3 Quartus II GUI. 54

Figure 3.4 Stratix V FPGA. 55

Figure 3.5 Modelsim Altera GUI. 57

Figure 3.6 MATLAB GUI. 58

xv



Figure 3.7 Prequential learning evaluation methodology. As data

arrives the model predicts, followed by learning from the

incoming data. 65

Figure 4.1 Moving window IDSVM. The (x j , y j) is the incoming

training sample. L represent the learning and U
is unlearning. The learning and unlearning is done

sequentially. 83

Figure 4.2 Moving window IIDSVM. The (x j , y j) is the incoming

training sample. L represent the learning and U
is unlearning. The learning and unlearning are

done simultaneously in two different windows. The

demultiplexer selects the incoming data to be inserted in

a particular window; the normal line shows the selection,

while the dashed line shows the data is not flowing to that

window 85

Figure 4.3 Timing evalutation diagram for IDSVM and IIDSVM in

MATLAB. 87

Figure 4.4 Prequential MAE of LIBSVM, IDSVM and IIDSVM for

the abalone data set. 89

Figure 4.5 Prequential MAE of LIBSVM, IDSVM and IIDSVM for

the cadata data set. 90

Figure 4.6 Prequential MAE of LIBSVM, IDSVM and IIDSVM for

the cpusmall data set. 90

Figure 4.7 Prequential MAE of LIBSVM, IDSVM and IIDSVM for

the stock_mid data set. 91

Figure 5.1 Flow chart for Learning and Unlearning for IIDSVM. H
represents the margin of errors, θ are the weights and b is

the bias. The proposed reduced-division method is applied

to the Least Variation and Min Variation only. 96

Figure 5.2 Functional block diagram for Least Variation, Min

Variation and Update error margin H , weights θ and bias

b for learning and unlearing in for IIDSVM. 97

xvi



Figure 5.3 Functional block diagram for Least Variation, Min

Variation and Update margin H, weights θ and bias b for

learning and unlearing for the proposed reduced-division

IIDSVM. 100

Figure 5.4 Nios II SoC embedded system QSys interface. 107

Figure 5.5 Nios II SoC embedded system resources. 107

Figure 5.6 C code vs MATLAB margin of error for abalone dataset. 109

Figure 5.7 C code vs MATLAB margin of error for cadata dataset. 109

Figure 5.8 C code vs MATLAB margin of error for cpusmall dataset. 110

Figure 5.9 C code vs MATLAB margin of error for stock_mid dataset. 110

Figure 5.10 Multiply vs divide computation times on Nios II SoC

embedded system. 111

Figure 6.1 IIDSVM RBF Kernel hardware accelerator on embedded

system. 121

Figure 6.2 Top level architecture for RBF_KERNEL_TOP. 122

Figure 6.3 Functional block diagram of RBF_KERNEL_DU. 123

Figure 6.4 Finite State machine of RBF_KERNEL_CU. 125

Figure 6.5 Functional block diagram for increasing window. 126

Figure 6.6 Functional block diagram for reducing window. 127

Figure 6.7 Functional block diagram for SAD and POW2 module. 128

Figure 6.8 Functional block diagram for ADD_PIPE and COEF

module. 129

Figure 6.9 Functional block diagram for EXP_TABLE module. 130

Figure 6.10 Functional block diagram for MUL, ADD SUM and

PREDICT MEM module. 131

Figure 6.11 Proposed RBF_KERNEL hardware waveform simulation

on Model Sim Altera. 132

Figure 6.12 Prequential and Average MAE of hardware and software

implementation of RBF kernel for abalone data set. 134

Figure 6.13 Prequential and Average MAE of hardware and software

implementation of RBF kernel for cadata data set. 135

Figure 6.14 Prequential and Average MAE of hardware and software

implementation of RBF kernel for cpusmall data set. 135

xvii



Figure 6.15 Prequential and Average MAE of hardware and software

implementation of RBF kernel for stock_mid data set. 136

Figure 6.16 Resource utilization summary on Stratix V device Quartus

II software. 136

Figure 6.17 Maximum operating frequency and timing analysis

summary on Stratix V device Quartus II software. 137

xviii



LIST OF ABBREVIATIONS

AOSVR – Accurate On-line Support Vector Regression

FPGA – Field Programmable Gate Array

GUI – Graphic User Interface

HPO – Hyperparameter Optimization

IDSVM – Incremental Decremental Support Vector Machine

IELM – Incremental Extreme Learning Machine

IIDSVM – Interleave Incremental Decremental Support Vector Machine

ILVQ – Incremental Learning Vector Quantization

ISVM – Incremental Support Vector Machine

LIBSVM – Library Support Vector Machine

LPP – Learn++

MAE – Mean Absolute Error

NB – Naive Bayes

ORF – On-line Random Forest

RBF – Radial Basis Function

SGD – Stochastic Gradient Descent

SMO – Sequential Minimal Optimization

SoC – System on Chip

SVM – Support Vector Machine

xix



LIST OF SYMBOLS

α – Lagrangian Multiplier

� – Margin of tolerance

ζ – Slack variable

θ – Weights

λ – RBF kernel parameter

φ – Prequential error fading factor

(xc,yc) – Candidate sample

b – Bias

C – Regularization parameter

Dir – Direction

Er_set – Error set

f – Frequency

Hc – Candidate sample error margin

No_clk – Number of clock cycles

Q – Kernel matrix

R – R matrix

Re_set – Remainder set

Sv_set – Support vector set

t – Elapsed time

W – Window size

xc – Candidate vector

yc – Candidate target output

xx



becomes apparent in embedded systems with limited computing power and memory.

Storing and processing a very large volume of data will be deemed infeasible. Thus,

incremental learning is needed for Big Data applications since it can process data in

real-time and update its model as data arrives [7].

1.1 Embedded Incremental Learning

As a new data instance arrives, incremental learning in an embedded system

would allow it to learn beyond its design and production phases. However, the

environment and habits may differ depending on the user and in certain application

traffic varies with time or season. Therefore dedicated machine learning model is

required to adapt to the concept changes. The batch learning approach for an embedded

system can overcome this problem by outsourcing its data to the cloud, giving it access

to a shared pool of configurable computing resources. By outsourcing data, users of

embedded system applications can be relieved from local data storage maintenance,

computation burden and communication to the cloud. However, users no longer have

physical possession of large outsourced data, which makes data integrity and protection

a huge problem. Data encryption can be added, though this will introduce additional

latency to the overall system.

Applications such as self-driving autonomous robots, robotic vacuum cleaners

and lawnmowers can benefit from fast and reliable learning to perform decision-making

when their environments are constantly changing [1, 6, 8]. Incremental learning can

continually learn beyond the production phase. Moreover, for cloud computing to

work, a permanent and reliable connection is needed; and such infrastructure may not

be available in the location where the embedded systems are deployed. Besides that,

users also may not want to part with their data due to privacy issues. Reliance on cloud

systems to process all raw data would incur additional latency. Having an embedded

device with continuous learning capability can provide earlier decision making [1].

Arduino Nano 33 [9], ARM Cortex-M processors [10], and Field Programmable Gate

Arrays (FPGAs) [11] are some of the example of platform when embedded learning

2



are implemented. The constrain on application is dependent on the platform in which

the machine learning is implemented.

Multiple challenges need to be addressed in incorporating incremental learning

in an embedded system. For instance, in stream-like architecture, data that have passed

cannot be recovered. Therefore, incoming data need to be incorporated into the model

as soon as possible. Besides that, limited embedded system memory limits the number

of training samples that can be maintained. Therefore, the system memory needs

to continuously remove old data and update the latest incoming data. On the whole,

embedded incremental learning needs to be fast, accurate, and forget or unlearn outdated

data.

There are several algorithms for incremental learning such as Incremental

Decremental Support Vector Machine (IDSVM) [12], LASVM [13], On-line Random

Forest (ORF) [14], Incremental Learning Vector Quantization (ILVQ) [15], Learn++

(LPPCART) [16], Incremental Extreme Learning Machine (IELM) [17], Naive Bayes

(NBGauss) [18], and Stochastic Gradient Descent SGDBLin) [19]. The aforementioned

algorithms are able to perform instance incremental learning where learning takes

place as data arrives. Each of these algorithms has various levels of complexity which

result in different levels of performance in terms of accuracy and timing. Based on a

comparison study on several incremental learning algorithm done in [1], IDSVM has

the best accuracy but high computational complexity.

1.2 Problem Statement

IDSVM is one of the most accurate incremental learning algorithms for a variety

of data set [1]. However, IDSVM has difficulty handling a very large data set due to its

algorithmic limitation. When applied to a large data set, the IDSVM has to compute

many support vectors, resulting in a large inverse kernel matrix which causes an

exponential increase in memory size requirement. In order to cope with this limitation

on IDSVM, Shao et al. [20], and Ma et al. [21] applied a moving window approach

to limit the number of support vectors to a fixed value. With the moving window

3



approach, IDSVM can be applied to larger data sets, and hardware implementation on

an embedded platform and Field Programmable Gate Array (FPGA) devices becomes

feasible [20].

The data samples within an IDSVM model cannot be removed. Instead, it has

to be unlearned, where the weights of all remaining data samples are recalibrated as a

single data sample is being unlearned. The complexity of unlearning a data sample is

similar to learning it [12]. Therefore, the moving window approach adds complexity to

the overall algorithm and directly reduces the system’s overall throughput. The added

computation of unlearning every time new data arrives becomes even more critical

for embedded platform implementation, where processing capability is limited and

operates at a lower clock frequency.

To the best of our knowledge, the first and only complete implementation of

IDSVM in an FPGA device was done by Shao et al. [20]. In this work, IDSVM

was implemented using a dataflow programming language, Maxeler J, targeted for

regression problems. The implementation was done on a Stratix V FPGA device. The

IDSVM algorithm was based on the work by Cauwenberghs and Poggio [12]. Shao et

al. [20] tested their implementation for stock prediction. It also discussed the algorithm

restructuring for faster memory access time. However, open problems on the IDSVM

complexity on window based implementation are yet to be explored.

For embedded system platforms like ARM Cortex M33, M22 [10], and Nios

II/f [22] embedded processor, the division instruction takes longer execution time

compared to multiplication. Besides that, within the IDSVM algorithm, many division

computations are repeated continuously during the learning and unlearning processes.

The division operations that involve a constant denominator can be optimized into

inverse multiplication during compile time [23–25]. However, the division operation

in the IDSVM algorithm involves two variables, thus requiring the division instruction

from the compiler, that reduces the overall performance of IDSVM on embedded

systems. Reducing the number of division operations within the IDSVM algorithm is

currently an open problem.

4



There are numerous works aimed at implementing SVM with Radial Basis

Function (RBF) kernel for embedded systems, such as [20, 26–30]. The RBF kernel is

the most popular choice in many applications since it can handle a wide range of data

formats and has only a few tuning parameters [31]. Based on [32], the computation time

for an IDSVM algorithm mainly revolves around RBF kernel computation. However,

the RBF kernel hardware architecture for the IDSVM algorithm is yet to be explored.

1.3 Objectives

The primary aim of this thesis is to propose an IDSVM algorithm that is suitable

for embedded systems. The proposed algorithm is targeted to have faster runtime and

low memory footprint. Besides that, the algorithm can be optimized better to suit

the limited capability of an embedded system. Specifically, this thesis proposes the

following objectives:

1. To propose an improved IDSVM algorithm that allows the learning and

unlearning tasks to be done in parallel. The IDSVM algorithm is analyzed for

tasks that can be performed in parallel. Next, the Interleaved Incremental Support

Vector Machine (IIDSVM) algorithm is proposed using a dual window that

enables simultaneous learning and unlearning. The IIDSVM is then implemented

and analyzed for overall runtime, accuracy and memory utilization.

2. To propose an improved algorithm of IIDSVM by reducing the number of division

operations. The reduced-division IIDSVM is targeted to speed up IIDSVM on

embedded platform with an acceptable accuracy. The IIDSVM algorithm is first

analyzed, and parts of the algorithm that utilizes division operations are replaced

using inverse multiplication to achieve similar accuracy. The proposed algorithm

is then validated against the unmodified IIDSVM on and the overall runtime is

analyzed.

3. To design a fully pipelined hardware architecture of the RBF kernel for the

IIDSVM. The proposed architecture is parameterizable and minimizes the data

transfer needed between the hardware and software partitions. The proposed

5



hardware architecture is then analyzed for runtime, accuracy, resource utilization

and maximum operating frequency.

1.4 Scope of Work

The IDSVM implementation in this thesis is based from Parrella’s work [33]

on MATLAB. Parrella’s IDSVM [33] targets online learning for regression based

on Cauwenberghs and Poggio work [12]. There are many variations of IDSVM,

and Cauwenberghs and Poggio’s work [12] has always been referred to as the true

incremental support vector machine [1]. The main IDSVM benchmark is then modified

with moving window architecture based on Shao et al. [20] architecture.

The IDSVM algorithm in this thesis only targets regression problems. Similar

to [20], the proposed work also targets stock price applications. For classification data

sets that consist of multiple classes, each class needs to be compared against other

classes. SVM, by nature, is a binary classifier. In order to handle multiple classes,

multiple incremental learning models are required. However, only a single model is

required for regression applications and binary classification problems. The discussion

on the effect of multi-class application towards the proposed algorithm is beyond the

scope of this thesis.

Four regression data sets from the different applications are used for functional

and performance validation. The data set consists of abalone [34], cadata [35], cpusmall

[36], and stock_mid [37]. Abalone, cadata and cpu_small data sets are available in

LIBSVM [31]. These data sets are taken from secondary sources since the data structure

had been preprocessed to be compatible with LIBSVM. The stock-mid data is taken

directly from reference [20] on incremental SVM implementation, and the data structure

is already compatible with LIBSVM.

Multiple kernels can be applied on LIBSVM, such as Linear, Polynomial, RBF,

or Sigmoid. In this thesis, the RBF kernel is used for all implementations. RBF kernel

6



is the most common choice in many applications mainly due to its ability to handle a

wide range of data types as well as having only a few parameters for tuning [31].

The FPGA device used in this thesis is Intel Stratix V. For embedded processor

implementation of the incremental SVM, Nios II soft-core processor is used. The Nios

II processor core is a 32-bit RISC processor optimized for use in Intel’s mainstream

FPGAs. Only the RBF kernel is implemented in hardware for the FPGA implementation

of the proposed IIDSVM. The kernel is the most compute-intensive section in the

incremental SVM algorithm [32]. In addition, this section of the algorithm is

deterministically recursive and has the potential for parallelism. The proposed RBF

kernel is designed without automation using Verilog code.

For objective 1, the IIDSVM experiment is done on a MATLAB environment.

The computer has an Intel I5 4460 CPU, with 8 GB of memory. The proposed IIDSVM

is evaluated for overall runtime, accuracy and memory utilization. For objective 2,

a single Nios II SoC is used for the embedded platform, and the implementation is

evaluated in terms of accuracy and runtime. The single Nios II implementation of

IDSVM emulated the single window implementation. For the IIDSVM, the results are

approximated from IDSVM result using the speed-up factor obtained from objective 1.

Finally, for objective 3 the proposed RBF kernel hardware implementation for IIDSVM

is implemented on Stratix V FPGA and analyzed for runtime, accuracy, resource

utilization and maximum operating frequency.

7



1.5 Contribution

The following are the expected contribution of the thesis:

1. The proposed IIDSVM algorithm is an improved algorithm over the conventional

IDSVM algorithm proposed in Shao et al. [20]. The IIDSVM algorithm enables

learning and unlearning to be performed simultaneously, resulting in higher

throughput and lesser memory utilization for the kernel implementation.

2. Specific compute-intensive division operations within the IIDSVM algorithm

are substituted with inverse multiplication. As a result, the proposed

algorithm reduces the overall computational complexity, which results in faster

computational time while producing similar accuracy.

3. A hardware-accelerated RBF kernel module for IIDSVM is developed. The

hardware module is parameterizable and can adapt to different application

requirements. Furthermore, the proposed hardware computes the RBF kernel

much faster than the equivalent software model implemented in the embedded

processor core.

1.6 Thesis Structure

The remainder of the thesis is organized as follows.

Chapter 2 covers literature-related works and discusses important aspects of

incremental learning, mainly focusing on IDSVM. First, a comparison between batch

and incremental learning is discussed. The application and justification of incremental

learning are also included in this chapter. Next is the discussion on SVM and its

algorithm developments, followed by a discussion on related works on IDSVM and

the existing hardware implementation of IDSVM. Finally, this chapter ends with a

discussion on the motivation for extended works on IDSVM based on the limitation of

prior implementations.

8



Chapter 3 provides the methodology for the thesis work. This chapter also

includes the general approach in IDSVM research presented in this thesis and the tools

and platform used to model the proposed IIDSVM. The final section in this chapter

describes the data sets used for verifications and the prequential analysis used to evaluate

an incremental machine learning model’s performance accurately.

Chapter 4 presents the proposed IIDSVM algorithm. This chapter first discusses

the details on the development of the IDSVM. Then, the discussion continues to the

moving window method for hardware implementation for the proposed IIDSVM. The

proposed method is then compared with the conventional method and analyzed for

overall runtime, accuracy and memory utilization.

Chapter 5 focuses on optimizing IIDSVM for embedded systems by reducing

division operations. This chapter starts by comparing multiplication and division

operations for embedded system applications. This is followed by a detailed analysis of

the IIDSVM algorithm, where division operation can be replaced with multiplication

and comparator operation. Finally, the proposed algorithm is compared with the

unaltered IIDSVM for the overall runtime.

Chapter 6 discusses the fully pipelined RBF kernel implementation architecture

in hardware. First, the RBF kernel equation is discussed, followed by the features

and specifications needed to operate in an incremental learning environment. This

is then followed by details on the hardware architecture of the RBF kernel. Finally,

the performance of the proposed hardware is analyzed in terms of runtime, accuracy,

resource utilization and maximum operating frequency.

Chapter 7 summarises the outcome of research objectives re-stating the

contribution to knowledge and their significance and suggestions for future research

directions.

9



REFERENCES

1. Losing, V., Hammer, B. and Wersing, H. Incremental on-line learning: A

review and comparison of state of the art algorithms. Neurocomputing, 2018.

275: 1261–1274.

2. Alippi, C. Learning in nonstationary and evolving environments. In:

Intelligence for Embedded Systems. Springer. 211–247. 2014.

3. Hoi, S. C., Wang, J. and Zhao, P. Libol: A library for online learning

algorithms. Journal of Machine Learning Research, 2014. 15(1): 495.

4. Yang, R. and Newman, M. W. Learning from a learning thermostat: lessons for

intelligent systems for the home. Proceedings of the 2013 ACM international

joint conference on Pervasive and ubiquitous computing. 2013. 93–102.

5. Pagani, S., Manoj, P. S., Jantsch, A. and Henkel, J. Machine learning for

power, energy, and thermal management on multicore processors: A survey.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 2018. 39(1): 101–116.

6. Forlizzi, J. and DiSalvo, C. Service robots in the domestic environment:

a study of the roomba vacuum in the home. Proceedings of the 1st ACM

SIGCHI/SIGART conference on Human-robot interaction. 2006. 258–265.

7. Chen, M., Mao, S. and Liu, Y. Big data: A survey. Mobile networks and

applications, 2014. 19(2): 171–209.

8. Losing, V., Hammer, B. and Wersing, H. Interactive online learning for

obstacle classification on a mobile robot. 2015 International Joint Conference

on Neural Networks (IJCNN). IEEE. 2015. 1–8.

9. Warden, P. and Situnayake, D. Tinyml: Machine learning with tensorflow lite

on arduino and ultra-low-power microcontrollers. O’Reilly Media. 2019.

10. Arm Cortex-M series processors, 2022. URL https://developer.arm.

com/ip-products/processors/cortex-m.

11. Jiao, B., Zhang, J., Xie, Y., Wang, S., Zhu, H., Kang, X., Dong, Z., Zhang,

L. and Chen, C. A 0.57-GOPS/DSP Object Detection PIM Accelerator on

145



FPGA. 2021 26th Asia and South Pacific Design Automation Conference

(ASP-DAC). IEEE. 2021. 13–14.

12. Cauwenberghs, G. and Poggio, T. Incremental and decremental support vector

machine learning. Advances in neural information processing systems, 2001:

409–415.

13. Bordes, A., Ertekin, S., Weston, J. and Bottou, L. Fast kernel classifiers with

online and active learning. Journal of Machine Learning Research, 2005.

6(Sep): 1579–1619.

14. Saffari, A., Leistner, C., Santner, J., Godec, M. and Bischof, H. On-line

random forests. 2009 ieee 12th international conference on computer vision

workshops, iccv workshops. IEEE. 2009. 1393–1400.

15. Sato, A. and Yamada, K. Generalized learning vector quantization. Advances

in neural information processing systems. 1996. 423–429.

16. Bunte, K., Schneider, P., Hammer, B., Schleif, F.-M., Villmann, T. and Biehl,

M. Limited rank matrix learning, discriminative dimension reduction and

visualization. Neural Networks, 2012. 26: 159–173.

17. Liang, N.-Y., Huang, G.-B., Saratchandran, P. and Sundararajan, N. A fast

and accurate online sequential learning algorithm for feedforward networks.

IEEE Transactions on neural networks, 2006. 17(6): 1411–1423.

18. Zhang, H. The optimality of naive Bayes. Aa, 2004. 1(2): 3.

19. Richtárik, P. and Takáč, M. Parallel coordinate descent methods for big data

optimization. Mathematical Programming, 2016. 156(1-2): 433–484.

20. Shao, S., Mencer, O. and Luk, W. Dataflow design for optimal incremental

svm training. Field-Programmable Technology (FPT), 2016 International

Conference on. IEEE. 2016. 197–200.

21. Ma, J., Theiler, J. and Perkins, S. Accurate on-line support vector regression.

Neural computation, 2003. 15(11): 2683–2703.

22. Nios II Classic Processor Reference Guide, 2016. URL https:

//www.intel.com/content/dam/support/us/en/programmable/

support-resources/bulk-container/pdfs/literature/hb/nios2/

n2cpu-nii5v1-01.pdf.

146



23. Granlund, T. and Montgomery, P. L. Division by invariant integers using

multiplication. Proceedings of the ACM SIGPLAN 1994 conference on

Programming language design and implementation. 1994. 61–72.

24. Cavagnino, D. and Werbrouck, A. E. Efficient algorithms for integer division

by constants using multiplication. The Computer Journal, 2008. 51(4): 470–

480.

25. Godbolt, M. Optimizations in C++ compilers. Communications of the ACM,

2020. 63(2): 41–49.

26. Cutajar, M., Gatt, E., Grech, I., Casha, O. and Micallef, J. Hardware-based

support vector machine for phoneme classification. EUROCON, 2013 IEEE.

IEEE. 2013. 1701–1708.

27. Qasaimeh, M., Sagahyroon, A. and Shanableh, T. FPGA-based parallel

hardware architecture for real-time image classification. IEEE Transactions

on Computational Imaging, 2015. 1(1): 56–70.

28. Kyrkou, C., Bouganis, C.-S., Theocharides, T. and Polycarpou, M. M.

Embedded hardware-efficient real-time classification with cascade support

vector machines. IEEE transactions on neural networks and learning systems,

2015. 27(1): 99–112.

29. Ramadurgam, S. and Perera, D. G. An Efficient FPGA-Based Hardware

Accelerator for Convex Optimization-Based SVM Classifier for Machine

Learning on Embedded Platforms. Electronics, 2021. 10(11): 1323.

30. Cadambi, S., Durdanovic, I., Jakkula, V., Sankaradass, M., Cosatto, E.,

Chakradhar, S. and Graf, H. P. A massively parallel FPGA-based coprocessor

for support vector machines. Field Programmable Custom Computing

Machines, 2009. FCCM’09. 17th IEEE Symposium on. IEEE. 2009. 115–122.

31. Chang, C.-C. and Lin, C.-J. LIBSVM: a library for support vector machines.

ACM Transactions on Intelligent Systems and Technology (TIST), 2011. 2(3):

27.

32. Laskov, P., Gehl, C., Krüger, S. and Müller, K.-R. Incremental support vector

learning: Analysis, implementation and applications. Journal of machine

learning research, 2006. 7(Sep): 1909–1936.

147



33. Parrella, F. Online support vector regression. Master’s Thesis, Department

of Information Science, University of Genoa, Italy, 2007. 69.

34. abalone_data_set. http://archive.ics.uci.edu/ml/datasets/

Abalone. Accessed: 2018-09-30.

35. cadata_data_set. http://lib.stat.cmu.edu/datasets/. Accessed:

2018-09-30.

36. cadata_data_set. http://www.cs.toronto.edu/~delve/data/

datasets.html. Accessed: 2018-09-30.

37. stock_mid_data_set. https://github.com/custom-computing-ic/

SVM. Accessed: 2010-09-30.

38. Norvig, P. R. and Intelligence, S. A. A modern approach. Prentice Hall. 2002.

39. Hinton, G. E., Sejnowski, T. J. et al. Unsupervised learning: foundations of

neural computation. MIT press. 1999.

40. Abdi, H. and Williams, L. J. Principal component analysis. Wiley

interdisciplinary reviews: computational statistics, 2010. 2(4): 433–459.

41. Zhu, X. and Goldberg, A. B. Introduction to semi-supervised learning.

Synthesis lectures on artificial intelligence and machine learning, 2009. 3(1):

1–130.

42. Loo, H. R. and Marsono, M. N. Online network traffic classification with

incremental learning. Evolving Systems, 2016. 7(2): 129–143.

43. Kaelbling, L. P., Littman, M. L. and Moore, A. W. Reinforcement learning:

A survey. Journal of artificial intelligence research, 1996. 4: 237–285.

44. Carbonara, L. and Borrowman, A. A comparison of batch and incremental

supervised learning algorithms. European Symposium on Principles of Data

Mining and Knowledge Discovery. Springer. 1998. 264–272.

45. Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H. and He,

Q. A comprehensive survey on transfer learning. Proceedings of the IEEE,

2020. 109(1): 43–76.

46. Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE Transactions on

knowledge and data engineering, 2009. 22(10): 1345–1359.

148



47. Read, J., Bifet, A., Pfahringer, B. and Holmes, G. Batch-incremental versus

instance-incremental learning in dynamic and evolving data. International

Symposium on Intelligent Data Analysis. Springer. 2012. 313–323.

48. Costa, R. The Internet of moving things [industry view]. IEEE Technology

and Society Magazine, 2018. 37(1): 13–14.

49. Quigley, M. and Burke, M. Low-cost Internet of Things digital technology

adoption in SMEs. International Journal of Management Practice, 2013.

6(2): 153–164.

50. Sanchez-Iborra, R. and Skarmeta, A. F. Tinyml-enabled frugal smart objects:

Challenges and opportunities. IEEE Circuits and Systems Magazine, 2020.

20(3): 4–18.

51. Niu, W., Ma, X., Lin, S., Wang, S., Qian, X., Lin, X., Wang, Y. and

Ren, B. Patdnn: Achieving real-time dnn execution on mobile devices with

pattern-based weight pruning. Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and

Operating Systems. 2020. 907–922.

52. Shafique, M., Theocharides, T., Reddy, V. J. and Murmann, B. TinyML:

Current Progress, Research Challenges, and Future Roadmap. 2021 58th

ACM/IEEE Design Automation Conference (DAC). IEEE. 2021. 1303–1306.

53. Cai, H., Gan, C., Wang, T., Zhang, Z. and Han, S. Once-for-all: Train

one network and specialize it for efficient deployment. arXiv preprint

arXiv:1908.09791, 2019.

54. Wang, T., Wang, K., Cai, H., Lin, J., Liu, Z., Wang, H., Lin, Y. and Han, S.

Apq: Joint search for network architecture, pruning and quantization policy.

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2020. 2078–2087.

55. Rusci, M., Capotondi, A. and Benini, L. Memory-driven mixed low precision

quantization for enabling deep network inference on microcontrollers.

Proceedings of Machine Learning and Systems, 2020. 2: 326–335.

56. Vapnik, V. N. and Vapnik, V. Statistical learning theory. vol. 1. Wiley New

York. 1998.

149



57. Berwick, R. An Idiot’s guide to Support vector machines (SVMs). Retrieved

on October, 2003. 21: 2011.

58. Vapnik, V. The nature of statistical learning theory. Springer Science &

Business Media. 2013.

59. Smola, A. J. and Schölkopf, B. A tutorial on support vector regression.

Statistics and computing, 2004. 14(3): 199–222.

60. Bustio-Martínez, L., Cumplido, R., Hernández-Palancar, J. and Feregrino-

Uribe, C. On the Design of a Hardware-Software Architecture for Acceleration

of SVM’s Training Phase. Mexican Conference on Pattern Recognition.

Springer. 2010. 281–290.

61. Cao, K.-k., Shen, H.-b. and Chen, H.-f. A parallel and scalable digital

architecture for training support vector machines. Journal of Zhejiang

University SCIENCE C, 2010. 11(8): 620–628.

62. Mahmoodi, D., Soleimani, A., Khosravi, H., Taghizadeh, M. et al. FPGA

simulation of linear and nonlinear support vector machine. Journal of

Software Engineering and Applications, 2011. 4(05): 320.

63. Lazer, D., Kennedy, R., King, G. and Vespignani, A. The parable of Google

Flu: traps in big data analysis. Science, 2014. 343(6176): 1203–1205.

64. Syed, N. A., Huan, S., Kah, L. and Sung, K. Incremental learning with

support vector machines. 1999.

65. Rüping, S. Incremental learning with support vector machines. Technical

report. Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten

Datenstrukturen, Universität Dortmund. 2002.

66. Xu, J., Xu, C., Zou, B., Tang, Y. Y., Peng, J. and You, X. New Incremental

Learning Algorithm With Support Vector Machines. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 2018. (99): 1–12.

67. Hao, Y. and Zhang, H. A fast incremental learning algorithm based on twin

support vector machine. Computational Intelligence and Design (ISCID),

2014 Seventh International Symposium on. IEEE. 2014, vol. 2. 92–95.

150



68. Zheng, J., Shen, F., Fan, H. and Zhao, J. An online incremental

learning support vector machine for large-scale data. Neural Computing

and Applications, 2013. 22(5): 1023–1035.

69. Diehl, C. P. and Cauwenberghs, G. SVM incremental learning, adaptation

and optimization. Neural Networks, 2003. Proceedings of the International

Joint Conference on. IEEE. 2003, vol. 4. 2685–2690.

70. Gâlmeanu, H., Sasu, L. M. and Andonie, R. Incremental and Decremental

SVM for Regression. International Journal of Computers Communications

& Control, 2016. 11(6): 755–775.

71. Karasuyama, M. and Takeuchi, I. Multiple incremental decremental learning

of support vector machines. IEEE Transactions on Neural Networks, 2010.

21(7): 1048–1059.

72. Chen, B.-W. Recursion-Free Online Multiple Incremental/Decremental

Analysis Based on Ridge Support Vector Learning. arXiv preprint

arXiv:1608.00619, 2016.

73. Le, D. V.-K., Chen, Z., Wong, Y. W. and Isa, D. A complete online-SVM

pipeline for case-based reasoning system: a study on pipe defect detection

system. Soft Computing, 2020: 1–17.

74. Chen, Y., Xiong, J., Xu, W. and Zuo, J. A novel online incremental and

decremental learning algorithm based on variable support vector machine.

Cluster Computing, 2019. 22(3): 7435–7445.

75. Khemchandani, R., Chandra, S. et al. Twin support vector machines for

pattern classification. IEEETransactions on pattern analysis and machine

intelligence, 2007. 29(5): 905–910.

76. Tian, Y. and Qi, Z. Review on: twin support vector machines. Annals of Data

Science, 2014. 1(2): 253–277.

77. Lichman, M. UCI Machine Learning Repository, 2013. URL http://

archive.ics.uci.edu/ml.

78. Furao, S. and Hasegawa, O. An incremental network for on-line unsupervised

classification and topology learning. Neural networks, 2006. 19(1): 90–106.

151



79. Schölkopf, B., Smola, A. J., Williamson, R. C. and Bartlett, P. L. New support

vector algorithms. Neural computation, 2000. 12(5): 1207–1245.

80. Gu, B., Wang, J.-D., Yu, Y.-C., Zheng, G.-S., Huang, Y.-F. and Xu, T. Accurate

on-line ν-support vector learning. Neural Networks, 2012. 27: 51–59.

81. libsvm_data_set. https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/. Accessed: 2022-05-13.

82. Gu, B. and Sheng, V. S. Feasibility and Finite Convergence Analysis for

Accurate On-Line \ ν-Support Vector Machine. IEEE Transactions on Neural

Networks and Learning Systems, 2013. 24(8): 1304–1315.

83. Gu, B., Sheng, V. S., Wang, Z., Ho, D., Osman, S. and Li, S. Incremental

learning for ν-support vector regression. Neural Networks, 2015. 67: 140–

150.

84. Asuncion, A. and Newman, D. UCI machine learning repository, 2007.

85. Pistikopoulos, E. N. Multi-parametric programming. Wiley-vch. 2007.

86. Maxeler Technologies. https://www.maxeler.com/technology/dataflow-

computing/. Accessed: 2022-05-13.

87. Afifi, S. M., GholamHosseini, H. and Poopak, S. Hardware implementations

of SVM on FPGA: A state-of-the-art review of current practice. 2015.

88. Price, D. Pentium FDIV flaw-lessons learned. IEEE Micro, 1995. 15(2):

86–88.

89. Gama, J., Sebastiao, R. and Rodrigues, P. P. On evaluating stream learning

algorithms. Machine learning, 2013. 90(3): 317–346.

90. Altera. Quartus II Handbook Version 12.1. 2012. URL https:

//www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/hb/qts/archives/quartusii_handbook_121.pdf.

91. Altera. User Guide Getting Started with Quartus II Simulation Using the

ModelSim-Altera Software. 2014. URL http://www.altera.com.my/

literature/ug/ug_gs_msa_qii.pdf.

92. Matlab. Matlab Primer. 2014. URL http://in.mathworks.com/help/

pdf_doc/matlab/getstart.pdf.

152



93. Fan, R.-E., Chen, P.-H. and Lin, C.-J. Working set selection using second

order information for training support vector machines. Journal of machine

learning research, 2005. 6(Dec): 1889–1918.

94. Cortes, C. and Vapnik, V. Support-vector networks. Machine learning, 1995.

20(3): 273–297.

95. Boser, B. E., Guyon, I. M. and Vapnik, V. N. A training algorithm for optimal

margin classifiers. Proceedings of the fifth annual workshop on Computational

learning theory. 1992. 144–152.

96. Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J. and Williamson,

R. C. Estimating the support of a high-dimensional distribution. Neural

computation, 2001. 13(7): 1443–1471.

97. Chang, C.-C. and Lin, C.-J. Training v-support vector classifiers: theory and

algorithms. Neural computation, 2001. 13(9): 2119–2147.

98. Chang, C.-C. and Lin, C.-J. Training v-support vector regression: theory and

algorithms. Neural computation, 2002. 14(8): 1959–1977.

99. Nash, W. J., Sellers, T. L., Talbot, S. R., Cawthorn, A. J. and Ford, W. B.

The population biology of abalone (haliotis species) in Tasmania. I. Blacklip

Abalone (h. rubra) from the north coast and islands of Bass Strait. Sea

Fisheries Division, Technical Report, 1994. 48: p411.

100. libsvm_regression_data_set. https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/regression.html. Accessed: 2018-09-30.

101. Freedman, D. A. Adjusting the 1990 census. Science, 1991. 252(5010):

1233–1236.

102. Delve, C.-A. D. Data for Evaluating Learning in Valid Experiments, 2005.

103. Sigillito, V. UCI Machine Learning Repository, 1989. URL https://

archive.ics.uci.edu/ml/datasets/ionosphere.

104. Wolberg, W. H., Street, W. N. and Mangasarian, O. L. UCI Machine Learning

Repository, 1995. URL https://archive.ics.uci.edu/ml/datasets/

Breast+Cancer+Wisconsin+(Diagnostic).

153



LIST OF PUBLICATIONS

Indexed Journal (SCOPUS)

1. Sirkunan, J., Tang, J.W., Shaikh-Husin, N. and Marsono, M.N., 2019. A

streaming multi-class support vector machine classification architecture for

embedded systems. Indonesian Journal of Electrical Engineering and Computer

Science, 16(3), pp.1286-1296.

Indexed conference proceedings

1. Sirkunan, J., Shaikh-Husin, N. and Marsono, M.N., 2019, May. Interleaved

Incremental/Decremental Support Vector Machine for Embedded System. In

2019 IEEE International Symposium on Circuits and Systems (ISCAS) (pp.

1-5). IEEE.

2. Sirkunan, J., Shaikh-Husin, N., Andromeda, T. and Marsono, M.N., 2017,

September. Reconfigurable logic embedded architecture of support vector

machine linear kernel. In 2017 4th International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI) (pp. 1-5). IEEE.

155




