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ABSTRACT 

The development of phenolic resin-based Nomex hexagonal Honeycomb (HC) 

structures is of great interest in recent years for low density, low in-plane, and high 

out-of-plane stiffness values achieving stable deformations over a wide range of 

structural geometries. Nonlinear elastic behavior covering the large geometric 

deformation is the critical issue in analyzing the mechanical response and failure of 

the cellular core structure. A useful approach for modeling such complex behavior is 

to replace the cellular structure with an equivalent homogenous material that 

represents identical mechanical behavior for the respective HC structure. This research 

aims to develop a Representative Cell (RC) model for the Nomex HC core and 

subsequently replace that with a homogenous orthotropic material of equivalent elastic 

properties utilizing the homogenization approach. A series of experimental testing was 

performed on the HC core to identify the nine elastic constants comprising both in-

plane and out-of-plane properties. The single unit cell structure is selected based on 

the parametric analysis through compression testing of the hexagonal HC cores with 

different cell geometries to compare the compression strength and energy absorption 

capacity. The selected cell geometry with 3.2 mm cell size, 12.7 mm height, and 0.05 

mm paper thickness is used to develop a meso-scale solid element RC model to show 

the mechanical deformation under out-of-plane compression and shear loading. The 

constituent orthotropic material model along with Hashin damage parameters was used 

as input for phenolic resin-based Nomex paper in ABAQUS finite element analysis 

software. A direct homogenization method was employed to develop a homogenized 

equivalent homogenized honeycomb core (EHC) model. The model is examined to 

assess the predicted equivalent elastic properties against the stiffness matrix obtained 

by experimentation. The comparative analysis for the Nomex HC structural 

characterization showed that the geometric configurations, specifically the relative 

density and cell aspect ratio (height/cell size), greatly influence the mechanical 

properties. The optimum values obtained for the elastic moduli and compression 

strength were 126.5 MPa and 4.01 MPa, respectively, with a relative density of 0.056 

and a cell aspect ratio of 3.96. Compared with the experimental testing results from 

compression loading, the developed damage mechanics-based RC model 

demonstrated less than a 2% difference in the collapse/compression strength and 

elastic moduli of the selected HC core. The EHC model was verified using a three-

point bend loading condition. The predicted flexural strength compared to the 

measured data had a minimal variation of only 4%. The developed EHC model can be 

effectively used to predict the mechanics of deformation and failure properties in the 

complex sandwich structures. The damage mechanics-based methodology presented 

in this research work could be implemented for complex structural parts in the 

aerospace and transport industry for reducing the need of extensive experimental 

testing eventually minimizing the developmental cost and time.   
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ABSTRAK 

Pembangunan struktur indung madu heksagon Nomex berasaskan resin fenolik 

mula mendapat perhatian dalam beberapa tahun kebelakangan ini kerana nilai 

ketumpatannya yang rendah, sifat kekukuhan yang rendah di dalam satah dan tinggi 

di luar satah membolehkan  deformasi yang stabil dalam pelbagai struktur geometri. 

Ciri-ciri elastik bukan lelurus yang merangkumi deformasi geometri besar adalah 

masalah penting dalam menganalisa tindak balas mekanikal dan kegagalan struktur 

teras selular. Pendekatan yang berguna bagi pemodelan ciri-ciri kompleks seperti itu 

adalah dengan mengganti struktur selular dengan bahan homogen yang setara yang 

mewakili ciri-ciri mekanikal yang sama untuk struktur HC masing-masing. Objektif 

penyelidikan ini adalah untuk membangunkan model Cell Perwakilan (RC) untuk teras 

Nomex HC dan seterusnya menggantinya dengan bahan ortotropik homogen yang 

mempunyai ciri-ciri elastik yang setara dengan menggunakan pendekatan 

homogenisasi. Siri ujian eksperimen dilakukan pada teras HC untuk mengenal pasti 

sembilan pemalar elastik yang terdiri daripada sifat dalam dan luar satah. Struktur sel 

unit tunggal dipilih berdasarkan analisis parametrik melalui ujian mampatan teras HC 

heksagon dengan geometri sel yang berbeza untuk membandingkan kekuatan 

mampatan dan kapasiti penyerapan tenaga. Geometri sel yang dipilih dengan ukuran 

sel 3.2 mm, tinggi 12.7 mm dan ketebalan kertas 0.05 mm telah digunakan untuk 

membangunkan model RC elemen pepejal berskala meso untuk menunjukkan 

deformasi mekanikal di bawah pemampatan luar satah dan beban ricih. Model bahan 

berunsur ortotropik bersama dengan parameter kerosakan Hashin digunakan sebagai 

input untuk kertas Nomex berasaskan resin fenolik dalam perisian ABAQUS. Kaedah 

homogenisasi langsung digunakan untuk membangunkan model teras HC yang 

homogen. Model tersebut diperiksa untuk menilai sifat elastik setara yang dijangkakan 

terhadap (EHC) matriks kekukuhan yang diperoleh melalui eksperimen. Analisa 

perbandingan untuk pencirian struktur Nomex HC menunjukkan bahawa konfigurasi 

geometri khususnya kepadatan relatif dan nisbah aspek sel (ketinggian/saiz sel) sangat 

mempengaruhi ciri-ciri mekanikalnya. Nilai optimum yang diperoleh untuk moduli 

elastik dan kekuatan mampatan masing-masing adalah 126.5 MPa dan 4.01 MPa, 

dengan ketumpatan relatif 0.056 dan nisbah aspek sel 3.96. Model RC berasaskan 

mekanik kerosakan yang telah dibangunkan tersebut, apabila dibandingkan dengan 

hasil ujian eksperimen dari beban mampatan menunjukkan perbezaan kurang dari 2% 

dalam kekuatan keruntuhan/mampatan dan moduli elastik teras HC yang dipilih. 

Model teras HC homogen yang setara telah disahkan menggunakan kaedah beban 

lentur tiga titik. Kekuatan lenturan yang dijangkakan berbanding dengan data yang 

diukur mempunyai variasi yang sangat kecil iaitu hanya 4%. Model teras EHC yang 

telah dibangunkan dapat digunakan dengan berkesan untuk meramalkan mekanisma 

sifat ubah bentuk dan kegagalan dalam struktur himpitan yang kompleks. Metodologi 

berasaskan mekanik kerosakan yang disajikan dalam karya penyelidikan semasa dapat 

dilaksanakan untuk komponen struktur yang kompleks di industri aeroangkasa dan 

pengangkutan untuk mengurangkan keperluan pengujian eksperimen yang luas 

akhirnya meminimumkan kos dan waktu pembangunan.  
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INTRODUCTION 

1.1 Honeycomb Core Structure 

Honeycomb (HC) sandwich panels have found numerous engineering 

applications in the aerospace and transportation industry. This is primarily due to their 

high strength-to-weight ratio, high structural stiffness, and improved resistance to the 

harsh operating environment [1]. Also, these lightweight structures offer an excellent 

capability to withstand through-thickness compression. The HC sandwich panel is 

constructed by laminating a HC cellular core structure's outer surfaces with thin and 

stiff face sheets. The face sheets are glued together with the thick core using adhesive 

films, resulting in a three-layered sandwich panel, as shown in Figure 1.1. It is 

designed such that the HC core not only maintains the distance between the face sheets 

and improves the flexural stiffness but also carries the normal compression and shear 

loads [2, 3]. The selection of face sheet material and its thickness, along with the 

material and geometry of the core, offers several choices for designers allowing tailor-

made structural properties, including not only mechanical but also acoustic and 

thermodynamic aspects. The common HC cores with square or hexagonal cells [4] are 

fabricated from metallic alloys such as aluminum [5-7], and polymers including Kevlar 

or Aramid resin-impregnated papers [8-11]. The face sheets are typically made of 

aluminum [12, 13], glass fiber-reinforced polymer (GFRP) [14, 15], or carbon fiber-

reinforced polymer (CFRP) composite laminates [3, 16].  
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Figure 1.1 Honeycomb (HC) core application in sandwich panel 

The extensive application of polymeric composite sandwich panels in the 

aerospace industry has continuously increased over the last decades. Modern aircraft 

design like the Airbus A380 was among the first commercial airplane using 25 % of 

the composite structures, including the sandwich panels in the aircraft secondary parts 

such as the spoilers, flaps, wings, engine cowls, nacelles, and ailerons [17], as 

presented in Figure 1.2. Recently, the automotive industry used composite panels in 

the floor pans and front bulkheads of the body structure [18]. Moreover, many 

hexagonal-shaped core structure applications are employed in sports equipment like 

surfboards and snowboards [4, 19]. Recent advanced lightweight composite sandwich 

panels are introduced for the wind turbine blades and the helicopter blades [18]. Most 

of these structural applications, specifically the aerospace industry, utilizes the HC 

core made of phenolic resin impregnated Nomex paper [20]. 

 

(a) 

 
(b) 

 

 
(c) 

Figure 1.2 (a) HC application in airframe structure (Airbus A380), (b) wooden 

surfboard and (c) Non-pneumatic tire with HC spokes [21] 
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1.2 Research Background 

The design of HC sandwich panels could be optimized with respect to the 

strength, stiffness, and stability requirements. The challenge is to consider the design 

trade-offs in the combination of lightweight materials that meet the product's strength 

requirements while maintaining cost-effectiveness. Thus, the industries need to 

evaluate the structure resistance under different loading conditions like quasi-static, 

fatigue and impact loading, and the failure propagation during service life. The 

mechanical behavior of the HC core under various loading conditions such as 

compression, tension, shear, and flexural loading is beneficial to measure the intrinsic 

properties of the core [22]. Depending on the geometric specifications, the HC core 

exhibits an anisotropic response under the quasi-static and low impact loading 

conditions [23]. Under the lateral forces, the compressive failure mode of the HC 

structure in the through-thickness direction and the associated localized buckling of 

the HC core are of primary concern. [24, 25]. In addition, the HC sandwich panel's 

reliability should also be considered in the presence of the fatigue loading. However, 

the weakest point of the core is the small adhesive area of HC cells with face sheets 

such that a manufacturing defect or in-service load-induced damage could easily cause 

debonding, leading to catastrophic failure of the HC sandwich structure [26-28]. Also, 

the structural properties of the HC core are relatively weaker than the high-strength 

face sheets in the majority of cases [11, 29]. Core deformation and failure are, 

therefore, decisive factors for the energy absorption capability of sandwich panels. A 

thorough understanding of the mechanical responses of the HC core is thus inevitable 

in quantifying the performance and reliability of these HC structures. 

In this respect, finite element (FE) analysis is commonly employed to establish 

the internal states of strains and stresses during the deformation and failure process of 

the structure [30-33]. With the available FE tools, the need to find efficient analysis 

methods relies mainly on the level of understanding of the core behavior and the 

impact of core design on the overall behavior of the sandwich panel. The numerical 

modeling of the HC core structural behavior under general loading conditions has been 

performed at both macro-and meso/micro-length scales. The macro-mechanical 

approach employs an equivalent homogeneous solid. This approach does not account 
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for the localized buckling of the core [34-36]. The meso/micro-mechanical model 

utilizes the representative unit cell of the HC core [32, 37]. The models account for the 

details of the geometric features of the cellular structure and the cell wall material. The 

model takes the cell wall material properties and predicts the structural properties and 

behavior of the HC core panel with multiple cells. The success of the abovementioned 

models relies, to a great extent, on the availability of the experimentally-determined 

structural and material properties of the HC cores. Owing to that, the accuracy of the 

FE-calculated results depends, among others, on the accuracy of the geometrical model 

of the HC cells, prescribed boundary conditions and loading, the precision of the 

measured material properties, suitable constitutive laws for the face sheet and cell wall 

materials.  

While the mechanics of the CFRP laminates for the face sheet have rigorously 

been studied [38-42], limited research work is available on the deformation and failure 

of the HC core, particularly those fabricated from the resin-impregnated papers [10, 

43]. The observed localized failure leading to the final fracture of the sandwich 

structure necessitates the simulation of the complete deformation process to capture 

the observed failure mechanisms. This calls for the constitutive model of the cell wall 

materials with appropriate failure criteria. In this respect, several failure criteria, 

including Hashin [44], Tsai-Wu [45], and Tsai-Hill [46] are of particular interest for 

HC core made of unidirectional fiber-reinforced polymer papers. Many researchers 

analyzed the out-of-plane compression response of the HC core using meso-scale 

multi-cell representative models [47, 48], but the mechanics of deformation through 

damage mechanics are yet to be elaborated. The implementation of the damage 

mechanics approach covers the strength characteristics and the complete failure 

response through localized damage initiation and propagation, as already done in 

CFRP laminates [40, 42]. Surprisingly, this approach is not being utilized till now for 

the polymeric composite HC core structures. Therefore, an efficient and validated FE 

model of the HC core behavior is invaluable in view of the ever-increasing 

computational power available for design and simulation. A validated representative 

cell model could then be effectively used to generate the response of the HC core 

structure under the general loading scenarios. This limits the costly testing on the HC 

core samples for identifying the primary structural properties.  
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The numerical analysis capability of the structural products employing the HC 

sandwich panels requires the proper design verification prior to experimental tests and 

certification for deployment. Even with the revolutionary computation power, the 

structural analysis of the products made of tens or thousands of sandwich panels (like 

fairings, flappers, and spoilers in the wing of aircraft) can become very complicated. 

In addition, the cost and time constraints necessitate efficient virtual methods to 

confirm that the structural product is capable of handling the different loading 

conditions during its service life. Thus, the macro-mechanical modeling approach 

comes into consideration, termed as the homogenization of the cellular core [17, 36, 

37, 49]. Instead of the detailed cellular core model, an equivalent homogenous material 

replaces the cellular core having the same mechanical behavior as that of the actual 

HC core. This approach simplifies the numerical modeling of the complex structural 

parts and results in reducing computational cost and time. Developing an equivalent 

HC core is difficult due to the complexity of the cellular core and its mechanical 

characteristics based on the core geometry variation. The issue becomes more complex 

as new composite materials are made to be used as cell wall material for the cellular 

HC core. Currently, some research works are conducted to establish the equivalent HC 

core model, and computational tools are devised to calculate the structural properties 

to be used for the homogenous material in the complex sandwich panel products [50]. 

But this field is still open for research as the challenge is concerned with the accuracy 

of the assumptions being used for creating the homogenous material equivalent to the 

actual HC core. 

The present research work establishes the damage mechanics-based meso-

scale representative cell model to predict structural properties and failure processes in 

the HC core structure under quasi-static loading conditions. Contrary to the previously 

developed multi-cell models consisting of a large number of cells, the smallest possible 

representative cell models are created with periodic boundary conditions that 

drastically reduce the computational time. The predicted mechanical responses and 

damage behavior provide the internal states of displacement, strain, and stress, 

referring to the explicit material phases. The in-plane and out-of-plane mechanical 

properties are quantified for general loading conditions like tension, compression, and 

shear using experimental tests and numerical analysis. Furthermore, the FE validated 

out-of-plane and the in-plane mechanical properties from the experimental tests are 
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implemented to develop a damage-based equivalent homogenous HC core model. The 

validation of the equivalent model is claimed by comparing measured data and FE-

predicted flexure load-displacement plots of the sandwich HC panel under three-point 

bend load. The FE-calculated behavior acknowledges the damage initiation event and 

the subsequent evolution of damage to fracture of the core structure in the 

representative cell model and equivalent homogenous HC core (EHC) model. 

1.3 Statement of Research Problem 

Multiple Representative volume element (RVE) models are used in the 

analytical formulations by the researchers individually for the derivation of orthotropic 

elastic constants to generate the equivalent model for HC core [51-54]. These 

theoretical equations result in different calculated values for the elastic constants for 

the equivalent model. Also, various finite element models are created using the 

meso/micro-scale representative structure of the HC core [55, 56]. FE tools are devised 

to replace the real HC core with the equivalent material model using the single-cell 

representative structure of hexagonal HC core, but that provides the initial 

approximation of the elastic constants for stiffness matrix [50]. Most of the open 

literature focused on characterizing the mechanical behavior under static or impact 

loading using different geometric parameters of the hexagonal honeycomb core [57-

60]. But the combined effects of certain geometric parameters like cell size and cell 

height are yet to be quantified. To the author's knowledge, far too little attention has 

been given to the damage-based mechanics of deformation in paper-made honeycomb 

cores. These attributes can be very interesting in analyzing the failure of the 

honeycomb core under different loading conditions. In addition to these primary data, 

systematic studies are still needed for the mechanical behavior of a single honeycomb 

core geometry under all in-plane and out-of-plane quasi-static loading conditions. This 

could provide a complete set of effective elastic properties to develop an equivalent 

HC core model. This research aims to provide a methodology to develop a predictive 

model for the failure in Nomex HC core using a damage mechanics-based 

representative cell model. The structural properties from this damage mechanics-based 

predictive model are used as input to create an equivalent model for replacing the 
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cellular HC core in the sandwich panel that duplicates the real HC core behavior under 

any loading condition. Therefore, the research gap could be summarized to answer the 

following research problem. “How effectively the HC core in the sandwich panel could 

be replaced with a homogenous material using a damage mechanics approach 

resulting in the same mechanical behavior of the real composite sandwich panel?” 

1.4 Research Objectives 

The research aims to develop a verified damage mechanics-based model for 

deformation and failure prediction of honeycomb structures. The specific objectives 

of the research are : 

i. To establish relevant material properties and behavior of Honeycomb (HC) 

core used in the sandwich panels. 

ii. To determine the effects of geometric parameters for the structural 

characterization of hexagonal Nomex HC core under the out-of-plane 

compression loading.  

iii. To develop the damage mechanics-based model using meso-scale 

Representative Cell (RC) structure for the HC core. 

iv. To verify the damage mechanics-based FE model for the equivalent 

homogenized honeycomb (EHC) core structure.  

 

1.5 Scope of the study 

The present study focuses on developing a damage mechanics-based 

representative cell model of Nomex HC core that could efficiently predict the 
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mechanical response of the real structure under different loading conditions. The 

research is limited to the following scope of work: 

i. Conduct the mechanical testing for material and structural characterization of 

the hexagonal HC core. 

a. Phenolic resin impregnated Nomex paper (type 410) specimens are used for 

the tension test to obtain the material properties. The overall dimension of 

the specimen was 350 mm (length) x 50 mm (width) with a paper thickness 

of 0.05 mm. The tension load was applied in the paper roll (0°) and 

transverse (90°) direction. 

b. Bare Nomex HC core (HRH-10) specimen (cell size = 3.2 mm, height = 

12.7 mm and density 64 kg/m3) with square (30 mm x 30 mm to 70 mm x 

70 mm) and rectangular (150 mm x 50 mm) cross-section are cut from the 

HC core panels of real aerospace structural parts. The square specimen is 

used for quasi-static out-of-plane compression, while the rectangular 

specimen is employed in the in-plane tension, shear, and out-of-plane shear 

loading.  

c. Sandwich HC panel specimen comprised of CFRP 2-ply [0]2 and 8-ply [0]8 

face sheets and Nomex HC core with same cell size and height as above. 

These sandwich panels were cut into a square (50 mm x 50 mm) and 

rectangular (200 mm x 75 mm) cross-section. The square sandwich 

specimen (with 8-ply CFRP face sheets) is used for quasi-static out-of-

plane tension, while the rectangular sandwich panel (with 2-ply CFRP face 

sheets) for the quasi-static three-point bend experiment. 

ii. Parametric analysis of bare HC core structures is conducted using different 

cellular configurations for out-of-plane compression. Specimen with cell size 

(3.2 mm, 4.8 mm), core height (8 mm, 12.7 mm, 18 mm) and density (32 kg/m3, 

64 kg/m3, 128 kg/m3) are used for the compression testing. 

iii. Damage-based finite element representative cell models are developed by 

using ABAQUS 6.14. Hashin damage criteria with energy-based damage 
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evolution is implemented to simulate the following quasi-static out-of-plane 

loading cases: 

a. Tension and compression load cases are simulated using hexagonal cell 

configurations of single-cell, 4-cell, and 24-cell models.  

b. A shear load case model was created using a 6-cell configuration of 

hexagonal HC core. The shear load case is comprised of the ribbon and 

transverse direction. 

iv. A Hybrid experimental-computational approach is adapted to obtain the 

effective structural properties of hexagonal Nomex HC core. The in-plane 

structural properties are taken directly from mechanical testing, while the out-

of-plane structural responses are validated through representative cell models. 

These both are used as input to create the following damage mechanics-based 

equivalent homogenized HC core models. 

a. Multi-cell equivalent model with geometric dimensions of 50 mm x 50 mm 

x 12.7 mm is simulated using the said structural properties for quasi-static 

compression load.  

b. Single-cell equivalent model with a geometric configuration of 5.54 mm x 

3.36 mm x 12.7 mm is created, and numerical analysis is performed to 

assess the deformation and failure process, respectively.  

c. Verification of the newly developed damage-based equivalent HC core 

model is done by simulating the quasi-static three-point bend loading of 

sandwich HC panel. The localized structural deformation and damage 

evolution to fracture of the HC core is analyzed in detail for the respective 

loading condition. 
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1.6 Significance of the Study 

This research work presents a methodology for replacing the cellular HC with 

the equivalent homogenous structure that effectively predicts the mechanical behavior 

of the real HC core. The developed equivalent homogenized honeycomb core (EHC) 

model significantly reduced the model size, which lowers the computational time and 

cost for the whole composite sandwich panel. The validated model acknowledges the 

gradual accumulation of material damage leading to crack initiation of material points 

in the equivalent model. In addition, the methodology can be adapted for other 

polymer-based materials with available experimental data. Moreover, the research also 

provides an in-depth understanding of failure mechanics by using damage-based 

representative cell models. The representative cell models are formed using the 

smallest possible unit-cell structure that efficiently predicted the material point damage 

under different loading conditions. The verified methodology for the representative 

cell and the EHC models will be significant for all the industries associated with 

lightweight structures, specifically the aerospace companies such as Composite 

Technology Research Malaysia (CTRM) and transport industries as well. The 

representative cell model methodology could be useful for these companies in 

conducting the computational analysis instead of experimental testing that could save 

high product development cost and time for different aircraft parts. The damage 

mechanics-based approach implemented in these models helps in quantifying the real 

HC core mechanical response. This is of immense significance in the computational 

analysis of large complex structures where the computational time and cost are of 

utmost importance.  

1.7 Thesis Layout 

This thesis consists of eight chapters. All the chapters are arranged to establish 

an equivalent homogenized HC core model for predicting the deformation response 

under different loading conditions. The validated damage mechanics-based finite 

element methodology is described for representing actual HC core behavior through a 
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homogenous model using structural properties. Each chapter's content is specified here 

to link them with the specific objectives and scope of the research.  

In Chapter 1, the research background and challenges in numerical analysis 

relate to the complexity of the anisotropic Nomex honeycomb core structures used in 

sandwich panels for automotive and aerospace industries. The problem statement, 

specific objectives, and significance are clarified. The limits of this research are 

defined in the scope of the study. 

Chapter 2 summarizes the literature on honeycomb core structures, mechanical 

properties, and behavior under quasi-static loading. Exiting numerical tools and FE 

procedures to predict the failure response are covered. Various representative cell 

models are identified from literature used in previous studies to predict the deformation 

and failure. Different homogenization models are discussed that were created to 

replace cellular honeycomb core structure as an equivalent material. Previous research 

based on theoretical models to find elastic constants for stiffness matrix are described. 

All this literature review is given in detail to have an insight on the current topic and 

provide the basis for further research needed in this specific area. 

Chapter 3 provides the detailed research methodology of the current study. A 

hybrid experimental-computational approach is established to find the structural 

properties of hexagonal Nomex HC core. Firstly, validated damage mechanics-based 

representative cell model formation is elaborated for the out-of-plane loading 

conditions. The representative cell model consists of the real hexagonal HC core 

geometry. Then, the creation of damage mechanics-based equivalent homogenized HC 

core model methodology is explained in which the HC core is replaced by equivalent 

homogenous material that will duplicate the real HC structure behavior. The detailed 

information of validating the equivalent model through three-point bend loading on 

the sandwich HC panels is described. 

Chapter 4 consists of all the experimental test results that relate to HC core 

structures. First, the phenolic resin-based Nomex paper tensile properties are described. 

The orthotropic elastic constants along-with the damage parameters are extracted that 
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are to be used as input for the damage mechanics-based representative cell model of 

the HC core. Secondly, the out-of-plane tension, compression, and shear deformation 

are presented for the respective HC core, while the global load-displacement responses 

are plotted to quantify the mechanical properties. Then, the in-plane tension and shear 

deformation results are described for the same geometry of HC core structure. The 

catastrophic damage to different loading conditions is explained through the 

mechanics of deformation and failure for each loading case. In the last section, the 

three-point bend experimental test results of sandwich HC panel are given that will be 

used for validation of equivalent homogenized HC core model.  

In Chapter 5, the parametric analysis of the HC core structure is provided for 

the out-of-plane compression behavior. The influence of HC geometry, particularly 

the cell size, the height of core, and relative density, are analyzed and discussed 

individually. Then, the effects of cell aspect ratio (height/cell size) and relative density 

on the compression modulus, strength, and dissipation energy are established. A 

phenomenological model is presented that could effectively predict the compressive 

strength of the Nomex HC core using the combined effects of relative density and cell 

aspect ratio. 

Chapter 6 describes the developed representative cell model numerical results 

for the HC core out-of-plane loading conditions. The mechanical responses of the 

damage mechanics-based models consisting of single-cell and multiple hexagonal 

cells of the HC core are presented in detail. The FE-calculated behavior acknowledges 

the damage initiation followed by the damage evolution to fracture of the HC core. 

The representative cell models are validated experimentally for each respective load 

case and cover both mechanics of materials and the deformation mechanism. It is 

clarified that the mechanical deformation responses could be efficiently predicted by 

the smallest possible representative cell model of hexagonal HC core using the damage 

mechanics approach. 

Chapter 7 elaborates the numerical analysis of damage-based homogenous 

equivalent homogenized honeycomb core (EHC) models. The computational results 

of equivalent multi-cell and single-cell models are assessed to examine the developed 
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homogenization technique through structural properties. The load-displacement plots 

and the progressive damage in the EHC models are described for each case. A 

numerical model of the three-point bend loading condition for sandwich HC panel is 

done in the last section. The sandwich panel is modeled to have stiff CFRP face sheets 

bonded to equivalent HC core surfaces, and a three-point load is applied. The EHC 

model results are compared with the measured response. The computational results are 

shown to be in accordance with the measured data, and the EHC model replicated the 

exact mechanical behavior of the real HC core. 

Chapter 8 summarizes the main conclusion related to the methodology adopted 

for the representative cell model. Furthermore, the verified EHC model responses are 

concluded. The main contributions that are addressed in the form of research 

objectives are concluded in this chapter. Further research recommendations are listed 

to increase the knowledge base in the field of HC structures. 
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