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ABSTRACT

Through-silicon via (TSV) is one of the emerging technology enablers for the 

3D Interconnects. TSV configuration consists of conductive materials, such as 

copper or tungsten, dielectric liner, which is silicon dioxide and silicon as the semi- 

conductive material. The difference in thermal expansion rates between those 

integrated materials will cause accumulation of plastic strain at the interface of 

Cu/SiO2 during the operation. The research aims to develop a damage mechanic- 

based model for reliability assessment of through-silicon via interconnects. During 

thermal excursions, extensive plastic strain is likely to form between materials with 

different coefficients of thermal expansion. It leads to the accumulation of voids and 

subsequently, fracture occurs in the critical section. In this development, the response 

of Cu coating with a thickness of 8 p,m in a typical package with TSV interconnects 

is examined. Finite element (FE) analysis is employed along with experiments and 

published experimental data in establishing a thorough understanding of the 

mechanics and failure processes of copper interconnects. The accuracy of FE results 

of TSV model is greatly dependent on the behaviour prescribed for the Cu 

interconnects in the analysis. In this respect, the Johnson-Cook constitutive equation 

is employed with the material model constants extracted from a series of 

nanoindentation test data at different displacement rates. The temperature-dependent 

data are obtained from published nanoindentation test results at varying 

temperatures. The TSV Interconnects subjected to temperature cycles are examined. 

Material parameters for cyclic properties are established based on published data on 

copper coating cyclic test. Johnson-Cook Damage model was utilized to demonstrate 

the damage characteristic of metallic vias. The FE model is then used to perform the 

design sensitivity analysis of the TSV. It was found that the plastic strain-based 

damage model adequately predicts the damage and fracture processes of Cu-filled via 

under temperature changes. Based on the design sensitivity analysis, the minimum 

radial stress magnitude for TSV array with 15 and 20 (jrn pitch length is lower than 

the threshold keep-out-zone (KOZ) stress o f an- = 69.6 MPa. Thus, the staggered 

array o f 5 [un-diameter TSVs with pitch lengths o f 15 and 20 jxm could 

accommodate transistor devices without adversely affecting its performance.
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ABSTRAK

Laluan melalui-silikon (TSV) adalah salah satu pemboleh teknologi yang 
digunakan di dalam penyambungan Tiga Dimensi (3D). Konfigurasi TSV terdiri 
daripada bahan pengalir, seperti tembaga atau tungsten, lapisan dielektrik iaitu 
silikon dioksida dan silikon sebagai bahan semikonduktor. Perbezaan antara kadar 
pengembangan terma antara bahan bersepadu akan menyebabkan pengumpulan 
terikan tak anjal di bahagian antara muka tembaga/silicon dioksida sewaktu operasi. 
Tujuan penyelidikan ini adalah bagi membangunkan model berdasarkan mekanik 
kerosakan bagi penilaian kebolehpercayaan penyambungan laluan melalui-silikon 
(TSV). Semasa kehadiran terma, terikan tak anjal yang tinggi terbentuk di antara 
bahan yang berlainan yang setiap satunya mempunyai pekali pengembangan terma 
yang berbeza yang akan didahului dengan pengumpulan lompang dan kemudiannya, 
keretakan penuh berlaku pada kawasan setempat di bahagian kritikal. Di dalam 
pembangunan ini, tindak balas salutan tembaga dengan 8 jxm tebal pada pakej tipikal 
TSV telah diperiksa. Analisis unsur terhingga (FE) digunakan bersama eksperimen 
dan data eksperimen yang telah diterbitkan bagi meningkatkan pemahaman yang 
menyeluruh dalam mekanik dan proses kegagalan penyambungan tembaga. 
Ketepatan keputusan FE bagi TSV sangat bergantung kepada perilaku konstitutif 
penyambungan tembaga yang digunakan di dalam analisis. Dalam hal ini, persamaan 
konstitutif tak anjal Johnson-Cook digunakan dengan pemalar model bahan yang 
tersari daripada data yang diambil hasil dari ujian bersiri lekukan nano pada kadar 
anjakan yang berbeza. Data bagi kebergantungan bahan terhadap suhu dicapai 
daripada data yang telah diterbitkan dalam ujian lekukan nano pada suhu yang 
berbeza. Penyambungan TSV tertakluk kepada kitaran suhu telah diperiksa. 
Parameter bagi sifat kitaran bahan diambil berdasarkan data daripada ujian kitaran ke 
atas salutan tembaga yang telah diterbitkan. Model kerosakan Johnson-Cook (JC) 
telah digunakan bagi menunjukkan ciri kerosakan pada laluan logam. Model FE 
kemudiannya digunakan untuk menganalisa kepekaan rekabentuk TSV. Daripada 
kajian ini, telah didapati bahawa model kerosakan berdasarkan terikan tak anjal 
boleh digunakan untuk meramal kerosakan dan proses keretakan pada isian-tembaga 
di bawah perubahan suhu. Berdasarkan analisis kepekaan rekabentuk, nilai tegasan 
radial 15 dan 20 micrometer jarak antara TSV lebih rendah daripada nilai tegasan 
zon simpan (KOZ) dengan nilai 69.6 MPa. Oleh itu, TSV dengan diameter 5 jxm dan 
jarak antara TSV, 15 ^m dan 20 p,m boleh memuatkan peranti transistor di sekitarnya 
tanpa mempengaruhi prestasi TSV.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Through-silicon via (TSV) is the current emerging 3D interconnect enabler 

that uses the vertical connection of conductive material that passes through a silicon 

wafer in order to complete the electrical circuit for stacking devices in three 

dimensions (3D) system [1, 2]. This technology was first adapted for complementary 

metal-oxide-semiconductor (CMOS) image sensor. TSVs were fabricated on the 

back of the image sensor wafer to form interconnects and eliminate wire bonds. The 

advantages of applying this type of interconnection application to 3D stacked chip 

are it can improve electrical performance with very small serial inductance of less 

than 30 picohenry (pH) as well as achieving higher space efficiency comparable to 

wire bond technology [3, 4]. These can be seen from Figure 1.1 where the short 

length of TSV and no spacer required. Its lead to the small electric delay from the 

package substrate to the top chip. In addition, the chips can be mounted very near 

between power and the ground vias without additional traces on package substrate 

resulting in smaller package size. This new emerging practice of interconnection will 

give a new dimension to the micro and nano-electronic field in terms of applications 

and in pursuing minute device in the global market.
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Figure 1. 1 Advantages of TSV for 3DIC interconnect application [3]

The technology had moved into the commercialization phase at which the 

economic realities will determine which interconnect technology will be adopted. 

TSV is one of the solutions seek by most of the microelectronic industries for their 

higher integration. Almost 50 organizations identified working in this area of study 

[5]. Table 1.1 shows the company that used 3D TSV in the microelectronic 

packaging market. The earliest commercialization date was in 2011 which pioneered 

by Nanya Technology based in Taiwan.
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Table 1.1 3D TSV commercialization [4]

Company 3D with TSV (Commercialization Year)

TSMC 2012-2013

UMC 2nd Half of 2011

Global Foundries 2013

Samsung 2012

Elpida 2nd Half of 2011

Micron 2012

Nanya 2011-2012

STATSChipPAC 2013

SPIL 2012

Qualcomm 2013

Nokia 2012-2013

Dell 2012

The size of the TSV is usually depicted using pitch distance. Pitch distance is 

measured between the centres of vias to its neighbouring vias. It is found that the 

trend of pitch distance is reduced throughout the years and the technology roadmap is 

shown in Figure 1.3. Two technologies are illustrated in this figure, which is current 

three-dimensional large-scale integration (3D-LSI) and advanced 3D-LSIs where 

represented by upper line and the lower line respectively. LSI defines the technology 

used to build microchips or integrated circuits (IC) in a very small form factor. LSI 

consists of thousands of transistors that are closely embedded and integrated with a 

very small microchip. Current 3D-LSI is the technology which the TSVs are formed 

under the peripheral bond pads while for advanced 3D-LSI, the circuit blocks in 

stacked chips need to connect directly with fine pitch TSVs and microbumps. Figure

1.2 shows the schematic view of chip size package (CSP) structure for sensor 

application with current 3D-LSI technology. The pitch distance for current 3D-LSI is 

in the range o f 10 to 50 jam since it is designed based on bond pad pitch without any 

size modification on the original LSI chip layout. The size range for advanced 3D- 

LSIs pitch distance is less than 5 pm due to the direct connection between circuit 

block with fine pitch TSVs and microbumps.
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Figure 1.2 Schematic view of a CSP structure for sensor application

Figure 1.3 TSV for 3D-LSI technology roadmap [6]

Various different materials are involved in the production of TSV namely 

conductive/filler material, for example, copper (Cu) or tungsten (W), an insulator to 

form a barrier layer to avoid diffusion of metal into Si-substrate, for instance, silicon 

dioxide, and silicon wafer. These materials are embedded together to form the TSV 

which gives a pathway for electrical current to pass through a number of silicon dies 

layers. Figure 1.4 shows the schematic diagram for the full model interconnection, 

including ball grid array (BGA) and TSV. The huge challenge faced by the
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researcher which relates to the failure of TSV due to the thermal strain on the filler 

metals adjacent to the interface. Temperature excursions during cyclic temperature 

loading of reliability test as well as the operating environment will induce strains 

(consequent stress as a product) at critical point caused by mismatches of the 

coefficient of thermal expansion (CTE) between two distinct adjacent materials.

Figure 1.4 Schematic diagram of 3-D Integrated Circuit (IC) [4]

Figure 1.5 Occurrence of failure in TSV [7]

The voids formed in TSV material due to the accumulated strains has been 

reported in the previously published journal [7] as shown in Figure 1.5. Once there 

are voids inside TSV material, the effective electric current flow will be affected and 

hence reduce the reliability of the device. The list of critical issues facing TSV have 

been discussed by Lau et al. [1] One of the points is the usage of copper fillings helps 

in reducing thermal problems but increases the thermal coefficient of expansion. This 

will result in TSV wafer warpage problem owing to the CTE mismatch between 

silicon and copper.
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Thus, a validated framework for reliability assessment of TSVs interconnects 

is required. The model that can predict the failure occurred on the TSV is expected at 

the end of this research. The material properties of coating filler are extracted using 

nanoindentation test and used as an input in the verified model.

This study discusses a framework for the TSV reliability finite element (FE) 

model, including constitutive and damage response of TSV material. Most of the 

researchers have yet to acknowledge the continuum damage mechanics approach in 

the model, although the interface failure model describes in their study [8, 9]. 

Numerous researchers have highlighted the conventional way of simulating the case 

up to the elastic-plastic case only rather than move into damage model [10-12]. In 

comparisons to those previous works, several improvements have been made. These 

include the establishment of a methodology for determining the constitutive response 

of coating material using nanoindentation test, development of through-silicon via 

reliability model utilizing the material model established in the current study and 

employing a continuum damage model (CDM) for simulating the failure of TSV 

structure.

1.2 Statem ent of the Research Problem

A decent design of electronic packaging and material selection can ensure the 

circuit works properly and hence increasing the reliability of the products. One of the 

microelectronic company, namely Micron has accept that thermo-mechanical stresses 

need to be determined in terms of TSV diameter, aspect ratio, and pitch distance 

[13]. Thus, in this case, an approach to determine the stress level in the electronic 

component are needed. To date, the modelling approach for the reliability of 

microelectronic components had been studied especially for a solder joint. The 

model of solder joint reliability had been vastly studying from linear elastic, plastic 

until damage. To the author knowledge, existing studies on FE analysis of through- 

silicon via under thermal-mechanical modelling are limited to plasticity without 

considering the damage behaviour of the material [7, 14, 15]. Thus, in this study, 

author would extend the modelling of TSV reliability model by implement a

6



damage-based approach into the model. In addition to these primary data, the 

systematic studies on the constitutive response of coatings materials are still needed 

for better understanding of the characteristics behaviour of coating material in the 

TSV.

1.3 Objectives

The aim of the research is to develop a damage mechanic-based approach for 

reliability assessment of TSV interconnects. Specific objectives are:

1. To establish a combined experimental-computational procedure for the 

determination of mechanical properties of Cu-coating.

2. To develop and examine the FE model of TSV for use in reliability 

prediction.

3. To generate information/ data on the sensitivity of TSV design parameters to 

local stress distribution in the TSV utilizing the FE model.

1.4 Scope of Study

The present study focuses on development of the FE model of TSV for use in 

reliability prediction, and is limited to the following scope of work:

1. Copper coated on silicon dioxide/silicon substrate as the demonstrator 

material. There are two types of deposition process employed which are 

physical vapor deposition (PVD) and electroless plated method.

2. Metallurgical study including microstructure and chemical composition 

analysis of the materials. Scanning electron microscopy and optical 

micrograph are used to analyse the microstructure and measure the thickness, 

respectively.

3. Perform nanoindentation tests to extract mechanical properties of the copper 

coating. Different indentation depth ranging from 80 to 320 nm with varying

7



displacement rates of 80 nm/s to 320 nm/s are employed. Load-displacement 

response is recorded.

4. The stress-strain equations of the copper coating is represented by the

Johnson-Cook model. Johnson-Cook damage model is employed as the 

criterion for damage initiation of the coating. The cyclic behaviour of the 

copper layer is modelled using the Armstrong-Frederick-Chaboche material 

model.

5. FE simulations are performed using the commercial SIMULIA Abaqus ver.

6.12 software. The simulation covers :

a) Nanoindentation test for the inverse analysis approach.

b) Sensitivity analysis on TSV and parametric study.

1.5 Significance of Study

Through-silicon via as a 3D interconnect enabler is currently in production. 

The reliability issue arising from difference thermal loading exposes to the materials 

always facing by the manufacturers. Therefore, a prediction model through a damage 

mechanic-based is offered by this thesis. The model effective to use in generating 

reliability data to develop optimum features of TSV. This is significant for all 

industrial sectors more importantly in the electronic packaging field. The 

establishment of reliable predictive models will offer an alternate design and analysis 

tool for low cost and reduced number of experimental testing.

1.6 Thesis Layout

This thesis consists of seven chapters. It starts with Chapter 1 which discuss 

in the background o f the research and it’s complimentary. The issues of reliability for 

Through-silicon Via and the progress of 3D interconnect technology development in 

the microelectronic global industry are briefly described. In addition, the objectives, 

scopes of works and significance of the research are also defined.
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Next, Chapter 2 gives a critical review of the current world emerging trends 

of 3D Interconnect Technology, mechanics of coating material deformation, 

nanoindentation test, finite element method, temperature- and strain rate-dependent 

models, continuum damage mechanics, and FE simulation of TSV and summary of 

the literature review. In fact, this chapter is focused on previous works by other 

researchers detailing on aforementioned items.

In Chapter 3, the research methodology is present. The method of 

determining the details of the research material model, experimental setup and FE 

simulation models are clarified. The input required for FE simulation is discussed. 

Constitutive response using Johnson-Cook model is employed in monotonic 

temperature ramp case. Then, for cyclic model, Armstrong-Frederick-Chaboche 

(AFC) model integrated with the damage model to capture the cyclic behaviour and 

accumulation of plastic strain inducing damage to the Copper coating in TSV 

reliability simulation.

The results and discussion are presented in 3 chapters which are chapter 4, 5

and 6.

In Chapter 4, the assessment of deformation processes in nanoindentation test 

in the form of the typical load-unload graph are presented and discussed. Effects of 

process and structure on material properties are observed. The elastic modulus and 

hardness are characterized based on load-depth response through the nanoindentation 

test.

In Chapter 5, the application of FE simulation to assess the mechanics of 

deformation in nanoindentation testing is addressed. A computational inverse 

analysis approach which used to determine inelastic properties of coating materials is 

introduced. Constitutive curve required for the simulation is obtained through inverse 

analysis approach.

In Chapter 6, the application of FE to assess the damage mechanics is 

addressed. By using 3D TSV model, the damage mechanics are examined by

9



incorporating the JC temperature- and strain-rate dependent criteria for monotonic 

case, while for cyclic case using Armstrong-Frederick-Chaboche model combines 

with damage model. The calculated localized stress and strain are characterized. 

Using the verified FE model, sensitivity parametric analysis has been executed.

In Chapter 7, the main conclusions of the research are present. Finally, future 

works for refining the research are recommended.
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