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ABSTRACT 

 

 

 

 

 Although aspects of long-term planning are commonly taken into account in 

current analyses of bioenergy policy scenarios, spatial representations of the bioenergy 

supply chain are often overlooked. Multiple questions such as where, when, and how 

bioenergy is deployed thus have not been sufficiently addressed within a single 

modeling framework. Moreover, techno-economic models that can capture the 

dependencies of bioenergy supply chain variables among end-use sectors still need to 

be explored. This thesis presents a spatially and temporally explicit techno-economic 

supply chain optimization model that allows the assessment of bioenergy deployment 

at a higher system level from a multi-sectoral perspective. This thesis also presents 

applications of the model in the context of developing low-carbon pathways for a 

developing country having an economy reliant on fossil fuels and agriculture, with 

Malaysia serving as a case study. The model was developed in the generic algebraic 

modeling system, with ArcGIS applied for spatial processing and Python applied for 

database management. The first part of the thesis presents the model application for 

assessing long-term cross-cutting impact of implementing bioenergy in multiple 

energy sectors up to 2050. The findings suggest that integrating substantial capacity of 

bioenergy in Malaysia's energy sectors could help save up to 37% of the annual 

emission avoidance cost of meeting the long-term emission target. The findings also 

suggest that the renewable energy policies could deliver more emission reductions than 

the decarbonization policies, but would require 30% more cumulative investment. The 

second part of the thesis discusses more detailed strategies on how biomass co-firing 

with coal can contribute to meeting short-term emission target up to 2030, which is 

related to multi-scale production of solid biofuels from palm oil biomass to scale up 

co-firing. The findings show that densified biomass feedstock could substitute 

significant shares of coal capacities to deliver up to 29 Mt/year of greenhouse gas 

reduction. Nevertheless, this would cause a surge in the electricity system cost by up 

to 2 billion USD/year due to the substitution of up to 40% of the coal-fired plant 

capacities. The third part of the thesis presents the model application to analyze the 

impact of the co-deployment of co-firing and dedicated biomass technologies in 

contributing to the bioenergy cost reduction under the impact of incremental 

decarbonization targets and supply chain cost parameter variations. The findings 

suggest that the multi-sectoral deployment of bioenergy in energy systems is key to 

meeting decarbonization targets at the national scale. By also considering biomass co-

firing with coal in the biomass technological pathway, up to 27% of bioenergy cost 

reduction could be enabled in the main case. All the findings from this thesis are 

expected to inform the ongoing policies and initiatives regarding greenhouse gas 

reduction, renewable energy production, and resource efficiency improvement for 

managing environmental sustainability.
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 Walaupun aspek perancangan jangka panjang biasanya dipertimbangkan 

dalam analisis semasa berkenaan senario melibatkan dasar biotenaga, aspek ruang 

dalam struktur rantaian bekalan biotenaga sering kali kurang diberi perhatian. Pelbagai 

persoalan seperti di mana, bila, dan bagaimana biotenaga dapat dibangunkan tidak 

dapat ditangani dengan cukup dalam satu kerangka pemodelan. Lebih-lebih lagi, 

model tekno-ekonomi yang dapat menghubung kebergantungan pemboleh ubah 

rantaian bekalan biotenaga di antara sektor penggunaan akhir masih perlu diterokai. 

Tesis ini mengemukakan model pengoptimuman rantaian bekalan tekno-ekonomi 

yang dilengkapi ciri-ciri pemodelan secara eksplisit dalam aspek ruang dan masa yang 

membolehkan penilaian pembangunan biotenaga pada tahap sistem yang lebih tinggi 

dari perspektif pelbagai sektor. Tesis ini juga mengemukakan aplikasi model dalam 

konteks pembinaan jalur rendah karbon untuk negara membangun yang ekonominya 

bergantung pada bahan bakar fosil dan pertanian, dengan menggunakan Malaysia 

sebagai kajian kes. Model ini telah dibangunkan di dalam pemodelan sistem algebra 

secara generik, menggunakan ArcGIS untuk pemprosesan ruang dan Python untuk 

pengurusan data. Bahagian pertama tesis membentangkan aplikasi model untuk 

menilai impak jangka panjang pelaksanaan biotenaga dalam sektor-sektor tenaga 

hingga tahun 2050. Hasil kajian menunjukkan bahawa integrasi kapasiti biotenaga 

yang secukupnya dalam sektor tenaga Malaysia dapat membantu menjimatkan hingga 

37% kos penghindaran pelepasan tahunan untuk memenuhi sasaran pelepasan jangka 

panjang. Hasil kajian juga menunjukkan bahawa dasar-dasar berkenaan tenaga boleh 

diperbaharui dapat memberikan pengurangan pelepasan lebih banyak daripada dasar-

dasar berkenaan penyahkarbonan, tetapi memerlukan lebih 30% pelaburan kumulatif. 

Bahagian kedua tesis membincangkan strategi yang lebih terperinci mengenai 

bagaimana pembakaran biojisim bersama arang batu dapat menyumbang pada 

pencapaian sasaran pelepasan jangka pendek hingga 2030, yang berkaitan dengan 

pengeluaran bahan api bio dalam bentuk pepejal pelbagai skala dari biojisim kelapa 

sawit untuk meningkatkan pembakaran biojisim bersama arang batu. Hasil kajian 

menunjukkan bahawa biojisim yang telah dipadatkan dapat menggantikan sebahagian 

besar kapasiti arang batu untuk menghasilkan pengurangan gas rumah hijau hingga 29 

juta tan setiap tahun. Walaupun begitu, ini akan menyebabkan peningkatan kos sistem 

elektrik hingga USD 2 bilion setiap tahun disebabkan penggantian hingga 40% dari 

kapasiti loji pembuatan tenaga daripada arang batu. Bahagian ketiga tesis 

membentangkan aplikasi model untuk menganalisis kesan pembangunan bersama 

teknologi biojisim dan teknologi pembakaran bersama dalam menyumbang kepada 

pengurangan kos biotenaga di bawah kesan kenaikan sasaran penyahkarbonan dan 

perubahan parameter kos rantaian bekalan. Hasil kajian menunjukkan bahawa 

pembangunan biotenaga dalam pelbagai sektor sistem tenaga adalah kunci untuk 

memenuhi sasaran penyahkarbonan pada skala nasional. Dengan juga 

mempertimbangkan pembakaran biojisim bersama arang batu dalam pilihan teknologi 

biojisim, pengurangan kos biotenaga hingga 27% dapat dicapai dalam kes utama. 

Semua penemuan dari tesis ini dijangkakan dapat memberikan maklumat tentang dasar 

dan inisiatif mengenai pengurangan gas rumah hijau, pengeluaran tenaga boleh 

diperbaharui, dan peningkatan kecekapan sumber untuk mengurus kelestarian alam 

sekitar. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

1.1.1 Roles of Bioenergy in Energy Systems Decarbonization 

 

 

Climate change is one of these century's defining challenges, creating new 

impediments to the already existing development threats [1]. Anthropogenic 

greenhouse gas (GHG) emissions are appraised to have contributed to global warming 

of between 0.8 and 1.2 °C above pre-industrial levels [2]. Without drastic measures 

taken, this global warming rate is expected to rise by an additional of 2.5–7.8 °C by 

the end of this century [2,3]. To mitigate the impact of climate change, countries of 

the world have pledged their commitments in the Paris Agreement to reduce their 

overall GHG emissions. 

 

 

 In meeting the climate stabilization target of limiting global temperature rise 

to 1.5 °C above pre-industrial levels, large amount of biomass resources will be 

demanded to deliver significant bioenergy capacities for delivering energy system 

decarbonization [4]. According to the Intergovernmental Panel on Climate Change 

(IPCC) report, reaching the climate change mitigation goal will necessitate up to 430 

EJ/year of biomass use by 2100, as well as the phase-out in fossil fuel consumption 

and increased use of other renewables [5]. The ratio of bioenergy to global primary 

energy consumption would constitute to up to 50% by the end of the century from an 

average of 10% currently [6,7]. To meet this commitment, the contribution of biomass 

to meet future energy demands would be based on the utilization of both dedicated 

energy crops (e.g., miscanthus, swithgrass, jatropha) and residues (e.g., forestry 

residues, milling residues, agricultural residues) [8]. By 2050, global potentials of 

biomass (including energy crops and residues) that can technically be mobilized for 

bioenergy were identified ranging from < 50 EJ/year to > 500 EJ/year [5]. 
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Biomass has the potential to contribute to climate change mitigation due to its 

ability to remove carbon dioxide (CO2) from the atmosphere when managed in a 

sustainable way [4]. When biomass is used to substitute fossil fuels, the biogenic CO2 

captured in biomass is released back to the atmosphere, resulting in a neutral CO2 

emission cycle, therefore, avoiding the fossil CO2 emitted to the atmosphere [9]. The 

CO2 reduction potential that can be contributed by biomass may reduce when the 

emissions from its supply chain activities (e.g., cultivation, harvesting, processing, 

transportation) are taken into account [10]. However, studies have shown that many 

bioenergy production routes still provide significant CO2 reduction potential although 

the supply chain emissions are included in the life-cycle CO2 accounting [10,11,12]. 

To deliver large-scale biomass capacity to meet future demand, the potential mitigation 

services that these resources can provide must be optimally assessed. 

 

 

 The benefit of large-scale biomass-based routes compared to other renewables 

for delivering energy system decarbonization is the versatility of biomass resources 

that can be converted to varieties of value-added products for uses in different sectors 

such as power, heat and transport [13]. Also, for each of the biomass types, there are 

several production pathways possible. For example, biomass can be converted into 

different types of liquid or gasesous fuels such as biomethanol, bioethanol, biodiesel, 

biogasoline, biomethane and biohydrogen aside from its conventional uses for 

bioelectricity and bioheat production [14]. The multi-sectoral benefit of biomass to 

produce variety of products provides means of decarbonizing other sectors beyond 

power [13]; however, cost of pursuing advanced bioenergy routes is still high [15]. 

Although it is estimated that the cost of biomass energy would be reduced in future 

due to learning effect [16], decarbonization strategies should be planned earlier to 

avoid further ‘lock-in’ of energy system into fossil fuels [17]. For instance, according 

to Riahi et al. [17], if the near-term low-carbon energy target is not met by 2030, the 

long-term low-carbon energy commitment in 2050 would be increased by up to 200%, 

due to the delayed action to scale up mitigation efforts. Prioritization of the most cost-

effective production routes deployed in different planning timeframes (e.g., short, 

medium, and long-term) should thus be defined in order to avoid or minimize this 

‘lock-in’ impact [15,17]. 
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While cost is an important indicator for evaluating the value of different 

biomass conversion routes within the energy systems [4], the decarbonization 

potentials are also affected by other indicators such as biophysical parameters (e.g., 

biomass properties), process specifications (e.g., energy efficiency), regional 

variations (e.g., land availability, yield), and the counterfactual scenario analyzed, 

among others, which influence the relative mitigation potential of each pathway [18]. 

Understanding the optimum usage of this limited resource in relation to the 

geographical context and the rate of decarbonization of the energy system is therefore 

crucial. 

 

 

1.1.2 Bioenergy Planning for Multi-Sectoral Energy Decarbonization 

 

 

To mitigate climate change by reducing GHG emissions, transition from fossil-

fuel to renewable energy use is actively promoted around the world. The idea of the 

bio-based economy has gained much traction as a strategy to contribute to energy 

transition [19,20]. A promising approach is advanced bioenergy production which has 

the potential to decarbonize different emission-intensive sectors such as power, heat, 

and transport [21,22]. There will be increasing demand for agricultural products that 

provide sustainable sources of feedstock for bioenergy production during transition 

[23,24].  

 

 

As agricultural production is typically distributed over large areas of land, the 

allocation of feedstock resources is commonly associated with high transportation 

costs. The retrieval of bioenergy feedstock at a higher system scale advocates for 

effective management of logistics systems to handle supply chain activities in a 

commercially viable way. Logistics are often interlinked with, for example, resource 

supply and availability [25,26], production scales and locations [27,28], intermodal 

transport [29,30] and supply chain configurations [31,32]. The cost-minimization 

approach has been frequently applied to examine the trade-off between the elements 

or variables of the supply chain.  
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Adopting a whole-system view in decision making is crucial in minimizing the 

risk of oversimplifying the representation of the problems. Spatio-temporal approach 

can potentially capture a system view of the energy supply chain while addressing 

several problems related to time-dependent, location-dependent, and techno-economic 

decision factors [33]. For instance, selecting suitable locations for bioenergy facilities 

can help reduce logistical costs [31] and provide integration benefits to existing 

industries [34]. Moreover, some local characteristics of the supply chain, such as 

feedstock availability and demand, both of which are highly influenced by spatial and 

temporal variabilities, can be addressed systemically in the planning [35]. Integration 

of higher system level studies with the appropriate technology details at the plant level 

can potentially improve the existing framework for solving bioenergy issues related to 

the intensive use of bioenergy resources for multi-sector energy purpose. 

 

 

In recent years, several studies have been conducted to explore spatio-temporal 

bioenergy supply chain designs that integrate high spatial resolution with long-term 

planning objectives. Leduc et al. [36] presented an optimization model (the BeWhere 

model) with a spatial resolution of 0.1° (10 km x 10 km) that determines the optimal 

locations of forest biomass–based methanol production plants in Sweden for the 2005–

2025 period. Johnson et al. [37] presented an integrated assessment to investigate the 

development of supply curves of biofuel (from energy crops and agricultural residues) 

with carbon capture and storage (CCS) in the United States (US) during 2020–2050 at 

a district-level spatial resolution. Samsatli et al. [38] developed an optimization model 

(the BVCM model) with a spatial resolution of 0.5° (50 km x 50 km) and multi-level 

temporal resolutions (i.e., decade, year, season) that incorporates a comprehensive 

biomass value chain pathway for the United Kingdom (UK) and covers multiple types 

of feedstock from waste and agricultural residues to energy crops and forest biomass. 

Leila et al. [39] investigated the spatio-temporal supply chain design of renewable 

diesel and biojet fuel in California for the 2020–2040 period at a district-level spatial 

resolution. Patrizio et al. [40] investigated the long-term socioeconomic impact of 

forest-based bioenergy with carbon capture and storage (BECCS) in the US for the 

2020–2050 period using an integrated assessment approach (BeWhere-JEDI) at a 

spatial resolution of 0.5° (50 km x 50 km). Truong et al. [41] assessed the near-term 

CO2 emission implication of co-fired paddy residues in Vietnam’s coal plants for the 
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2016–2030 period using a recursive-dynamic modeling approach (BeWhere-Vietnam) 

with a spatial resolution of 0.2° (20 km x 20 km). Zhang et al. [42] presented a bottom-

up assessment of a spatio-temporal BECCS design that includes the utilization of 

wastes, agricultural residues, energy crops, and forest biomass as bioenergy feedstocks 

for the UK for 2030-2050 at a spatial resolution of 0.5° (50 km x 50 km). Fajardy and 

Mac Dowell [43] applied the MONET modeling framework with its multi-level spatial 

resolutions (i.e., country, state) to investigate the efficacy of a multi-country 

collaboration in terms of delivering global CO2 removal through BECCS deployment 

for 2030–2100. 

 

 

Other than the reviewed studies pertaining to spatio-temporal bioenergy supply 

chain designs, much of recent work has focused on the application of energy systems 

models to provide insights into bioenergy policy scenario analysis. Such work has 

illustrated the significance of scenario analysis as a tool for informing long-term policy 

decisions at a system level. However, the supply chain boundaries considered were 

often spatially aggregated based on a single-node/coarser spatial representation. 

Several examples of the policy scenarios discussed in these studies were presented. 

Börjesson et al. [44] applied the MARKAL_Sweden model to the case of bioenergy in 

Sweden to analyze scenarios involving national targets on 80% CO2 reduction 

compared to 1990 level by 2050 and 100% fossil fuel phase-out in the transport sector 

by 2050. Thrän et al. [45] applied the MILESTONE modeling framework to the case 

of bioenergy in Germany to analyze scenarios involving bioenergy provisions under 

different land use sustainability criteria and technology prioritization for the 2015–

2050 period. Pan et al. [46] applied the GCAM modeling framework to the case of 

bioenergy in China to analyze scenarios involving BECCS deployment under net-zero 

and net-negative emission targets. Durusut et al. [21] developed a new techno-

economic model (the BioHEAT model) that accounts for the co-dependencies of 

bioenergy among end-use energy sectors and incorporates consumer decision-making 

in the heat sector. The BioHEAT model was applied to the case of bioenergy in Ireland 

to analyze scenarios involving multiple policies adopted in the power, heat, and 

transport sectors, such as the implementation of a co-firing rate of up to 60% in peat-

fired stations by 2030, a mandated renewable transport fuel target of up to 14% by 

2030, and extension of the price support scheme for renewable heat to 2030 [22]. 
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In the literature mentioned, there was only limited assessment of the long-term 

cross-cutting impacts of implementing bioenergy in multiple energy sectors (i.e., 

power, heat, and transport) in a spatially and temporally explicit manner. This is 

important because, in order to take advantage of the versatility of bioenergy in working 

with different energy carriers, there needs to be a strategy that can deliver multi-sector 

interactions to ensure effective allocation of resources to the right sector. Such a 

strategy could inform policy conflicts between the achievement of renewable energy 

and emission-reduction targets in the energy sectors. Although the studies conducted 

by Durusut et al. [21] and Clancy et al. [22] have presented the modeling insights for 

the decarbonization of multiple energy sectors from a policymaker’s perspective, the 

energy system boundary was aggregated based on a single-node location 

representation, which might overlook the cost analysis details that a more 

comprehensive representation of the bioenergy supply chain network could provide. 

Furthermore, the bioenergy location-allocation network adopted in these studies were 

aggregated in which trade-offs between distributed and centralized configuration of 

facilities, transportation modes, and economies of scales were not considered. On the 

other hand, integration of seasonal temporal resolution into a long-term modeling 

approach, which is limited in the studies mentioned above (only addressed by Samsatli 

et al. [38]), should be explored further for the case of multi-sectoral bioenergy supply 

chain designs. The tactical/operational elements adopted in the supply chain 

configuration could improve cost quantification of the overall system by accounting 

for the resource storage cost. This would also improve the selection of bioenergy 

feedstock due to the trade-off between the seasonal reliabilities and the supply cost. 

 

 

 Overall, it can be concluded that the existing techno-economic models used for 

bioenergy planning at the national level have not been sufficiently addressing the 

important challenges in handling critical bioenergy issues, i.e., supply chain 

complexity, cross-sectoral bioenergy interactions between end-use sectors, spatial 

tractability of bioenergy supply chain, and temporal tractability of bioenergy 

decisions, in an integrated manner. Therefore, a new integrated whole-system model 

is needed to simultaneously address these research gaps in order to add new bioenergy 

insights into the existing body of knowledge based from a spatio-temporal, multi-

sectoral, techno-economic perspective. 
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1.1.3 Multi-Sectoral Bioenergy Opportunities in Malaysia 

 

 

In December 2015, Parties of the United Nations Framework Convention on 

Climate Change (UNFCCC) adopted the Paris Agreement to address climate change 

[47]. Parties agreed to keep the increase in global average temperature to well below 

2 °C above pre-industrial levels, and to pursue efforts to stay below 1.5 °C. Many 

Parties also formulated and submitted Intended Nationally Determined Contribution 

or INDC [48] that outlines the near-term climate action plans to be taken under the 

Paris Agreement. After the Agreement entered into force in November 2016, the INDC 

for those countries that have ratified the Agreement were converted into Nationally 

Determined Contributions (NDC) [49]. The NDCs outlined have addressed a range of 

issues, related to avoiding, adapting or coping with climate change, among other 

things. Nevertheless, targets and actions for reducing GHG emissions are core 

components [50]. Limiting global warming based on this climate challenging goal will 

entail a dramatic transformation of the global energy system. Emissions reduction 

commitments for the near term which are highly needed in mitigating the GHG, raise 

an important question for the international climate policy on how it affects the 

interventions at the national level, and also, on how the developing countries will cope 

with the development of sustainable energy in the future. 

 

 

Heavy reliance by Malaysia on fossil fuels for the next few decades (as shown 

in Figure 1.1) [51] will require the country to mitigate its GHG levels to meet its 

national emission reduction commitment under the Paris Agreement. This requires 

Malaysia to reduce the emission intensity of its gross domestic product (GDP) by 35% 

by 2030 on an unconditional basis relative to the 2005’s level, with a further 10% 

reduction conditional upon receipt of international funding from developed countries 

[52]. The majority of Malaysia's GHG emissions are from the energy sector [53], 

suggesting the importance of the role of renewable energy in decarbonizing future 

energy systems. Policies regarding the development of renewable energy in Malaysia 

currently focus on two main strategies which are renewable electricity (RE) capacity 

expansion to achieve 20% of the electricity mix by 2025 [54] and mandatory road 

transport fuel blending with 20% palm-biodiesel (B20) starting from 2020 [55]. 

Achieving these targets within just a short timeframe could be challenging for 
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Malaysia, as the present RE mix is still less than 2% [56] and the 10% palm-biodiesel 

(B10) mix mandate was implemented only in 2019 [57]. There is thus limited time 

available to increase the capacities of renewable energy in the power and transport 

sectors.  

 

 

 
Figure 1.1 Primary energy demand projection by fuel for Malaysia under the 

business-as-usual case [51] 

 

 

Bioenergy is considered one of the promising substitutes for fossil fuels in 

reducing GHG as it provides renewable carbon source for energy generation. The 

carbon content in biomass is derived from the atmospheric CO2 which is sequestered 

during photosynthesis [58]. Further biomass conversion into bioenergy could result in 

net neutral (on the basis where supply chain emissions are excluded in the GHG 

accounting) or nearly net neutral (on the basis where supply chain emissions are 

included in the GHG accounting) CO2 emissions as the CO2 sequestered in biomass 

during photosynthesis is released back to the atmosphere during the final use of 

bioenergy (e.g., bio-based fuel consumption in internal combustion engine of a 

vehicle, biomass combustion to produce electricity and heat) [58,59]. Bioenergy, by 

leveraging the potentials of feedstock that can be mobilized from the agricultural 

sector, mainly palm oil resources, has the potential to increase capacity for renewables 

in Malaysia while mitigating greenhouse gases. Bioenergy resources can be converted 

into various value-added products for use in different sectors such as power, heat, and 

transport [21]. Although utilization of these resources offers a promising strategy for 

decarbonization across different sectors, careful attention is required to several issues 

at the supply chain level. Regarding resource supply, securing biomass for bioenergy 
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is still a major challenge for Malaysia, considering the widespread practices of biomass 

combustion for onsite cogeneration in mills [60] and mulching in the plantations [61]. 

This is added with the issue on limited biomass hubs availability at the local level for 

collection purposes [60] which could help in improving the reliability of supply. 

Freeing up the way biomass is currently used for applications that have higher 

economic potential, such as large-scale power and heat, transport biofuels, and 

biochemicals could be means of scaling-up bioenergy at the national scale, although it 

would make supply chain design more complex. This complexity is due to the various 

stages in the bioenergy supply chain, such as harvesting, collection, storage, transport, 

conversion, and distribution [62]. Thus, for any bioenergy deployment strategy to be 

viable, its deployment pathway must be configured for cost-effectiveness [31]. 

 

 

Discussions on the role of bioenergy in the long-term decarbonization of the 

currently dominated fossil fuel-based energy system in Malaysia are still limited. The 

consideration of both fossil fuels and renewables in the technological pathway to meet 

national energy demand is important to cater the energy price market competition in 

delivering decarbonization targets.  Previous studies have provided several insights 

into the implications of implementing certain strategies to reduce future emissions 

[63,64,65] but lacking in the cost analysis details to inform policy. Among these 

studies, considerations of utilizing palm oil residues for bioenergy production to secure 

future electricity supply and reduce emissions have been discussed by Muis et al. [64] 

but only with respect to the Iskandar Malaysia region. On the other hand, the 

decarbonization pathways in these studies, although including both renewables and 

fossil fuels in the pathway, were limited to only one sector, either electricity or 

transport, overlooking the potential cost reduction opportunities in multi-sector 

collaborations. 

 

 

Conducting assessment at a wider system level is important since it presents 

the opportunity to leverage the full potential of resources for bioenergy production. 

This can be represented by the Malaysia case, where expanding the focus of bioenergy 

planning to also include Malaysian Borneo on top of Peninsular Malaysia which has 

been the focus region of interest in the previous works could indicate greater potential 

of increasing renewable energy capacities in the country, provided by the latter region 
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has larger areas of oil palm plantations than the former [66]. Furthermore, the 

importance of considering higher system scale can be shown by the case involving 

main palm oil producing countries (e.g., Malaysia and Indonesia), where there exists 

the need to handle the complexity of resource trades between the regions within these 

countries, for example, the trades of palm oil resources between Peninsular Malaysia 

and Malaysian Borneo for the case of Malaysia and the trades of palm oil resources 

between Sumatra and Kalimantan for the case of Indonesia, due to the associated 

geographical boundaries of the regions within these countries which are separated by 

the coastal areas.  

 

 

It must be highlighted that cross-sectoral policy interventions are essential for 

the long-term assessment of bioenergy deployment. This is important, as the 

promotion of bioenergy uses in one sector of the energy system can stimulate or 

decrease the uptake in the others, and this affects the allocation of resources and 

policies to support the future bioenergy. The mobilization of biomass from agricultural 

sector for the production of multiple value-added products, especially bioenergy, can 

be seen as a promising strategy to promote low-carbon energy production in Malaysia, 

and thus, to explore its potential, national system-level deployment of bioenergy 

becomes the main focus of investigation this thesis.  

 

 

 

 

1.2 Problem Statement 

 

 

 The decarbonization potentials that bioenergy could bring are impacted by 

many system-level deployment challenges, particularly related to different aspects of 

bioenergy supply chain planning. From the reviews above, the bioenergy deployment 

challenges that need to be addressed include (1) supply chain complexity (i.e., 

feedstock-technology-production relation, supply and demand balancing, distributed 

versus centralized supply chain configuration, trade-offs between transportation 

requirement and economies of scales), (2) cross-sectoral bioenergy interactions 

between end-use sectors (i.e., bioenergy market price competition with fossil fuels, 

bioenergy interaction in energy systems, sectoral policy versus multi-sectoral 
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bioenergy policies), (3) spatial tractability of bioenergy supply chain (i.e., feedstock 

supply, bioenergy demand, candidate bioenergy facilities, competition of resources, 

infrastructure network expansion) and (4) temporal tractability of bioenergy decisions 

(i.e., long-term planning aspect for accounting strategic decisions, short-term planning 

aspect for accounting operational/tactical decisions). Although much studies have 

been conducted to analyze a variety of different bioenergy issues, the insights derived 

from their findings are still not sufficient to address all of these bioenergy challenges 

simultaneously under one integrated modeling platform. This calls for new studies to 

inform these knowledge gaps in research. Following are the specific research gaps 

identified on the existing bioenergy assessment at a system level: 

(1) Existing techno-economic models used for bioenergy planning were 

primarily based on the applications of energy systems model (ESM) (e.g., 

MARKAL, TIMES, MESSAGE, EnergyPLAN, BioHEAT) to address 

strategic bioenergy decisions and specialized bioenergy supply chain model 

(BSM) (e.g., BeWhere, BVCM, OPTIMASS, BENSIM, MONET, other 

bespoke bioenergy models) to address operational and tactical bioenergy 

decisions. ESMs have an advantage over BSMs in terms of their rich 

technological representations and long-term planning horizon for multi-

sectoral analyses, making them suitable to be applied for informing broader 

energy systems and policy issues; however, their energy supply chain 

representations were often aggregated and single-node spatial representations 

were commonly used. Due to this aggregation, difficulties arise in 

recognizing the complex underlying impacts of the detailed bioenergy supply 

chain in ESMs, which could have been recognized more explicitly in BSMs. 

BSMs have an advantage over ESMs in terms of their detailed representation 

of bioenergy supply chain flow (i.e., cultivation, harvesting, transport, 

storage, pre-processing, conversion, distribution); however, most of the 

BSMs developed for application at the national level offer bespoke analyses 

based on targeted bioenergy issues and the broader cross-sectoral impacts of 

energy systems are often overlooked. It is therefore important to integrate the 

long-term multi-sectoral features of ESMs with the detailed bioenergy supply 

chain representation presented in BSMs in one integrated modeling platform 

so that different challenges in bioenergy planning mentioned above (i.e., 

supply chain complexity, multi-sectoral bioenergy interactions, spatial 
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tractability, temporal tractability) can be addressed simultaneously to deliver 

more well-rounded bioenergy assessment. 

(2) There is also a necessity in improving the establishment of spatially-explicit 

bioenergy potentials as exogenous inputs into the techno-economic models 

when applying spatio-temporal approach. Instead of relying on processed 

land-use data from other studies, the application of land cover assessment 

method based on a high-resolution spatial data processing approach could 

improve the establishment of exogenous feedstock availability, candidate 

bioenergy facility locations and energy demand profiles in the techno-

economic model. As the existing works that combine land cover assessment 

methodology with either ESMs or BSMs are still limited in literature, 

incorporating land cover assessment methodology into the techno-economic 

optimization framework could help improve the geographical coverage of 

bioenergy potential that can be allocated for use in energy systems. 

 

 

It must be mentioned that no study has previously been conducted to address 

the aforementioned research gaps outlined collectively. Given these gaps in literature, 

this thesis aims to bridge these three different fields of studies, namely ESM, BSM, 

and land cover assessment, that address different challenges in bioenergy modeling 

(i.e., supply chain complexity, multi-sectoral bioenergy interactions, spatial 

tractability and temporal tractability) at a higher system level. This thesis is motivated 

to fill the gaps by providing a novel methodological framework that focuses on a multi-

sectoral approach for spatio-temporal techno-economic modeling and optimization of 

bioenergy supply chain. The assessment provided is expected to contribute new 

knowledge to the existing body of knowledge, based on an integrated techno-economic 

model developed and a series of novel cases modeled. The problem statement for this 

research is stated as follows: 

Given the key issues outlined related to spatial, temporal, technical, economic, 

environment and policy elements of the bioenergy deployment, it is desirable to 

improve the existing assessment by developing a multi-sectoral approach to the 

modeling and optimization of bioenergy supply chain for generating near-term and 

long-term insights on the cross-sectoral energy decarbonization opportunities at a 

higher system level. 
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1.3 Research Objectives 

 

 

 The aim of this thesis is to expand the knowledge on the development and 

application of an integrated techno-economic optimization model for informing near-

term and long-terms insights on bioenergy deployment at a wider regional scale in a 

spatial and temporal explicit manner from multi-sectoral perspectives. The specific 

research objectives of this thesis are outlined as follows: 

(1) To develop an integrated techno-economic optimization model for multi-

sectoral bioenergy deployment in a spatially and temporally explicit manner 

based on combining bioenergy supply chain optimization modeling and long-

term energy systems planning approaches (OBJ1). 

(2) To perform system-level scenario modeling and analysis in generating near-

term and long-term insights on the multi-sectoral bioenergy deployment and 

energy decarbonization for a period of up to 2050 (OBJ2). 

(3) To evaluate the impact of energy decarbonization targets, technology 

availability and supply chain cost parameter variations to promote cost-

effective decarbonization of emission-intensive energy sectors at a system 

level (OBJ3). 

 

 

 

 

1.4 Scopes of the Modeling Works 

 

 

Based from the research objectives mentioned, the modeling and scenario 

analysis performed in the thesis are systematically methodologized based on the 

following scopes: 

(1) Analyzing the state-of-the-art methodology and knowledge on bioenergy 

supply chain modeling and long-term energy systems planning, including the 

associated features, shortcomings and potential improvements. 

(2) Identifying sets of candidate bioenergy feedstock, technologies, products, 

logistics and infrastructures required for the development of bioenergy supply 

chain pathway. 
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(3) Performing data collection from various sources (i.e., scientific journals, 

technical reports/documents, governmental reports/documents, international 

organization reports/documents, international standards, online institutional 

datasets and national statistics) on the associated bioenergy feedstock, 

technologies, products, logistics and infrastructures, based from the spatial, 

temporal, technical, economic, environment and policy aspects of the 

developed bioenergy supply chain pathway. 

(4) Establishing the spatio-temporal input modeling database through a series of 

data processing workflow involving the use of high-resolution spatial data 

processing tools in geographical information system (GIS) for resource 

availability analysis, energy demand analysis, site suitability analysis, and 

transport network analysis. 

(5) Establishing the input modeling database for bioenergy technologies by 

performing techno-economic calculation to establish sizes, investment costs, 

operating costs, conversion efficiencies, and GHG emission profiles for each 

bioenergy technology. 

(6) Developing an integrated techno-economic optimization model that accounts 

for the current state-of-the-art methodology on bioenergy supply chain 

modeling and long-term energy systems planning, featuring the spatial, 

temporal, technical, economic, environment and policy aspects of the 

developed bioenergy supply chain pathway. 

(7) Developing and modeling scenarios on the near-term and long-term 

bioenergy strategies for the related cases involving integration of agriculture-

based bioenergy from intensive palm oil-based sources in multiple energy 

sectors for cross-sectoral energy decarbonization at a system level. 

(8) Developing and modeling sensitivity scenarios to assess the sensitiveness of 

the bioenergy cost reduction potentials and bioenergy deployment with and 

without biomass co-firing toward variations in the decarbonization targets 

and the supply chain cost parameter values at a system level. 

(9) Analyzing the results generated from the modeling works and addressing the 

questions outlined. 

(10) Bioenergy feedstock: Agricultural-based bioenergy feedstock (i.e., crude 

palm oil (CPO), EFB, MF, PKS, OPF, OPT, POME, rice straw (RS), rice 
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husk (RH)) and livestock-based bioenergy feedstock (i.e., cattle, buffalo, 

sheep, goat, chicken and duck manures). 

(11) Energy sectors covered: Power (coal-based electricity production as a 

reference energy competitor), heat (industrial natural gas-based heat demand 

as a reference energy competitor), and transport (gasoline- and diesel-based 

transport fuel demands as reference energy competitors). 

(12) Bioenergy technologies: Biomass pre-processing (i.e., drying, pelletization), 

biogas pre-processing (i.e., biomethane, BioCNG), biogas-to-bioelectricity, 

biomass-to-bioelectricity, biomass co-firing, biomass CHP, biomass-to-

biofuel and crop-to-biofuel. 

(13) Geographical boundaries: Malaysia (Peninsular Malaysia and Malaysian 

Borneo). 

(14) Spatial resolution: 0.25° (25 km x 25 km), multi-plant, multi-state, and multi-

harbor. 

(15) Temporal resolution: 2020–2050 (5-year time step) and 2-month sub-annual 

time steps. 

(16) Software: ArcGIS [67] for spatial data processing, Generic Algebraic 

Modeling System (GAMS) [68] for mathematical formulation of the spatio-

temporal techno-economic optimization model, Microsoft Excel [69] for 

database storage, and Python [70] for the automation of the modeling 

workflow. 

 

 

 

 

1.5 Thesis Contributions 

 

 

 The main contribution of this thesis is the addition of new knowledge in the 

fields of bioenergy supply chain modeling and long-term energy systems planning, 

focusing on the multi-sectoral approach to spatio-temporal techno-economic modeling 

and optimization of bioenergy deployment in multiple energy sectors through large-

scale utilization of local bio-based resources from palm oil sources and other 

agricultural crops. An integrated modeling tool was resulted from this thesis which can 

be applied by policymakers, industrial players and researchers for generating 

interdisciplinary perspectives to inform policies and development at a national level, 
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especially from a low-carbon pathway development context. These perspectives are 

useful to inform the wider social debate on the options to decarbonize energy across 

multiple national sectors. The related sectors include the agricultural sector, regarding 

the opportunity to maximize resource efficiency of agricultural productions and 

operations through the effective uses of agricultural wastes for value-added purposes, 

the power sector, regarding the potential of bioenergy to increase the renewable energy 

shares in the power mix and substitute significant portion of fossil fuel-based base 

load, the industrial sector, regarding the use of waste heat from bioenergy production 

as an industrial heat substitute for natural gas, the transport sector, regarding the use 

of biofuels in supporting the existing biodiesel program, and the energy sector in 

general, regarding the range of GHG emission that could be mitigated at the national 

scale in the short, medium and long-term timeframes. The new knowledge resulted 

from this thesis can be used to inform the development of the next cycles of NDC’s 

biennial update reports to the UNFCCC. 

 

 

 

 

1.6 Thesis Outline 

 

 

 The structure of this thesis consists of seven chapters as shown in Figure 1.2. 

Chapter 1 presents the research background, problem statement, research objectives, 

research scopes and research contributions associated with the thesis. Chapter 2 

reviews the current state-of-the-art in the fields of bioenergy supply chain modeling 

and long-term energy systems planning and highlights the literature gaps associated 

with the research questions of the thesis. Chapter 2 also provides the background 

information of the case study’s country in terms of its agriculture, energy, and emission 

policies (particularly NDC). Chapter 3 describes the methodological framework used 

in this thesis and the specific workflow associated with the framework. Noted that the 

methodology presented in Chapter 3 addresses the first objective of the thesis. Chapter 

4 then presents the application of the integrated spatio-temporal techno-economic 

optimization model developed for scenario modeling and analysis on the long-term 

agricultural bioenergy strategies for cross-sectoral energy decarbonization. Note that 

the scenarios analyzed in Chapter 4 address the second objective of the thesis regarding 

the long-term insights of multi-sectoral bioenergy deployment. Based from the specific 
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results from Chapter 4 which highlighted that co-firing would play a major role in 

near-term energy decarbonization, Chapter 5 presents the application of the model to 

investigate how multi-scale production of solid biofuels from oil palm biomass can 

scale up biomass co-firing with coal. Note that the scenarios analyzed in Chapter 5 

also address the second objective of the thesis regarding the near-term insights of 

bioenergy deployment. The sensitiveness of bioenergy development in multiple 

energy sectors are evaluated in Chapter 6 and this addresses the third objective of the 

thesis. Lastly, the work is concluded in Chapter 7 with the main findings of the thesis 

together with the limitations of the research and the recommendations for 

improvement in future work. All the scientific publications related to the research 

presented in this thesis are listed in the appendix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Thesis outline 

Chapter 1: Introduction 

Chapter 2: Literature review 

Chapter 3: Methodology (OBJ1) 

Chapter 4: Optimal Multi-Sectoral Bioenergy Deployment         
(OBJ2) 

Chapter 5: Near-Term Bioenergy Strategies for Electricity System 
Decarbonization (OBJ2) 

Chapter 7: Conclusions and Recommendations 

Chapter 6:  Impact of Bioenergy Technologies and Supply Chain on 
Energy Systems Decarbonization Costs (OB3) 
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