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ABSTRACT 

 

 

 

 

Malaysia is situated in the latitude of -6.2 degree and longitude of 106.8 

degree with average summer dry and wet bulb temperature of 32.2°C and 32.7°C, 

thus the use of air conditioning system is crucial to tackle the climate condition. 

Chilled water air conditioning system is widely used to supply cooling in large 

capacity for industrial process and commercial buildings. Nevertheless, air 

conditioner consumes more than 60% of electricity consumption in buildings. 

District cooling system (DCS) technology comprising of a central chiller plant 

provides advantage compared to local air conditioning system. DCS has higher 

efficiency, uses less power for the system to be operated, provides more usable space 

on buildings, and can be operated with minimum amount of manpower while 

handling the same amount of cooling load.  Additionally, this system can be 

combined with thermal energy storage and provided lower operational cost. This 

study developed a new systematic framework and methodology based on pinch 

analysis for designing DCS integrated with ice thermal storage (ITS). The cooling 

system cascade analysis (COSCA) is constructed to determine the optimal size of the 

chiller and ITS. Economic and environmental analysis was performed by calculating 

the payback period and return on investment using Microsoft Excel Trend function. 

A sensitivity analysis test was performed by using the Microsoft Excel Table 

function. However, pinch analysis has a few limitations. To be more holistic, a 

mathematical model was developed by using the general algebraic modelling system 

(GAMS) for optimisation of DCS to determine the minimum total energy cost, 

optimal capacity of DCS equipment and renewable energy (RE) and electricity 

consumption in order to minimise the economic and environmental effects. The 

methodology has been demonstrated for commercial building, consisting of 5 main 

buildings (mall, hotel and cinema) with daily cooling demand requirement of 66,284 

refrigerant tonne hour (RTH). The results from the case study revealed that the 

optimal capacity of the chiller was 3069 refrigerant tonne (RT), ice tank was rated 

989 RT, and ice tank capacity was 9894 RTH which showed saving of annual 

electricity purchase cost to 9% compared to centrifugal system only (without ITS). 

The programming mathematical model in GAMS revealed that the DCS equipment 

which were electric chiller and absorption chiller with RE source has been selected to 

meet the cooling demand requirement with total cost leading up to 72% savings, 

equivalent to RM 4,846,540 as compared to the baseline. Based on these results, the 

system designed under the time of use or enhanced time of use tariff scheme was 

found to give no significant impact. Instead, the system with a RE source is selected. 

The sensitivity analysis revealed that the capital expenditure and operational 

expenditure were highly sensitive and affected the system feasibility. This 

framework could be used as evidence based policy making to determine financial 

incentive or subsidies to make DCS with RE competitive in the market. In addition, 

the framework is also beneficial for plant owners and engineers to choose the optimal 

capacity of DCS equipment, including RE, for efficient operation which accounts for 

supply and demand sides.  
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ABSTRAK 

 
 

 

 

Malaysia terletak di latitud -6.2 darjah dan longitud 106.8 darjah dengan 

purata kering musim panas dan suhu bebuli basah 32.2 ° C dan 32.7 ° C, oleh itu 

penggunaan sistem penghawa dingin adalah penting untuk menangani keadaan iklim. 

Sistem penyaman udara air sejuk banyak digunakan untuk membekalkan sistem 

penyejukan dalam kapasiti besar untuk proses industri dan bangunan komersial. 

Walaupun begitu, penghawa dingin menggunakan lebih daripada 60% penggunaan 

elektrik dalam bangunan. Teknologi sistem lingkaran berpusat (DCS) memberikan 

kelebihan berbanding sistem penyaman udara biasa. DCS berkecekapan tinggi, 

kurang menggunakan kuasa untuk sistem yang dikendalikan, memberikan ruang 

yang lebih berguna dalam bangunan, dan dapat dikendalikan dengan jumlah tenaga 

minimum sambil menangani jumlah beban pendinginan yang sama. Selain itu, sistem 

ini dapat digabungkan dengan penyimpanan tenaga terma dan memberikan kos 

operasi yang rendah. Kajian ini membangunkan kerangka dan metodologi 

bersistematik baharu berdasarkan analisis pinch untuk merekabentuk DCS 

berintegrasi penyimpanan terma ais (ITS). Analisis penyejukan sistem lata (COSCA) 

dibina untuk menentukan kapasiti penyejuk dan penyimpanan haba ais (tangki ais) 

yang optimum. Analisis ekonomi dan persekitaran dilakukan dengan mengira 

tempoh pembayaran balik dan pulangan pelaburan menggunakan Microsoft Excel 

Trend. Ujian analisis kepekaan dilakukan menggunakan jadual Microsoft Excel. 

Namun, analisis pinch mempunyai beberapa batasan. Untuk lebih holistik, model 

matematik dibangunkan menggunakan sistem pemodelan algebra umum (GAMS) 

untuk pengoptimuman DCS bagi menentukan jumlah kos tenaga minimum, kapasiti 

optimum peralatan DCS dan tenaga boleh diperbaharui (RE) dan penggunaan 

elektrik untuk meminimumkan kesan ekonomi dan persekitaran. Metodologi yang 

dibangunkan adalah untuk bangunan komersial, terdiri dari 5 bangunan utama (pusat 

membeli-belah, hotel dan pawagam) dengan keperluan permintaan penyejukan 

harian sebanyak 66,284 tan jam bahan penyejuk (RTH). Hasil kajian kes 

menunjukkan bahawa kapasiti optimum penyejuk adalah 3069 tan bahan penyejuk 

(RT), tangki ais berkadar 989 RT, dan kapasiti tangki ais 9894 RTH menunjukkan 

penjimatan kos pembelian elektrik tahunan hingga 9% berbanding dengan sistem 

emparan sahaja (tanpa tangki ais). Model matematik pengaturcaraan dalam GAMS, 

mendedahkan bahawa peralatan DCS yang merupakan penyejuk elektrik dan 

penyejuk penyerapan dengan sumber RE dipilih untuk memenuhi keperluan 

permintaan penyejukan dengan jumlah kos yang menunjukkan penjimatan sehingga 

72% yang bernilai RM 4,846,540 berbanding dengan garis dasar. Berdasarkan 

keputusan ini, sistem di rekabentuk bawah skim tarif masa penggunaan atau 

peningkatan masa pengunaan tiada perubahan ketara. Sebaliknya, sistem dengan 

sumber RE dipilih. Analisis kepekaan menunjukkan perbelanjaan modal dan 

perbelanjaan operasi adalah sangat sensitif dan mempengaruhi kebolehlaksanaan 

sistem. Rangka kerja ini boleh digunakan sebagai bukti untuk membuat polisi bagi 

menentukan insentif kewangan atau subsidi agar DCS dengan RE setanding di 

pasaran. Rangka kerja ini juga bermanfaat bagi pemilik kilang dan jurutera untuk 

memilih kapasiti peralatan DCS yang optimum, termasuk RE, untuk operasi yang 

cekap merangkumi bahagian penghasilan dan permintaan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research background 

 

 

Air conditioner is the biggest contributor for commercial building in 

Malaysian typical energy apportioning. Types of commercial building consist of 

warehouses, office buildings, or retail (i.e. convenience stores, 'big box' stores, 

shopping malls, etc.). 

 

 

In the United States in 2017, commercial buildings consumed 36% of the 

country’s total energy, with approximately 30% wasted due to inefficiencies (Office 

of EE & RE, 2019). Hence, reducing wasted energy and improving the performance 

of buildings’ consumption is critically important to minimizing energy consumption 

and the associated environmental impact. Even more, heating and cooling systems 

are dominant consumers of energy in buildings and offer the potential for a 

tremendous amount of savings. To realize such savings, one must understand the 

magnitude of the consumption and associated usage patterns of building equipment 

and be able to quantify the savings potential of enacting specific actions. However, 

most building equipment do not use costly submeters to monitor and address 

performance issues, and on-site auditing can be expensive and insufficient. 

Consequently, recent “low touch” datadriven approaches have been employed to 

explore how to quantify and minimize the energy consumption of heating and 

cooling systems. (Arash Kalilnejad et al, 2020). Various factors influence HVAC 

(heating, ventilation, and air conditioning) loads such as building type, occupancy, 

meteorological conditions, equipment efficiency, thermostat setpoints, and building 

controls. In fact, a thorough analysis of each of these affecting parameters can lead to 

the identification of specific energy savings opportunities (Arash Kalilnejad et al, 

2020). More specifically, a setpoint setback, particularly when used during 

unoccupied times, can lead to significant energy savings without compromising on 



   
 

2 

comfort. For example, Ghahramani et al. (2016) showed that even a small adjustment 

in setpoint can lead to up to 30% of energy savings in a building. Capozzoli et al. 

(2017), studied occupancy patterns to reschedule the HVAC system’s operation. For 

example, they found that an adjustment to the HVAC stop schedule accounting for 

different occupancy zones resulted in 14% of HVAC savings overall. Several studies 

also discovered that leaving HVAC systems on during unoccupied hours represents 

up to 50% of the total energy usage of buildings. This indicates that the energy-

efficient operation of M&E equipment could contribute to significant energy savings 

with less investment. It is important to operate HVAC systems efficiently because 

they consume almost half the energy used in buildings. (Kwonsik Song et al, 2020). 

 

 

As shown in Figure 1.1, approximately 57% of the total load for the whole 

building is for air conditioner, followed by lighting (19%), lift and pump (18%) and 

6% for other equipment (S.S. Azis, 2021).    

 

 

 

 

  

 

 

 

 

 

 

Figure 1.1 Energy Use Estimation in Office Building in Malaysia 
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Based on the statistics shown, users can optimize and reduce the rate of 

electricity consumption in a drastic amount. However, the situation will get worse if 

not maintained properly. This is different from commercial buildings that use a 

centralized air condition system or district cooling system (DCS) where the rate of 

energy use of the air conditioning system is lower because it does not require a 

chiller plant. 

 

 

Thus, the Dictrict Cooling Plant technology has been introduced to prevent 

commercial buildings from buying individual chillers. With this method, every 

bureau in the area can reduce the use of electricity at the largest portion of 

commercial building in Malaysia approximately 57%, which is used for air 

conditioner (S. S. Azis, 2021) and indirectly reduces the demand for electricity in the 

area.  

 

 

Figure 1.2 shows the sectional distribution of total energy use in Malaysia. 

Referring to the statistic of energy uses in Malaysia on  2017, transportation consume 

the highest total energy which is 38.5% (kilo tone of oil equivalent (ktoe)) whereas 

residential and commercial building in the list with 12.5% which also the fourth 

largest from the total consumption. Meanwhile, industry, non-energy use and 

agriculture account for 28.0%, 20.0% and 1.0% respectively from the total amount of 

62,489 ktoe per year (EC, 2019). 

 

 



   
 

4 

 

Figure 1.2 Statistic of Energy Uses in Malaysia (EC, 2019) 

 

 

Figure 1.3 shows Europe statistic of energy usage which the highest 

percentage of total energy consumption is contributed by buildings (39%), follow by 

transport (33.1%), industry (25.4%), agriculture (2.2%) and others (0.4%)  (Eurostat, 

Final Energy Consumption, 2015). In this case, the value of 39% energy 

consumption is contributed by buidings has a high chance of being reduced if the 

Heating Ventilation Air Conditioning (HVAC) system for the individual building can 

be optimized. 
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Figure 1.3 Statistic of Energy Uses in Europe Based on Eurostat’s Data for 2015 

 

 

Based on local and global scenario,  the percentage value of building energy 

consumption can be reduced by manipulating the largest Significant Energy User 

(SEU) of the buildings which is HVAC. Thus, if problem of high energy 

consumption on the building portion can be solve, it is possible to lower energy 

consumption in one country and even indirectly reduce the amount of carbon dioxide 

(CO2) generated. Referring to Figure 1.1, air conditioning is a major contributor to 

energy consumption in a building in Malaysia. Therefore, further studies / depths can 

be extended to address the problem of high energy consumption for this building 

sector.  

 

 

Figure 1.4 shows the energy consumption in Malaysia by fuel type for year 

2017 whereby electricity is the third highest percentage from the total consumption 

by 20.2% while petroleum products, natural gas, coal & coke, biodiesel account for 

49.4%, 26.9%, 2.9% and 0.6% respectively from the total amount of 62,489 ktoe per 

year.  
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Figure 1.4 Energy consumption by Fuel Type (EC, 2019) 

 

 

Referring to current development status in Malaysia, DCP application 

technology is very limited. It is only available in certain developing areas such as 

government building at Putrajaya, Kuala Lumpur Convention Centre (KLCC), Kuala 

Lumpur International Airports (KLIA), The Curve Mutiara Damansara, and TNB 

Bangsar where it is only concentrated for a limited radius of area. DCP technology 

has been established in Malaysia since 1996 (Cofreth, 2016), and the existence of 

this plant has had a big impact on the reduction of electricity usage for air 

conditioning in an area or area due to the use of air conditioning is the largest part of 

a commercial building. 

  

 

In the present-day, 2017, human beings are looking for new alternatives to 

green building, green country, green development, which each emphasize on a 

design that reduces CO2 emissions resulting from various aspects such as design, 

operation and waste. Hence various technologies have been designed to meet this 

requirement. The whole world is trying to generate new technologies and united for 

this noble goal. In a design of building constructions, the most commonly used 
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electrical energy is air cond. Therefore, the designer should make the best selection 

to ensure optimum operation. For example, the Malaysian government's 

administrative centre, federal territory of Putrajaya, does not allow individual chillers 

to be installed in every building built within the area. Therefore Gas District Cooling 

(M) Sdn Bhd, Putrajaya is a responsible body for producing and providing chilled 

water to every building in Putrajaya. 

 

 

With the existing district cooling plant (DCP), the design and operation of the 

district cooling plant itself can again be adopted in many ways, such as trigeneration, 

cogeneration, DCP with seawater or river water, DCP with thermal storage and many 

more depending on availability. A wide range of technologies including photovoltaic 

system (PV), wind turbine (WT), combined cooling, heating and power system 

(CCHP), thermal energy storage (TES) and other renewable energy systems have 

been employed in various types of buildings. 

 

 

Compared to the conventional design method, which they refer to load 

demand as well as conditions or data used at the design stage are certain values. For 

example, the outdoor weather conditions are usually described using a typical 

meteorological year (TMY) or a typical design day for the design location (Y.Q. Lu, 

2008). This method does not take into account the operational efficiency of the 

choice of compression driven chiller and ITS and does not take into account the 

electrical tariff aspect. Electricity consumption in office buildings is about 70-

300kWh/m2 per annum, 10-20 times that of residential buildings (Yang et al., 2008). 

In the rapidly growing development of present and future years, Green House Gasses 

(GHG) are produced through activities which release carbon dioxide, methane, 

nitrous oxide and ozone CFCs (chlorofluorocarbons) where these gases absorb more 

of the solar radiation that is reflected back from the Earth's surface - trapping heat 

and keeping it in the atmosphere causes the earth's temperature to rise. CFCs also 

have been responsible for depleting the ozone layer as they attack and destroy ozone 

molecules. The root of this problem  that causes the release of GHG into earth 

atmosphere of the earth is due to the industry, commercial building, transportation, 

agriculture, and uncontainable waste disposal sites. 
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Malaysia's position on the equator's line has a hot and humid climate coupled 

with rising world temperatures that cause the majority of residents living in urban 

areas to use air conditioning to live their daily lives, not to mention being at work 

especially in commercial buildings of this era. As a matter of fact, the air conditioner 

is the largest electricity user in a building. Indirectly indicates that commercial 

building is among the largest users in a given area due to the use of air conditioner 

for the entire interior of the building except the parking lot. The Commercial 

Building sector is the third largest consumer of 14.3% of total energy use in Malaysia 

by sector. The largest part of the building is air conditioning, which is 57% of the 

total use of the building (S.S. Azis, 2021). Indirectly the impact of this huge energy 

consumption is on the production of carbon dioxide (CO2). 

 

 

Malaysia has taken a commitment to support global emission reduction in the 

conference of parties (COP 15) under U.N. Climate Change Conference 2009-15th in 

Copenhagen that Malaysia is adopting an indicator of a voluntary reduction of up to 

emissions intensity (per unit of Gross Domestic Product (GDP)) by up to 40% by 

2020 and 45% by 2030 compared to the levels in 2005, which is emission intensity 

of GDP in the base year is 0.531 tons CO2 equivalent per thousand RM (Scientific 

Malaysian, 2017); (INDC Malaysia, 2015). Based on Figure 1.4, 21.1% in kilo tonne 

of oil equivalent (ktoe) is used by electricity in Malaysia.  The relation between use 

of energy and the environment shown the quantity of CO2 emission per kWh. The 

indicator shown the value of 0.694 kg of CO2 emitted to the atmosphere for each 1 

kWh electricity generated by power plant (Peninsula Malaysia), 0.699 kg CO2 / kwh 

for Sarawak and 0.536 kg CO2 / kWh for Sabah (MGTC, 2020). 

 

 

 

 

1.2 Problem Statement 

 

 

DCS and thermal energy storage (TES) have high capital expenditure 

(CAPEX) and operational expenditure (OPEX) which will result in long payback 

period (PBP) and low return of investment (ROI). Constraints of methods and tools 

are one of the reasons DCS can not be developed in a country. Pinch analysis method 
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is available for heat integration, power integration, water management, carbon 

emission reduction (i.e. POPA, ESCA, WPA, GCCA) and etc, but has limited 

methods for designing cooling integration (i.e. DCP). There is no study to determine 

the size of ITS and chiller by considering simultaneously design and scheduling to 

identify the optimal sizing. None of the studies on hourly data to design or size the 

system, no comparison of cost savings for different types of chiller. 

 

 

Globally, a study by Hassan Hajaddollahi (2015), and Y. Ruan et al., (2016) 

elaborate about the optimal design for Heating Ventilation Air Conditioning (HVAC) 

where the demand for the area requires cooling and heating energy and also has a 

source of supply heat from the heat surplus available in the area. However, the are no 

study to determine the size of ice thermal storage (ITS), glycol chillers, centrifugal 

chillers, absorption chiller, which obtains renewable energy (photovoltaic & 

photothermal) apart from electricity supply from grid by considering simultaneously 

design and scheduling to identify the optimal sizing in order to reduce electricity 

consumption using GAMS. Furthermore, there are still no study that determine size 

of ITS, glycol chillers and centrifugal chillers using a pinch analysis principal (Y. 

Ruan et al., 2016).  

 

 

In the previous study by W. Gang et al., (2016), there are no related studies 

regarding scheduling factor (for shift peak / off peak electricity tariffs to reduce 

maximum demand and cost of electricity consumption) to generate chilled water for 

integration of DCS with ITS. Besides that, the factor to ensure 100% of discharging 

of solid ice portion contained in ITS is also not considered. Furthermore, there is still 

no study that combines the combination of chilled water and glycol of compression 

driven chiller integrate with ITS, using only one (1) fuel source, namely electricity 

(M.O. Abdullah et al., 2013). Therefore, this study is conducted for design DCP 

integrate with ITS taking into account all the above factors. This study focuses on the 

type of chiller used for this DCP as the largest consumer of electricity. If the 

arrangement selection chiller for the operating system is well done, it will have a 

significant impact on the reduction in the cost of generating chilled water. 
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Nevertheless, the number of DCP plants in Malaysia is only approximately 

17 plants.  (Boustead, 2019; GDC, 2018; TNEC, 2019). In 2019, some DCP players 

in Malaysia include Gas District Cooling, TNB Engineering, Boustead DCP and 

others where they use trigeneration as well as DCP itself as well as Ice Thermal 

Storage (ITS) in accordance with the availability of resources and availability. 

Following are the gaps identified in the current DCP technology in Malaysia: 

 

a. Constraints of local studies on resource and demand in areas particularly 

in urban centers throughout Malaysia, especially commercial buildings. 

Therefore, the need to study on optimal design according to avalibility 

resouces in an area is important for energy and emission reduction. 

 

b. Numerous Research on DCP has been implemented. However, the lack of 

studies for a region does not provide hourly data to design or size the 

system, no comparison of cost savings for different types of chiller, no 

consideration of carbon dioxide (CO2) emissions, no study of chiller 

performance, assumed value of thermal storage size, etc. Detailed 

elaboration is described in Table 2.1 in Chapter 2 (Summary of Research 

Gap).  

 

c. Integration of thermal energy storage with the district cooling system can 

reduce the operational cost and electricity bill at peak hour. The reduction 

of operational cost and electricity bill takes the advantages of the lower 

electricity tariff during the peak hour. The application of the thermal 

energy storage can save the electricity cost up to 3% with respect to the 

conventional system without the thermal energy storage (Abdullah et al., 

2013). Despite the electricity cost reduction, the installation of thermal 

energy storage also contributed to an additional capital cost for the heat 

exchanger and water pumps. The extra cost is 29% higher than the cost of 

a conventional system which is a drawback for this system. There are 

constraint due to the oversize, to set the optimal size of chiller and ITS 

without any tools.  
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d. There are no disclosure studies on the effect of Time of Use (TOU) and 

Enhance Time of Use (ETOU) tariff schemes on the use of ITS integrate 

with DCP. We do not know the effectiveness or feasibility of the ETOU 

tariff on the integration of DCP with ITS is unknown. (TNB, 2016) 

  

 

 

 

1.3 Research Objective 

 

 

The main objective of this research is to develop a new systematic framework 

and methodology based on Pinch Analysis for designing the District Cooling Plant 

(DCP) or District Cooling System (DCS) integrated with ice thermal storage (ITS). 

The sub-objectives include performing as following steps / procedure: 

 

 

a) To develop a new numerical method to determine chiller size and ITS by 

implementing the integration of DCS equipment for the cooling process of 

the scenarios including the comparison as follows: 

i. Scenario 1 - Glycol chiller, Variable Speed Drive (VSD) glycol chiller 

and ITS (GL) 

ii. Scenario 2 - Glycol chiller, centrifugal chiller, VSD  centrifugal 

chiller and ITS (GLC) 

iii. Scenario 3 - Centrifugal chiller, VSD centrifugal chiller (C) 

iv. Comparison between 3 scenarios and perform an economic, 

environmental and sensitivity analysis based on peak / off peak tariff 

as well as feasibility study 

 

b) To develop a mathematical model for Optimisation of District Cooling 

System (DCS) by using General Algebraic Modelling System (GAMS) 
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1.4 Research Scope 

 

 

In order to attain the aforementioned objectives, the research scope must 

include and be divided into the following:  

 

a) Cooling System Cascade Analysis (COSCA) 

i. Obtained desktop data and measured data of glycol chiller, 

compression driven chiller, cooling demand and mechanical and 

electrical (M&E) parameters (eg: RTH, temperature, flowrate, 

voltage, amperage, power factor, maximum demand (MD) and etc) 

respectively from DCP, Roof Top level at The Curve, Mutiara 

Damansara case study as well as local service providers data for the 

costing  

ii. Develop COSCA technique based on Pinch Analysis 

iii. COSCA framework for Optimal Design of ITS chiller capacity 

iv. Calculate payback period (PBP) and return of investment (ROI) in 

order to perform an economic and environmental analysis 

v. Comparison between 3 scenario 

vi. Sensitivity Analysis to test a new and comprehensive technique 

 

b) Optimization of District Cooling Plant (DCP) 

i. Obtained desktop data and measured data of glycol chiller, 

compression driven chiller, cooling demand and mechanical and 

electrical (M&E) parameters (eg: RTH, temperature, flowrate, 

voltage, amperage, power factor, maximum demand (MD) and etc) 

respectively from DCP, Roof Top level at The Curve, Mutiara 

Damansara case study as well as local service providers data for the 

costing 

ii. Develop modelling framework for optimal design DCP 

iii. Formulate a mathematical model for Optimal Design of DCP 

iv. Programming mathematical model in General Algebraic Modelling 

System (GAMS) 

v. Comparison of different tariff scheme between TOU and ETOU 

vi. Result analysis and sensitivity analysis to verify the situation 
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1.5 Research Contribution 

 

 

The main contribution of this research is an improved / extent framework based 

on Pinch and ESCA technique, which calculates the integration of heat and power 

alone. 

 

a) Contribution 1: Advancement in Process System Engineering (PSE) for 

optimization of chiller. 

i. A development of another industry district cooling system by 

extending the original Pinch Analysis method. 

 

b) Contribution 2: Extension for Cooling System Cascade Analysis (COSCA) 

technique based on Pinch Analysis as well as ESCA technique to sizing 

chiller and ITS for optimum operation. 

i. A new methodology in designing and optimizing district cooling 

systems. 

 

c) Contribution 3: Performed sensitivity analysis and economic analysis based 

on industrial case study. 

i. An economic assessment using Simple Payback Period (SPP) and 

Return of Investment (ROI). 

 

d) Contribution 4: A new formulation of mathematical model for Optimal 

Design of District Cooling System (DCS) to solve the costing issue by 

considering hourly cooling demand, availability of heat and sunlight as well 

as capex and opex DCS equipments including renewable energy (RE). 

i. A new optimisation model of DCS  to minimize the total energy cost 

in Ringgit Malaysia (RM) by using General Algebraic Modelling 

System (GAMS). 

 

ii. A useful percentage value can be used to propose/advise Malaysian 

government for consideration for subsidy of DCS equipment in order 

make a feasible market of DCS integrating with ITS and RE in 

Malaysia. 
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1.1. 

Table 1.1  Publications and Copyrights 

No.  Year  Item  
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Issue-2, December 2020. (Scopus Indexed) 

2 2018 Wen Hui Liu, Haslenda Hashim, Jeng Shiun Lim, Chin Siong 

Ho, Jiri Jaromir Klemes, Muhammad Ikhwan Zamhuri, Wai Shin 

Ho, 2018. Techno-economic assessment of different cooling 

system for office buildings in tropical large city considering on-

site biogas utilization. Journal of Cleaner Production 184 (2018) 

774-787. (Scopus Indexed) 

Copyright  
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Through Cooling System Cascade Analysis (COSCA) © 2019 

Universiti Teknologi Malaysia – All Rights Reserved 
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