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ABSTRACT

Convolutional Neural Networks (CNNs) are hierarchical biologically-inspired 

models that may be taught to perform a variety of detection, identification, and 

segmentation tasks. The key processing requirements in the CNNs process are the 

multiplier-accumulator (MAC) operations in the convolution layer. A perfect fusion 

of various multipliers and adders would yield an ideal MAC for CNNs' convolution 

layer. Besides this, different kernel mask sizes are required throughout the convolution 

layer in CNNs, depending on demand. In general, each size of kernel mask requires a 

unique MAC architectural configuration, thus lengthening the time spent in research and 

development. To overcome this problem, a flexible MAC design has been developed 

that allows users to choose between different sizes depending on the requirements of 

the CNNs. This method, known as Selective Kernel Size, may activate kernel sizes 

from 1x1 to 7x7. This thesis also proposes a new MAC architecture called Mulitplier- 

Accumulator with Carry-Save-Adder (MACcsa ) to improve the MAC performance by 

efficiently computing the sum of three or more bits of input. Each proposed design is 

synthesized to Silterra 180 nm technology, and the time, power consumption, and cell 

area are all compared. Selective Kernel Size architecture demonstrates a substantial 

gain in terms of cell area and power from 56% to 80% when compared to mixing 

different sizes of MAC design in specific CNNs network, with some degradation in 

time delay. When comparing the classical addition structure to the proposed MAC with 

the CSA structure, results show that while the MAC with CSA is only slightly faster 

than the classical MAC, the power and cell area are improved by 4% to 10%.
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ABSTRAK

Rangkaian Neural Konvolusi (CNN) ialah model hierarki yang diilhamkan 

secara biologi yang boleh diajar untuk melaksanakan pelbagai tugas pengesanan, 

pengenalan, dan pembahagian. Keperluan pemprosesan utama dalam proses CNN ialah 

operasi darab-tambah (MAC) dalam lapisan konvolusi. Gabungan sempurna pelbagai 

pendarab dan penambah akan menghasilkan MAC yang ideal untuk lapisan konvolusi 

CNN. Selain itu, topeng kernel saiz berbeza diperlukan di seluruh lapisan konvolusi 

dalam CNN, bergantung kepada permintaan. Secara amnya, setiap saiz topeng kernel 

memerlukan konfigurasi seni bina MAC yang unik, dengan itu memanjangkan masa 

yang diperlukan dalam penyelidikan dan pembangunan. Untuk mengatasi masalah 

ini, reka bentuk MAC yang fleksibel telah dibangunkan yang membolehkan pengguna 

memilih antara saiz yang berbeza bergantung kepada keperluan CNN. Kaedah ini, 

dikenali sebagai Saiz Kernel Selektif, boleh mengaktifkan saiz kernel dari 1x1 hingga 

7x7. Tesis ini juga mencadangkan seni bina MAC baharu yang dipanggil Mulitplier- 

Accumulator dengan Carry-Save-Adder (MACc^a) untuk meningkatkan prestasi MAC 

dengan menggabungkan tiga atau lebih bit input untuk operasi penambahan. Setiap 

reka bentuk yang dicadangkan disintesis kepada teknologi Silterra 180nm, dan masa, 

penggunaan kuasa, dan keluasan sel semuanya dibandingkan. Seni bina Saiz Kernel 

Selektif menunjukkan peningkatan yang besar dari segi keluasan dan kuasa sel 

daripada 56% hingga 80% jika dibandingkan dengan reka bentuk MAC yang berbeza 

dalam rangkaian CNN tertentu, dengan sedikit kemerosotan dari segi masa. Apabila 

membandingkan struktur penambahan klasik kepada MAC yang dicadangkan dengan 

struktur CSA, keputusan menunjukkan bahawa walaupun MAC dengan CSA adalah 

lebih pantas sedikit daripada MAC klasik, kuasa dan kawasan sel adalah lebih baik 

sebanyak 4% hingga 10%.
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CHAPTER 1

INTRODUCTION

Convolution Neural Networks (CNNs) is the fundamental technology that is 

utilised in image processing task such as image classification. In order to manage 

image classification task, a computer or system must be able to search for low-level 

characteristics in the kernel mask, such as edges and curves. The CNNs system can 

output the input image of a probability class to provide it the best description based 

on the mapping of the original input image with kernel mask. All of these processes 

will eventually add up to additional learning concepts spread across a network of 

convolution layers in CNNs.

When traversing through the convolution layer in CNN, a bundle of Multiple 

Accumulation (MAC) process blocks of varying sizes appear. A new MAC architecture 

for CNNs application will be introduced in this work. MAC is basic component used in 

CNNs to perform the multiply-accumulation process, which includes multiple registers 

as a Lookup Table (LUT) to store the feature maps and kernels for image classification 

class. For example, with 3x3 kernel mask used, the values of first 3 columns are 

multiplied by the first value of the kernel mask used respectively and accumulated for 

a value. The operation will be repeated for the remaining values in the kernel mask 

table. The output result is primarily about the MAC between the pixels of the input 

image with kernel size, which is significant in the convolution layer process. Because 

it is the primary function of convolution layers, the type of MAC utilised has a direct 

impact on the performance of the CNNs process.

In this study, the MAC is developed with a control unit (CU) block that allows it 

to traverse any Kernel Size used in different CNNs networks without changing the MAC 

architecture or arrangement. As a result, this MAC design increases its flexibility and 

covers practically all significant kernel mask sizes to suit the requirements of every sort 

of CNNs network. The flexibility of the MAC architecture designed also contributes
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significantly to the innovation of CNN networks. The Selective Kernel Size algorithm, 

which is employed in MAC, will be explained in further detail in Chapter 3.

MAC is defined in two architectures throughout this work. This study’s 

MACcsa architecture will present one with classical addition and another MAC 

architecture. Before the accumulator, MACc^a will replace the adding component 

of MAC. A normal adder can only add two groups of numbers at a time, whereas 

CSA can add up to three groups of numbers at once. This new design architecture is 

described in detail in this thesis.

To identify an effective MAC, simulation of many types of multiplier and adder 

is required to select the best architecture for MAC design. Dynamic Power, Leakage 

Power, Cell Area, and Time Delay are all important parameters to consider. For the 

Multiplier, it will be compared between WT, BM, and the AM benchmark. WT will 

have three distinct designs due to the employment of different Adders in its Carry 

Propagation Generator (CPG). KSA, CLA, and the default adder in EDA Tool are 

among the adders utilised. On the other hand, adder will be compared in the simulation 

between KSA, CLA, and BKA by using RCA as benchmark.

1.1 Problem Statement

The MAC is a fundamental unit block in all Digital Signal Processing (DSP) 

systems and plays critical functions in CNNs. Because it is a lower level component in 

a system, the time delay and power consumption will have a direct impact on the entire 

system. As a result, an efficient MAC may increase the overall performance of CNNs.

Each convolution layer in CNNs requires a different size kernel mask. 

According to earlier research, each size of kernel mask necessitates a separate 

MAC architectural configuration [1]. This lengthens the trial-and-error process of 

determining the best MAC size and layout of those MAC architectures for the simulation 

process. With the Selective Kernel Size technique, the user can quickly change the size 

of the MAC by entering 0 or 1 into the control unit. In other words, just one MAC
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design is required for the entire convolution Layer in CNNs. Selective Kernel Size has 

a function in the flexibility of arrangement between each MAC when going through the 

invention of CNNs model.

CSA is a binary adder that can easily compute the sum of three or more bits of 

data. Typically, MAC for CNNs must include at least three numbers of data. In this 

thesis, CSA may sum three 16-bit numbers concurrently. This will undoubtedly boost 

MAC performance.

1.2 Objective

1. To study and compare the speed, area and power of multiplier and adder and 

select for MAC fusion design used in CNNs for Application Specific Integrated 

Circuit (ASIC) implementation.

2. To propose and implement ASIC Selective Kernel Size MAC to match the 

different requirement of each type of CNNs networks.

3. To propose and implement MACc^a architecture and compare with classical 

addition MAC architecture.

1.3 Scope of Study

1. The type of adder used in MAC:

(a) CLA

(b) KSA

2. The type of multiplier used in MAC:

(a) WT with EDA Tool default adder used in CPG (WT)

(b) WT with CLA used in CPG (WT-CLA for Multiplier, WTC for MAC)

(c) WT with KSA used in CPG (WT-KSA for Multiplier, WTK for MAC)
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3. This thesis discusses the kernel mask size of a convolution layer ranging from 

1 x 1 matrix to 7 x 7 matrix.

4. The developed MAC design with 8 -bit input is used in each convolution layer 

of CNNs using the Selective Kernel Size technique.

1.4 Contribution

The contribution of this research is as follows:-

1. Investigate various adder and multiplier architectural designs in synthesis and 

analysis. They are combined to discover the ideal MAC architecture design in 

terms of performance, power and area (PPA).

2. Redesign the classical MAC architecture so that it can be selective in the kernel 

matrix size utilised by the convolution layer of various types of CNNs. Only 

one MAC design is necessary because it can cover the majority of kernel matrix 

sizes utilised by the convolution layer of various types of CNNs.

3. Redesign the MAC architecture that is used in the convolution layer. The 

traditional MAC adds two groups of numbers before adding the preceding 

result. In this paper, we replace the adder with CSA, which can add up to three 

groups of numbers at once before accumulating with the preceding result.

1.5 Organization in Thesis

The thesis is organized as follows:-

1. The history and operation of CNNs will be covered in Chapter 2. The kernel

matrix size utilised for each well-known type of CNNs will be listed. As the 

study’s outcome is a new architecture design of MAC, the major context will be 

MAC used for convolution layer. Finally, a full examination of the multiplier 

and adder utilised in MAC architecture.

4



2. Chapter 3 discusses each algorithm employed, from research through design 

to algorithm verification. The discussion starts with how MAC performs in 

the Selective Kernel Size architecture and progresses to the later stages of 

adding multiplier and adder. The proposed working techniques for this thesis, 

which include all algorithmic function blocks, will be presented in depth. The 

classic addition MAC in Selective Kernel Size Architecture will be illustrated 

first, followed by the MACc^a method of selected adder and multiplier. Each 

method available for producing algorithm design, verify the functionality of 

proposed design, and simulation result of each design will also be presented.

3. The simulation results of all designs are discussed in Chapter 4 according to 

their level. This includes the results for the selected 16-bit adder and 8 -bit 

multiplier, followed by the MAC architecture results for the proposed Selective 

Kernel Size MAC and the new MAC-CSA architecture. For each explored 

designs, results are presented in terms of performance, power, and area.

4. Chapter 5 provides a summary of this thesis. This includes the summary of the 

work that has been done, as well as the contributions. The chapter also gives a 

conclusion on the overall perspective of the work, and with the final section on 

several possible future directions for the work.
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