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ABSTRACT 

β-amylase is a hydrolytic enzyme that is involved in breaking down starch and 

producing energy. Since the discovery of β-amylase, it has been applied in various 

applications especially in the food industry. In this study, a novel β-amylase 

from  Clostridium thermosuluregen, a thermophilic anaerobic bacterium that ferments 

its extracellular emulsion to ethanol at 62 ℃ was modelled and studied using 

bioinformatics tools and compared with B. cereus β-amylases that functions at 

mesophilic conditions. The results showed that the overall structural conformations, 

secondary structures, and important residues involved in active and binding sites were 

identified in both proteins.  The results revealed that the modelled β-amylase of C. 

thermosulfuregen is very similar with respect to the global conformation, location of 

active and binding sites. Both proteins showed identical structural domains with the 

thermophilic variant possessing a high percentage of hydrophobic amino acid residues, 

polar amino acid residues, and differences in secondary composition such as loops and 

beta sheets as the potential evolutionary thermal adaptations that make it stable enzyme 

that functions up to 70 ℃. The results suggest that the thermal stability are not 

dependent on one single unique mechanism and may use one or a combination of the 

mechanisms to sustain its structural conformation at a higher operating temperature. 

Overall, considering the common properties of this modelled protein with the β-

amylase of B. cereus, it can be assumed that if the β-amylase of C. thermosulfuregen 

were expressed in-vitro, it would produce a stable protein that possesses the hydrolysis 

function for C. thermosulfuregen to break down the starch and sugar formation. 
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ABSTRAK 

β-amilase adalah enzim hidrolitik yang terlibat dalam pemecahan kanji dan 

penghasilan tenaga. Sejak penemuan β-amilase, ia telah gunapakai dalam pelbagai 

aplikasi terutama dalam industri makanan. Dalam kajian ini, β-amylase baru dari 

Clostridium thermosuluregen, bakteria anaerobik termofilik yang berupaya menapai 

emulsi ekstraselularnya menjadi etanol pada 62 ℃ telah dimodelkan dan dikaji 

menggunakan kaedah bioinformatik dan dibandingkan dengan enzim β-amilase 

dari  B. cereus  yang berfungsi pada suhu mesofilik. Hasil kajian menunjukkan bahawa 

keseluruhan konfigurasi struktur, struktur sekunder dan residu penting yang terlibat 

dalam tapak aktif dan pengikat adalah sama pada kedua-dua protein. Hasil kajian 

menunjukkan bahawa β-amilase C. thermosulfuregen yang dimodelkan sangat mirip 

utic keselumahan konformasi global, lokasi tapak aktif dan tapak pengikatan. Kedua-

dua protein B. cereus menunjukken domain struktur yang sama dengan varian 

termofilik yang mempunyai peratusan tinggi residu asid amino hidrofobik, residu asid 

amino polar dan perbezaan komposisi sekunder seperti “gelung” dan beta sebagai 

evolusi penyesuaian suhu tinggi yang mumpu berpotensis menjadikannya satu enzim 

stabil yang berfungsi hingga 70 ℃. Keputusan menunjukkan bahawa kestabilan terma 

tidak bergantung pada satu mekanisme unik dan mungkin menggunakan gabungan 

bebrapa mekanisme untuk mengekalkan konformasi strukturnya pada suhu operasi 

yang lebih tinggi. Secara keseluruhan, dengan mempertimbangkan sifat umum protein 

yang dimodelkan ini dengan β-amilase B. cereus, dapat diandaikan bahawa jika β-

amilase C. thermosulfuregen dinyatakan secara in-vitro, ia akan menghasilkan protein 

stabil yang memiliki fungsi hidrolisis untuk pemecahan kanji dan penphasilaa gula. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study  

The β-amylase (EC 3.2.1.2) enzyme, or known as α-1,4-glucan 

maltohydrolase, is an exo-type enzyme and catalyses the β-anomeric maltose from the 

non-reducing end of starch to produce maltose. It belongs to the family 14 of the 

glycoside hydrolase (GH) (Schomburg et al., 2002). β-amylase can be found in plants, 

fungi, and bacteria. The β-amylase enzyme has important applications in industries 

due to its saccharogenic activity. It is useful in the pharmaceutical industry due to its 

digestive activity, used for the preparation of malto-oligosaccharides, a reagent that is 

used for research, as nutrients in the health industry substitute for other saccharides 

and used in the production of the malto-oligomer mixture, an ingredient used for the 

preparation of chewing gum, buttercream, cakes, jellies, canned cocoa and fruit drinks 

(Saini et al., 2017).   

The characterization of β-amylase and determination of its 3D structure has 

been documented for a range of species; from bacteria Bacillus cereus (Hirata et al., 

2004), Glycine max (soybean) (Mikami et al., 1999), Ipomoea batatas (sweet potato) 

(Cheong et al., 1995), Hordeum vulgare (barley) (Rejzek et al., 2011), and Triticum 

aestivum (wheat) (Hofer et al., 2019).  All of these β-amylase structures share common 

characteristics that suggest highly conserved regions especially at the active centre in 

the region of (α/β)8 barrel. Only the tertiary structure barrel configuration differs 

between that of plant and bacterial β-amylase (Hirata et al., 2004). Although plant-

based β-amylases are well documented, the breadth of the sources is limited to five 

plants and one bacterial origin. Therefore, it is of interest to expand the source of the 

enzyme to include a thermostable β-amylase that is active at higher temperatures, 

increasing its potential applicability in the industry.  
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The β-amylase from Clostridium thermosulfurogenes has been shown to 

possess an optimum operating temperature at 75 ℃ and would be stable up to 80 ℃ 

(Hyun & Zeikus, 1985). Barnaud et al. (1997) cloned and sequenced the gene encoding 

the thermophilic β-amylase of Clostridium thermosulfurogenes in Bacillus subtilis and 

showed that the mature β-amylase has 519 amino acids and molecular weight (MW) 

of 57167 kDa. The β-amylase sequence showed 32% homology with β-amylase of 

soybean and barley. However, there is no 3D structure of this thermophilic enzyme 

available for study.  

This study is conducted to model the structure of the thermophilic β-amylase 

from Clostridium thermosulfurogenes making it the first modelled thermophilic 

structure and the first from species other than Bacillus cereus and of plant origin. The 

model will be used to examine if there are differences that can be attributed to 

structural adaptations that allow it to function at higher temperatures. The knowledge 

of these differences would be contributing to the understanding of thermophilic 

adaptation in β-amylase and may be used in protein modification for future used. 

1.2 Problem Statement 

The enzyme β-amylase is one of the important enzymes used in the food 

production industry. Although widely used, several issue required for further study. 

Firstly, existing 3D structures are limited to only a few species; bacteria 

Bacillus cereus, Paenibacillus polymyxa and plants; Glycine max (soybean) (Mikami 

et al., 1994), Ipomoea batatas (sweet potato) (Cheong et al., 1995) and Hordeum 

vulgare (barley) (Mikami et al., 1999). The availability of the enzymes comes mostly 

from plant sources and within the mesophilic operating range. This limited number of 

the elucidated structure suggests that other species have yet to be discovered and 

studied, especially from extremophiles that can be a novel source of potentially new 

β-amylase for future industrial use.  
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Secondly, the existing structure of β-amylase in the databases has been shown 

to possess an upper limit of the operational temperature of 70 °C (Li et al., 1991). 

However, research has reported that the β-amylase from Clostridium 

thermosulfurogenes possess a higher operating temperature at 75 ℃ and would be 

stable up to 80 ℃ (Hyun & Zeikus, 1985).  The enzyme has a greater operating pH 

range of between pH 3.5 to 6.5, unlike other β-amylase that possess the optimal activity 

and stable only at neutral pHs. Results have also shown that the enzyme possesses an 

optimum activity at pH 5.5 to 6.0, making it an interesting candidate for studying the 

sequence and structural differences that may contribute to its ability to operate at a 

different temperature and pH range.   

1.3 Objectives of the Study 

(a) To model the 3D structure of a novel thermophilic β-amylase from Clostridium 

thermosulfuregenes.  

(b) To compare between the predicted model of enzyme thermophilic β-amylase 

from Clostridium thermosulfuregenes with Bacillus cereus β-amylase. 

 

1.4 Significance of the Study 

Enzyme β-amylase has significant applications in industries due to its 

saccharogenic activity. It is also used in the pharmaceutical industry because of its 

digestive activity as well as in the preparation of maltooligosaccharides and the 

production of the maltooligomer mixtures (Saini et al., 2017).   

The reported activity of the thermostable β-amylase of Clostridium 

thermosulfurogenes at higher temperatures and the optimum activity at pH 5.5 to 6.0 

and the stability at pH 3.5 to 6.5 makes it an interesting candidate to study. 

Furthermore,  anaerobic bacteria like Clostridium SP can convert starch directly into 

ethanol (Ueki et al., 1991), making any attempt  to study and improve the enzyme 
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properties to assist in the production of ethanol under elevated heat conditions and pH 

makes elucidating this protein's structural adaptation mechanism useful in future 

protein engineering strategies.  

1.5 Scope of the Study  

The research scope of this study is exclusively bioinformatics and 

computational analysis of laboratory data derived from the primary databases such as 

UniProt (https://www.uniprot.org/), protein data bank (PDB) (www.rcsb.orgn), 

BRENDA (https://www.brenda-enzymes.org/), and others. The extent of this study 

only covers the computational aspects of the research as further research with 

laboratory proof of concept will be pursued for future doctoral work. 

 

http://www.rcsb.orgn/
https://www.brenda-enzymes.org/
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Appendix A The percentage of secondary structure of B. cereus and C. 

thermosulfuregen protein 

Protein source 

(organism) 
Helix Sheet Coil or loop Turn  

B.cereus 
71.60% 45.60% 47.44% 11.70% 

C.thermosulfuregen 
51.20% 72.10% 56.99% 12.20% 
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