INFLUENCE OF SILVER NANOPARTICLES ON OPTICAL PROPERTIES OF ERBIUM-SAMARIUM CO-DOPED SODIUM LITHIUM PHOSPHATE GLASS

SITI RASHIDAH BINTI MISRON

UNIVERSITI TEKNOLOGI MALAYSIA

INFLUENCE OF SILVER NANOPARTICLES ON OPTICAL PROPERTIES OF ERBIUM-SAMARIUM CO-DOPED SODIUM LITHIUM PHOSPHATE GLASS

SITI RASHIDAH BINTI MISRON

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > JUNE 2019

ACKNOWLEDGEMENT

This thesis owes its existence to the help, support and inspiration of several people. I would like to express my greatest sincere appreciation and gratitude to my supervisor Assoc. Prof. Dr. Ramli Arifin and co-supervisor Assoc. Prof. Dr. Sib Krishna Ghoshal for their guidance during my research. Their support and inspiring suggestions have been precious for the development of this thesis content.

I am also been grateful to my parents (Misron Sukar and Siti Azizah Makmon) and my siblings especially Siti Nurhakimah Misron for their prayers, constant helps and supports during my Master program.

I would also like to express my innerse gratitude to the rest of people contribute to my research work; all the lecturers and staff that being great helpful. I sincerely thank to my group of research AOMRG for sharing useful ideas, information and moral supports especially my fellow postgraduate friends Dr. Nurhafizah Hasim, Nur Farah Nadia Abd Karim, Siti Nur Nazhirah Mazlan and other lab members.

ABSTRACT

This thesis reported the influence of silver nanoparticles on the optical properties of erbium (Er^{3+}) and samarium (Sm^{3+}) ion co-doped sodium lithium phosphate glass. A series of glass with composition of $(59-x)P_2O_5-(x)Na_2O-30Li_2O 0.5 \text{Er}_2 \text{O}_3 - 0.5 \text{Sm}_2 \text{O}_3$ (where x = 10, 15, 20, 25 and 30 (in mol%)), (49.5-y)P_2 \text{O}_5 - 0.5 \text{C}_2 \text{O}_3 $20Na_2O-30Li_2O-(y)Er_2O_3-0.5Sm_2O_3$ (where y = 0.2, 0.4, 0.6, 0.8 and 0.10 (in mol %)) and $48.5P_2O_5-20Na_2O-30Li_2O-0.5Sm_2O_3-1.0Er_2O_3-(z)AgCl$ (where z = 0.01, 0.03, 0.05, 0.07 and 1.00 (in gram)) were prepared using melt quenching technique. These samples were characterized using X-ray diffractometer (XRD), Transmission Electron Microscope (TEM), Differential Thermal Analysis (DTA), Fourier Transform Infrared (FTIR) spectrometer, Energy Dispersive X-ray (EDX) spectrometer, UV- Vis NIR spectrophotometer and Photoluminescence (PL) spectrometer. The XRD pattern confirms the amorphous nature of the glass and existence of silver nanoparticles with average diameter estimated to be ~ 0.615 nm was revealed by TEM image. Thermal stability is found to vary in the range of 143 °C to 197 °C. Five major IR absorption peaks were found at 580 cm⁻¹, 763 cm⁻¹, 920 cm⁻¹, 1055 cm⁻¹ and 1128 cm⁻¹ which attributed to P-O-P bending vibrations, P-O-P symmetric stretching vibrations, P-O-P asymmetric stretching vibrations, (P-O) asymmetric stretching vibrations and P=O asymmetric stretching vibrations respectively. The EDX data showed all the elements in the composition were present. The UV absorption spectra showed 12 peaks that belongs to both Er³⁺ and Sm³⁺ ions. The indirect optical energy band gap and Urbach energy were in the range of (3.43 - 3.52) eV and (0.23 - 0.40) eV respectively. Four prominent peaks are evidenced, which are assigned to various transitions among Sm³⁺ excited states to the ground state such as ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ (560 nm), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (596 nm), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ (640 nm) and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ (704 nm). Judd Ofelt analysis shows the trends in parameter which is $\Omega_2 > \Omega_4 > \Omega_6$ and spectroscopic quality factor, Q has the highest value with 4.14 for z(0.05) and the lowest for z(0.07) which is 3.48. The average electric dipole (A_{ed}), radiative lifetimes (τ_{rad}) and branching ratios (β) are estimated for Sm³⁺ ions glass matrices. It is observed that the ${}^{6}F_{3/2}$ transition have higher branching ratio values (99.93%) in all five samples. Among these five transitions, ⁶H_{15/2} transitions in z(0.01) have the lowest values (42.17%). The photoluminescence intensity of Sm³⁺ is found to greatly enhance with the increase of Er³⁺ ion concentration together with Ag NPs in the glass matrix. Radiative properties such as stimulated emission cross section (σ_p^E), peak wavelength (λ_p), effective emission bandwidth ($\Delta \lambda_{eff}$) and gain bandwidth (ΔG) were measured. The values of σ_p^E for ${}^4G_{5/2}$ emission transition are in the order of ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2} > {}^{6}H_{7/2} > {}^{6}H_{9/2} > {}^{6}H_{11/2}$ for all samples. z(0.10) has the maximum value of ΔG for all transition parameters and the highest one is at ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ transition $(12.72 \times 10^{-27} \text{ cm}^3)$. Based on the result, it can be concluded that these glasses have a potential for the development of solid state laser application and photonic devices.

ABSTRAK

Tesis ini melaporkan kesan nanopartikel (NP) perak (Ag) terhadap sifat-sifat optik kaca sodium litium fosfat yang didopkan dengan ion erbium (Er³⁺) dan ion samarium (Sm³⁺). Sampel siri kaca dengan komposisi (59-x)P₂O₅-(x)Na₂O-30Li₂O-0.5Er₂O₃-0.5Sm₂O₃ (dimana x = 10, 15, 20, 25 dan 30 (dalam mol%)), (49.5-y)P₂O₅- $20Na_2O-30Li_2O-(y)Er_2O_3-0.5Sm_2O_3$ (dimana y = 0.2, 0.4, 0.6, 0.8 dan 0.10 (dalam mol %)) and $48.5P_2O_5-20Na_2O-30Li_2O-0.5Sm_2O_3-1.0Er_2O_3-(z)AgCl (dimana z = 0.01, 0.03, 0.03)$ 0.05, 0.07 dan 0.10 (dalam gram)) telah disediakan menggunakan kaedah pelindapan peleburan. Kesemua sampel ini telah dikaji menggunakan Pembelauan Sinar-X (XRD), Mikroskopi Elektron Penghantaran (TEM), Penganalisa Terma Pembeza (DTA), Inframerah Jelmaan Fourier (FTIR), Serakan Tenaga Sinar-X (EDX), Ultralembayung Spektrofotometer (UV-Vis) dan Fotoluminesens Spektrofotometer (PL). Corak Pembelauan Sinar-X mengesahkan keadaan amorfus sebenar kaca dan kewujudan nanopartikel perak (Ag) dengan diameter purata dianggarkan bersamaan ~0.615 nm telah dipamerkan oleh imej Mikroskopi Elektron Penghantaran (TEM). Kestabilan terma telah diperoleh dari kepelbagaian kadar julat 143 °C sehingga 197 °C. Lima puncak spektrum IR terdapat di 580, 763, 920, 1055 dan 1128 cm⁻¹ vang masing-masing mewakili getaran membengkok P-O-P, getaran regangan simetri P-O-P, getaran regangan asimetri P-O-P, getaran regangan asimetri (P-O) dan getaran regangan asimetri P=O. Data Serakan Tenaga Sinar-X menunjukkan kesemua unsur wujud di dalam komposisi. Spektrum penyerapan telah menunjukkan 12 puncak kepunyaan kedua-dua ion Er³⁺ dan Sm³⁺. Tenaga jurang jalur dan tenaga Urbach masing-masing berada di dalam julat (3.43 – 3.52) eV dan (0.23 – 0.40) eV. Empat puncak yang jelas telah dibuktikan, yang mana telah di tetapkan ke pelbagai peralihan keadaan teruja Sm³⁺ ke keadaan dasar iaitu ${}^{4}G_{5/2} \xrightarrow{}^{6}H_{5/2}$ (560 nm), ${}^{4}G_{5/2} \xrightarrow{}^{6}H_{7/2}$ (596 nm), ${}^{4}G_{5/2} \xrightarrow{}^{6}H_{9/2}$ (640 nm) dan ${}^{4}G_{5/2} \xrightarrow{}^{6}H_{11/2}$ (704 nm). Analisa Judd Ofelt telah menunjukkan trend parameter $\Omega_2 > \Omega_4 > \Omega_6$ dan faktor kualiti spektroskopik, Q mempunyai nilai tertinggi 4.14 untuk z(0.05) dan nilai terendah bagi z(0.07) iaitu 3.48. Purata dwikutub elektrik (A_{ed}) , hayat penyinaran (τ_{rad}) dan nisbah cabang (β) telah dianggarkan untuk matriks kaca ion Sm³⁺. Pemerhatian yang dijalankan, mendapati peralihan ⁶F_{3/2} mempunyai nisbah cabang yang tertinggi (99.93%) di kelima-lima sampel. Diantara lima peralihan, peralihan ${}^{6}\text{H}_{15/2}$ di z(0.01) mempunyai nilai terendah (42.17%). Keamatan fotoluminesens ion Sm³⁺ didapati meningkat dengan baik dengan penambahan kepekatan ion Er³⁺ bersama dengan Ag NPs di dalam matriks kaca. Ciri-ciri penyinaran seperti stimulasi keratan rentas pelepasan (σ_p^E), puncak panjang gelombang (λ_p), keberkesanan jalur lebar pelepasan ($\Delta \lambda_{eff}$) dan gandaan jalur lebar (ΔG) telah dikira. Nilai σ_n^E bagi peralihan ${}^4G_{5/2}$ adalah mengikut turutan ${}^4G_{5/2} \rightarrow {}^6H_{5/2} > {}^6H_{7/2} > {}^6H_{9/2} >$ ${}^{6}\text{H}_{11/2}$ untuk kesemua sampel. z(0.10) mempunyai nilai ΔG maksima untuk semua parameter peralihan dan yang tertinggi berada di peralihan ${}^{4}\text{G}_{5/2} \xrightarrow{} {}^{6}\text{H}_{11/2}$ (12.72 ×10⁻²⁷ cm³). Berdasarkan hasil yang diperolehi, dapat disimpulkan bahawa kaca – kaca ini mempunyai potensi untuk kemajuan aplikasi laser keadaan pepejal dan alat fotonik.

TABLE OF CONTENTS

TITLE	PAGE
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiv
LIST OF SYMBOLS	xviii
LIST OF ABBREVIATIONS	xxi
LIST OF APPENDICES	xxiii

CHAPTER 1 INTRODUCTION

1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	5
1.4	Objectives	7
1.5	Scope of Study	8
1.6	Research Significant	8

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	11
2.2	Definition of Glass	11
2.3	Phosphate with Modifier in Glass System	12

2.4	Phosphate with Rare Earth Ions in Glass	
	System	
2.5	Phosphate with Metallic Nanoparticles in	15
	Glass System	
2.6	Optical Properties	18
	2.6.1 Optical Energy Band Gap	18
	2.6.2 Urbach Energy	20
	2.6.3 Judd-Ofelt Analysis	21
	2.6.4 Radiative Properties	26

CHAPTER 3 RESEARCH METHODOLOGY

3.1	Introduction	
3.2	Sample Preparation	
3.3	Density and Molar Volume	35
3.4	X-ray Diffraction	36
3.5	Differential Thermal Analysis	37
3.6	UV-Vis Spectrophotometer	39
3.7	Photoluminescence Spectroscopy	40
3.8	Fourier Transform Infrared Spectroscopy	41
3.9	Energy Dispersive X-ray Spectrometry	42
3.10	Transmission Electron Microscopy	43
CHAPTER 4	RESULTS AND DISCUSSION	
4.1	Introduction	45
4.2	Composition Optimization of Series I	45
	with (Na ₂ O) Variation	
	4.2.1 Absorption Spectra Analysis	46
	4.2.2 Photoluminescence Spectra	47

Analysis

4.3	Composition Optimization of Series II	49
	with Er ₂ O ₃ variation	
	4.3.1 Absorption Spectra Analysis	49
	4.3.2 Photoluminescence Spectra	50
	Analysis	
4.4	Series III (Effect of Ag NPs on Glass)	54
	4.4.1 Density and Molar Volume	54
	4.4.2 DTA Analysis	58
	4.4.3 X-ray Diffraction Analysis	62
	4.4.4 Element Analysis	63
	4.4.5 Morphology Analysis	65
	4.4.6 Vibration Analysis	66
	4.4.7 Absorption Spectra Analysis	69
	4.4.8 Optical Energy Band gap	70
	4.4.9 Urbach Energy	73
	4.4.10 Judd-Ofelt Analysis	76
	4.4.11 Photoluminescence Spectra	81
	Analysis	
	4.4.12 Radiative properties	84
CHAPTER 5	CONCLUSIONS AND	
	SUGGESTIONS	
5.1	Introduction	87
5.2	Conclusion	87
5.3	Further Study	99

91

APPENDICES

103-119

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Comparison of IR band with different glass.	17
Table 2.2	Comparison of Judd-Ofelt parameter of different glasses	25
Table 2.3	Comparison of peak wavelength, λ_p (nm)	28
	and stimulated emission cross-section, σ_p^E (×10 ⁻²² cm ²) on Sm ³⁺ : glasses.	
Table 3.1	Composition for series I of glass \rightarrow (59- x)P ₂ O ₅ - (x)Na ₂ O - 30Li ₂ O - 0.5Er ₂ O ₃ -	31
	0.5Sm ₂ O ₃ where <i>x</i> = 10 mol%, 15 mol%, 20 mol%, 25 and 30 mol%.	
Table 3.2	Composition for series II of glass \rightarrow (49.5-y)P ₂ O ₅ - 20Na ₂ O - 30Li ₂ O -	31
	(y)Er ₂ O ₃ - 0.5Sm ₂ O ₃ where $y = 0.2$ mol%, 0.4mol%, 0.6mol%, 0.8mol% and	
Table 3.3	0.10 mol%. Composition for series III of glass \rightarrow	32
	$48.5P_2O_5-20Na_2O-30Li_2O-1.0Er_2O_3-$ $0.5Sm_2O_3-(z)Ag$ where $z = 0.01$ g, 0.03 g,	
	0.05 g, 0.07 g and 0.10 g.	
Table 4.1	Density of each sample in series III.	56
Table 4.2	AgCl in mol.	57

Table 4.3	Molar volume for the series III glass	
	samples.	
Table 4.4	Temperature characteristics and thermal	60
	stability for DTA analysis.	
Table 4.5	The actual and nominal composition of	64
	Z05 for $48.9P_2O_5 - 20Na_2O - 30Li_2O -$	
	$0.6 Er_2 O_3 \ - \ 0.5 Sm_2 O_3 \ - \ 0.05 AgCl \ glass$	
	system.	
Table 4.6	The band positions and their assignments	68
	for $48.5P_2O_5$ -20Na ₂ O - $30Li_2O$ - $1.0Er_2O_3$	
	- 0.5 Sm ₂ O ₃ - (z)AgCl glass system.	
Table 4.7	Position of FTIR peaks for 48.5P ₂ O ₅ -	68
	$20 Na_2 O 30 Li_2 O 1.0 Er_2 O_3 0.5 Sm_2 O_3$	
	(z)AgCl glass system.	
Table 4.8	Calculated optical energy bandgap, E_g of	72
	$48.5P_2O_5-20Na_2O-30Li_2O-1.0Er_2O_3-$	
	0.5Sm ₂ O ₃ -(<i>z</i>)AgCl glass system.	
Table 4.9	Calculated Urbach energy, E _u of	75
	$48.5P_2O_520Na_2O30Li_2O1.0Er_2O_3$	
	0.5Sm ₂ O ₃ -(<i>z</i>)AgCl glass system.	
Table 4.10	Oscillator strength experimental (f_{exp}) and	79
	calculated (f_{cal}) (× 10 ⁻⁸).	
Table 4.11	Judd-Ofelt parameters $(\times 10^{-22})$ and	80
	spectroscopic quality factor, Q.	
Table 4.12	Average electric dipole (A_{ed}, s^{-1}) ,	80
	branching ratio ($^{\beta}$, %) and radiative	
	lifetime (τ_{rad} , ms ⁻¹).	

xii

Table 4.13Peak wavelength λ_p (nm), effective
emission bandwidth $\Delta\lambda_{eff}$ (nm),
stimulated emission cross section σ_p^E (×
 10^{-21} cm²) and gain bandwidth ΔG (× 10
 27 cm³) of Sm³⁺ in 48.5P₂O₅-20Na₂O-
 $30Li_2O-1.0Er_2O_3-0.5Sm_2O_3-(z)AgCl
glass system.$

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE		
Figure 2.1	Absorption coefficient versus photon energy	19		
	of different region.			
Figure 3.1	Flowchart of sample preparation.	30		
Figure 3.2	Miling machine is used to mixed the	34		
	mixture of glass materials (UTM).			
Figure 3.3	The process of pre-heat and melt quenching	34		
	technique for phosphate glass.			
Figure 3.4	Bruker D8 Advance diffractometer (UTM).	37		
Figure 3.5	Pyris Diamond TG-DTA, Japan (UTM).	38		
Figure 3.6	UV-Vis spectrophotometer (UTM).	39		
Figure 3.7	Photoluminescence spectrometer (UTM).	40		
Figure 3.8	Perkin-Elmer Spectrum One FTIR	42		
	spectrometer (UTM).			
Figure 3.9	EDX spectrometer (UTM). 43			
Figure 3.10	Transmission Electron Microscope (USM). 44			
Figure 4.1	UV-Vis-NIR absorption spectra for (59-			
	$x)P_2O_5 - (x)Na_2O - 30Li_2O - 0.5Er_2O_3 -$			
	0.5Sm ₂ O ₃ glass system where $x = 10, 15,$			
	20, 25 and 30 mol%.			
Figure 4.2	Luminescence spectra for $(59-x)P_2O_5$ –	48		
	$(x)Na_2O - 30Li_2O - 0.5Er_2O_3 - 0.5Sm_2O_3$			
	glass system where $x = 10, 15, 20, 25$ and			
	30 mol% under excitation of 400 nm.			
Figure 4.3	UV-Vis-NIR absorption spectra for (49.3-	50		

 $y)P_2O_5 - 20Na_2O - 30Li_2O - (y)Er_2O_3 - 0.5Sm_2O_3$ glass system where y = 0.2, 0.4, 0.6, 0.8 and 1.0 mol%.

- Figure 4.4 Luminesscence spectra for $(49.3-y)P_2O_5 52$ $20Na_2O - 30Li_2O - (y)Er_2O_3 - 0.5Sm_2O_3$ glass system with excitation 488 nm.
- Figure 4.5 Luminescence spectra of single Er^{3+} 52 (PE0.5S0) and single Sm^{3+} (PE0S0.5) doped phosphate glass to showing the overlap with composition of $(49.5-a)P_2O_5 - 20Na_2O 30\text{Li}_2O - (a)\text{Er}_2O_3 - 0\text{Sm}_2O_3$ and $(49.5-b)P_2O_5 - 20Na_2O - 30\text{Li}_2O - 0\text{Er}_2O_3 (b)\text{Sm}_2O_3$ glass system.
- Figure 4.6 Mechanism of energy level diagram for 53 $Er^{3+}-Sm^{3+}$ ions in (49.3-y)P₂O₅ - 20Na₂O - $30Li_2O - (y)Er_2O_3 - 0.5Sm_2O_3$ glass system.
- Figure 4.7Density of glass samples (series III) against56AgCl content of 48.5P2O5-20Na2O-30Li2O-
1.0Er2O3-0.5Sm2O3-(z)AgCl glass system.56
- Figure 4.8 Molar volume of glass sample (series III) 57 against AgCl content of 48.5P₂O₅ - 20Na₂O - 30Li₂O - 1.0Er₂O₃ - 0.5Sm₂O₃ - (z)AgCl glass system.
- Figure 4.9 DTA curves for $48.5P_2O_5$ -20Na₂O-30Li₂O- 60 1.0Er₂O₃-0.5Sm₂O₃-(z)AgCl glass system.
- Figure 4.10 The T_g , T_c and T_m against AgCl content of 61 48.5P₂O₅-20Na₂O-30Li₂O-1.0Er₂O₃-0.5Sm₂O₃-(z)AgCl glass system.61

Figure 4.11	Thermal stability, ΔT against AgCl62	61
	content of $48.5P_2O_5$ -20Na ₂ O-30Li ₂ O-	
	631.0Er ₂ O ₃ - 0.5 Sm ₂ O ₃ - (z) AgCl glass	
	system.	
Figure 4.12	The glass forming tendency, H_R against	62
	AgCl content of 48.5P2O5-20Na2O-30Li2O-	
	1.0Er ₂ O ₃ - 0.5 Sm ₂ O ₃ - (z) AgCl glass system.	
Figure 4.13	XRD pattern of Z05 for $48.9P_2O_5 - 20Na_2O$	63
	$- 30Li_2O - 0.6Er_2O_3 - 0.5Sm_2O_3 - $	
	0.05AgCl glass system.	
Figure 4.14	EDX spectrum of Z05 for 48.9P ₂ O ₅ –	64
	$20Na_2O - 30Li_2O - 0.6Er_2O_3 - 0.5Sm_2O_3 - \\$	
	0.05AgCl glass system.	
Figure 4.15	TEM image of Z05 with $48.9P_2O_5$ –	65
	$20Na_2O - 30Li_2O - 0.6Er_2O_3 - 0.5Sm_2O_3 - \\$	
	0.05AgCl glass system.	
Figure 4.16	Size distribution of AgCl of Z05 with	66
	average diameter of ~0.615 nm.	
Figure 4.17	Infrared absorption spectra for 48.5P ₂ O ₅ -	67
	$20Na_2O-30Li_2O-1.0Er_2O_3-0.5Sm_2O_3-$	
	(z)AgCl glass system.	
Figure 4.18	UV-Vis-NIR absorption spectra for	70
	$48.5P_2O_5-20Na_2O-30Li_2O-1.0Er_2O_3-$	
	0.5Sm ₂ O ₃ -(<i>z</i>)AgCl glass system.	
Figure 4.19	Optical energy bandgap of 48.5P ₂ O ₅ -	71
	$20Na_2O-30Li_2O-1.0Er_2O_3-0.5Sm_2O_3-$	
	(z)AgCl glass system.	
Figure 4.20	Optical energy band gap against AgCl	72

content of $48.5P_2O_5 - 20Na_2O - 30Li_2O - 1.0Er_2O_3 - 0.5Sm_2O_3 - (z)AgCl glass system.$

- Figure 4.21 Urbach energy of $48.5P_2O_5$ -20Na₂O- 74 30Li₂O-1.0Er₂O₃-0.5Sm₂O₃-(z)AgCl glass system.
- Figure 4.22 Urbach energy against AgCl content of 75 $48.9P_2O_5 - 20Na_2O - 30Li_2O - 0.6Er_2O_3 - 0.5Sm_2O_3 - (z)AgCl glass system.$
- Figure 4.23 The quality factor against AgCl content of 78 of $48.9P_2O_5 - 20Na_2O - 30Li_2O - 0.6Er_2O_3$ $- 0.5Sm_2O_3 - (z)AgCl glass system.$
- Figure 4.24 Luminescence spectra for $48.5P_2O_5$ 81 20Na₂O-30Li₂O-1.0Er₂O₃-0.5Sm₂O₃-(z)Ag glass system with excitation wavelength 488 nm.
- Figure 4.25Luminescence intensity with AgCl content83of $48.9P_2O_5 20Na_2O 30Li_2O 0.6Er_2O_3$ $-0.5Sm_2O_3 (z)AgCl$ glass system.Figure 4.26Energy level diagram of $48.5P_2O_5$ - $20Na_2O$ -84 $30Li_2O$ - $1.0Er_2O_3$ - $0.5Sm_2O_3$ -(z)AgCl glass

system.

LIST OF SYMBOLS

Α	-	The cross-sectional area of material with
		area parallel to the applied force vector
A_{ed}	-	Electric-dipole
A_{md}	-	Magnetic-dipole
α	-	Absorption coefficient
aJ	-	Ground state
В	-	Constant
β	-	Branching ratio
bJ	-	Excited state
С	-	Speed of light
C_{RE}	-	Concentration of the rare-earth
С	-	Light velocity
d	-	Interplanar separation
D	-	Density of air
E_u	-	Urbach energy
E_{f}	-	Energy of electron of final state
Ei	-	Eenergy of an electron at lower band
E_g	-	Optical energy bandgap
$\varepsilon_a(v)$	-	Molar extinction coefficient
е	-	Electron charge
F	-	Applied force
f_{exp}	-	Experimental oscillator strength
f_{cal}	-	Oscillator strength

ΔG	-	Gain bandwidth
hv	-	Photon energy
H_{R}	-	Hruby parameter
Λ	-	Wavelength
Ω_λ	-	Judd-Ofelt parameters
М	-	Molecular weight
М	-	Electron mass
m_r	-	Atomic weights in kg of cation
m_o	-	Atomic weights in kg of anion
η	-	Viscosity
n	-	Order of diffraction
Ν	-	Integer
heta	-	Angle
ρ	-	Density
$ ho_{o}$	-	Density of distilled water
Р	-	Number of transitions
Q	-	Quality factor
rms	-	Root-mean-square
S_{ed}	-	Line-strength for electric
T_{c}	-	Glass crystallization temperature
T_m	-	Glass melting temperature
T_{g}	-	Glass transition temperature
T_{rad}	-	Radiative lifetime
ΔT	-	Glass thermal stability
Т	-	Thickness of the sample
τ	-	Shear stress

U_{κ}	-	Values of reduced matrix elements
μ	-	Reduced mass
V_m	-	Molar volume
W _a	-	Weight of sample in air
w ₁	-	Weight in distilled water
${\it \Omega}$	-	Frequency dependence
λ	-	Wavelength
λ_p	-	Peak wavelength
$\Delta \lambda_{e\!f\!f}$	-	Effective emission bandwidth
$\sigma^{\scriptscriptstyle E}_{\scriptscriptstyle p}$	-	Stimulated emission cross section

LIST OF ABBREVIATIONS

P_2O_5	-	Phosphate
Ag	-	Silver
BO	-	Bridging oxygen
CB	-	Conduction band
DTA	-	Differential thermal analysis
DBO	-	Double bonded oxygen
EDX	-	Energy dispersive X-ray
Er	-	Erbium
FWHM	-	Full width at half maximum
FTIR	-	Fourier transform infrared
Н	-	Hydrogen
IR	-	Infrared
J-O	-	Judd-Ofelt
NBOs	-	Non-bridging oxygens
NPs	-	Nanoparticles
0	-	Oxygen
PL	-	Photoluminescence
RE	-	Rare earth
SPR	-	Surface plasmon resonance
Sm	-	Samarium
TEM	-	Transmission electron microscopy
UV-Vis	-	Ultraviolet visible
VB	-	Valence band

XRD	-	X-ray diffraction
Li ₂ O	-	Lithium oxide
K ₂ O	-	Potassium oxide
Na ₂ O	-	Sodium oxide

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
Appendix A	Batch Calculation	103
Appendix B	Calculation of Density and Molar	106
	Volume	
Appendix C	Ftir Spectra	109
Appendix D	Calculations of Indirect Bandgap	112
	Energy and Uncertainty	
Appendix E	Calculations of Urbach Energy and	116
	Uncertainty	

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter briefly discuss about the background of the research, problem statement, objectives, scope of study and research significance.

1.2 Background

Glasses incorporated with various rare-earth ions (RE) find number of applications in the development of optoelectronic devices such as visible lasers, optical amplifiers, optical detectors, fluorescent display devices, , optical fibers, planar waveguides, hole burning high density memories and compact microchip lasers (Venkataiah *et al.*, 2015). Among oxide glasses, phosphate glasses have several advantages over the conventional silicate and borate glasses due to their unique characteristics that includes high transparency, low melting point, high thermal stability, high gain density that is mainly due to high solubility of RE³⁺ ions besides low refractive index and dispersion. (Amjad *et al.*, 2012; Sahar *et al.*, 2012; Lim *et al.*, 2013; Basavapoornima and Jayasankar, 2014; Ramteke *et al.*, 2017; Sangwaranatee *et al.*, 2017) The RE³⁺ ions doped in various host matrices such as, telluritetungsten zirconium (Venkataiah *et al.*, 2015), boro- telluro-phosphate (Selvi *et al.*, 2015) sulfophosphate (Ahmadi *et al.*, 2017), sodium tellurite (Mawlud *et al.*, 2015), borate (Agarwal *et al.*, 2009), fluorosilicate (Linganna *et al.*, 2015) and lead bismosilicate (Bhardwaj *et al.*, 2014) glasses are receiving considerable attention.

The properties of the phosphate glasses are strongly related to the peculiar structure of their glass network and the role of network modifiers and intermediates. The glass forming component in phosphate glasses is P_2O_5 and the basic unit is based on $[PO_4]^{3-}$ tetrahedrons. It contains a P=O double bond, which is an asymmetric center within the glass structure that accounts for the relatively poor mechanical properties and chemical durability, if compared to silicate glasses. (Moustafa and El-Egili, 1998; Tashtoush and El-Desoky, 2007; Brauer, 2012; Mura *et al.*, 2013; Andronache and Racolta, 2014; Basavapoornima and Jayasankar, 2014) To overcome the problem, many constituents can be added to the composition to improve physical properties and chemical stability of the glass. Specifically, alkali metal oxides (R₂O with R=Li, Na, K, Rb and Cs) were added to the glass matrix to improve strength, chemical durability and glass forming ability (Mura *et al.*, 2013; Basavapoornima and Jayasankar, 2014; Oueslati *et al.*, 2014; Chanthima *et al.*, 2018).

The glass composition significantly effects on optical properties of RE ions, hence selection of suitable network former and network modifier is essential for the enhancement of the optical performance. (Bhardwaj *et al.*, 2014; Kumar *et al.*, 2017; Srihari and Jayasankar, 2017) Alkali metal ions such as lithium oxide and sodium oxide are well-known modifiers widely used in phosphate glasses to increase the chemical durability and also play an important role to improve the luminescent properties (Mawlud *et al.*, 2017; Sangwaranatee *et al.*, 2017; Ravangvong *et al.*, 2017). Strength, chemical durability and luminescence properties are improved with incorporation of lithium oxide and sodium oxide as a modifier in RE doped phosphate glass.

Among RE ions, samarium (Sm^{3+}) ion is one of the interesting Ln^{3+} ions because of the excellent luminescence properties (Venkatarao *et al.*, 2009; Lim *et al.*, 2013; Brahmachary *et al.*, 2015). Glasses doped with Sm^{3+} (4f⁵) ions exhibit relatively high quantum efficiency because of the large energy gap (less non-radiative decay) between the ${}^{4}\text{G}_{5/2}$ level and the next lower lying energy level ${}^{6}\text{F}_{11/2}$, which is approximately 7200 cm⁻¹. These glasses show various populating as well as different channels that lead to luminescence quenching. It possesses very strong fluorescence intensity, rich energy levels, high luminescence efficiency and large stimulated emission cross-section. The host glass containing Sm³⁺ ions possess most attractive qualities due to their potential applications in solid state lasers, under sea communication, color displays, temperature sensors, medical diagnostics and high density optical storage materials (Kumar *et al.*, 2003; Amjad *et al.*, 2012; Do *et al.*, 2012; Reddy *et al.*, 2014; Elisa *et al.*, 2013; Selvi *et al.*, 2015; Yamsuk *et al.*, 2018). Based on these potentialities, sodium lithium

phosphate glass system with Sm^{3+} are prepared to achieve the lasing glass material.

Another RE ions used in this research is erbium ion (Er^{3+}). A large number of researches have been done on Er^{3+} ions due to its potentiality of blue, green, and red emissions, in addition to an IR broadband line around 1.5 µm for applications in solid state lasers and optical amplifiers. Among all the rare-earth ions, Er^{3+} is frequently employed as an upconversion luminescence center due to its more homogeneous energy level array, enabling longer lifetimes of metastable energy levels. In the short-wavelength region, Er^{3+} can emit blue (${}^{4}\text{F}_{7/2} \rightarrow {}^{4}\text{I}_{15/2}$, 488 nm), green (${}^{2}\text{H}_{11/2}/{}^{4}\text{S}_{3/2} \rightarrow {}^{4}\text{I}_{15/2}$, 520/550 nm) and red (${}^{4}\text{F}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$, 660 nm), and the upconversion emissions of all these wavelengths have been observed when pumped with various wavelengths matching ${}^{2}\text{H}_{11/2}/{}^{4}\text{S}_{3/2}$, ${}^{4}\text{F}_{9/2}$, ${}^{4}\text{I}_{1/2}$, ${}^{4}\text{I}_{13/2}$ levels. (Fu *et al*, 2013; Soltani et al., 2015)

Interest in glass containing rare-earth (RE) ions and metallic nanoparticles (NPs) including gold and silver are expected for the intensification of luminescence. Metallic nanoparticles exhibit unique optical response, enhanced electromagnetic field and constitute the area of plasmonics (Sahar *et al*, 2012). In particular, embedding materials such as metal nanoparticles in glasses are expected to produce promising materials for functional optical devices due to a large third-order nonlinear susceptibility and an ultra-fast non-linear response (Sahar *et al.*, 2012; Rahman *et al.*, 2016). Enhancement in the upconversion (UC) luminescence and the nonlinear properties makes rare-earth doped glasses containing metallic nanoparticles (NPs) are attractive because of the presence of NPs. It makes the glass suitable for optical device applications. One of the most important properties of Ag NPs is related to the excitation of surface plasmon resonance (SPR) within the optical spectral band. The luminescence emission can be enhanced by the resonance of the surface plasmon frequency (SPR) of the NPs with the frequency of excitation beam together with the materials luminescence frequency (Amjad *et al.*, 2012; Vodnik *et al.*, 2012; Dousti, 2014; Solatani *et al.*, 2015). The preparation and characterization of RE doped glasses embedded with metallic nanoparticles have been studied by many researchers (Dousti et al., 2013; Adnan *et al.*, 2015; Anigrahawati *et al.*, 2015; Ahmadi *et al.*, 2017). Specifically, there is no report on metallic nanoparticles embedded inside the sodium lithium phosphate glass matrix with RE ions. Regards to this matter, deeper study of the effect of nanoparticles on luminescence enhancement and energy transfer processes in the sodium lithium phosphate glass matrix is necessary.

1.3 Problem Statement

The energy transfer between two rare earths codoped in glasses has been studied in many systems because the sensitized luminescence is not only of interest for applications but also for understanding basic mechanisms. Many researchers have discussed the phenomena of radiative and non radiative transitions in the rare earth ions and succeeded in realizing energy transfer in codoped glasses, as indicated by enhancement in the intensity of fluorescence or variation in the lifetime of the emitting levels. (Tripathi *et al*, 2008)

Although there are researches on codoped between two rate earth ions but not so much about energy transfer between erbium ion and samarium ion. Based on the searching of the previous study focusing on these rare earths, Tripathi *et al.* (2008) has studied about them in lithium tellurite glass, TeO₂-Li₂O. Then, Cosmo *et al.* (2014) has studied on novel samarium-erbium and samarium-terbium codoped glass phosphor for application in warm white light-emitting diode. So, the research of erbium oxide and samarium oxide in phosphate glass as co-dopant are needed to be explored.

Besides that, researches on silver NPs with combination of these rare earths are not that much compared to single doped. Erbium oxide doped sodium lead tellurite glass and samarium oxide doped sodium borosilicate glass containing silver NPs has been studied by Dousti (2012 & 2014). Moreover, erbium oxide in phosphate glass and zinc tellurite glass with embedment of silver NPs has been studied by Amjad *et al.* (2012 & 2013).

Although erbium-samarium codoped glass has been studied by other researchers, but rarely in phosphate glass. Therefore, the study of erbium oxide and samarium oxide as a co-dopant with a combination of sodium oxide and lithium oxide as a modifier in a phosphate glass is needed. The influence of embedment of silver nanoparticles in the phosphate glass codoped with erbium oxide and samarium oxide on structural, thermal and optical properties should be explored. More importantly, the lasing glass properties are needed to be studied in terms of analysis of Judd-Ofelt theory and its parameter together with radiative properties.

1.4 Objectives

In this research, a stable with wide formation ranges of phosphate glasses are prepared to full fill these objectives which are:

- i. To optimize the concentration of sodium oxide, erbium oxide and silver nanoparticles via absorption spectra analysis and photoluminescence spectra analysis.
- ii. To determine effect of silver nanoparticles on optical properties of erbium-samarium codoped sodium lithium phosphate glass.
- iii. To analyse Judd-Ofelt analysis and radiative properties towards lasing properties of erbium-samarium codoped sodium lithium phosphate glass with silver nanoparticles.

1.5 Scope of Study

To achieve this research, three series of glass with the composition of $P_2O_5 - Na_2O - Li_2O - Er_2O_3 - Sm_2O_3$ with and without silver nanoparticles was prepared by melt quenching technique. Differential Thermal Analysis (DTA) was used to determine the thermal properties of glass. Fourier Transform Infrared Spectroscopy (FTIR) was responsible to determine the structural properties. Energy Dispersive X-ray spectroscopy (EDX) was used to characterize the elements present in the glass. Transmission Electron Microscopy (TEM) was used to investigate the presence, size and shape of silver nanoparticles in glass. UV-Vis and Photoluminescence (PL) spectroscopy were used for the optical characterization.

1.6 Research Significance

The important of this research on erbium-samarium co-doped sodium lithium phosphate glass containing silver nanoparticles is to achieve high optical properties. The enhancement of optical properties of glass can be seen through UV-Vis and Photoluminescence analysis. From the characterization and analysis, the study outcome contributes better understanding towards properties of RE ions (Er³⁺ and Sm³⁺) and silver nanoparticles (Ag) on sodium lithium phosphate glass. Importantly, through Judd-Ofelt analysis and

radiative properties, the glasses can be promising materials with enhanced optical properties for photonic devices such as solid state laser and sensor.

REFERENCES

- Abdel-Gayed, M. S., Elbashar, Y. H., Barakat, M. H. and Shehata, M. R.
 (2017).Optical Spectroscopic Investigations on Silver doped Sodium Phosphate Glass. *Opt Quant Electron*. 49, 305.
- Adnan, N. A. M., Sahar, M. R. and Rohani, M. S. (2015). Optical Absorption in Erbium Doped Phosphate Glass Embedded With Cobalt Nanoparticles. Advanced Materials Research. 1107, 409-414
- Andronache, C. I. and Racolta, D. (2015). Structural Investigation of MO.P₂O₅.Li₂O (MO = Fe₂O₃ or V₂O₅) Glass Systems by FTIR Spectroscopy. *AIP Conference Proceedings*. 1634, 115
- Agarwal, A., Pal, I., Sanghi, S. and Aggarwal, M. P. (2009). Judd Ofelt Parameters and Radiative Properties of Sm³⁺ ions Doped Zinc Bismuth Borate Glasses. *Optical Materials*. 32, 339–344
- Ahmadi, F., Hussin, R. and Ghoshal, S. K. (2017). Spectroscopic attributes of Sm³⁺ doped Magnesium Zinc Sulfophosphate Glass: Effects of Silver Nanoparticles Inclusion. *Optical Materials*. 73, 268–276
- Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., Riaz, S. and Tahir,
 B. A. (2012). Enhanced Infrared to Visible Upconversion Emission in Er³⁺ Doped Phosphate Glass: Role of Silver Nanoparticles. *Journal of Luminescence*. 132, 2714–2718
- Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., Riaz, S. and Tahir,
 B. A. (2012). Optical Investigation of Sm³⁺ Doped Zinc-Lead Phosphate Glass. *CHIN. PHYS. LETT.* 29(8), 087304

- Amjad, R. J., Sahar, M. R., Ghoshal, S. K., Dousti, M. R., Samavati, A.
 R., Riaz, S. and Tahir, B. A. (2013). Spectroscopic Investigation of Rare-Earth Doped Phosphate Glasses Containing Silver Nanoparticles. *Acta Physica Polonica A*. 123(4)
- Amjad, R. J., Sahar, M. R., Dousti, M. R., Ghoshal, S. K. and Jamaludin, M. N. A. (2013). Surface Enhanced Raman Scattering and Plasmon Enhanced Fluorescence in ZincTellurite Glass. *Optic Express*. OSA. 21(12)
- Amjad, R. J., Dousti, M. R., Sahar, M. R., Shaukat, S. F., Ghoshal, S. K., Sazali, E. S. and Nawaz, F. (2014). Silver Nanoparticles Enhanced Luminescence of Eu³⁺ doped Tellurite Glass. *Journal of Luminescence*. 154, 316–321
- Anigrahawati, P., Sahar, M. R., Rohani, M. S. and S. K. Ghoshal. (2015).
 Optical Absorption of Erbium Doped Zinc Phosphate Glass
 Containing Fe₃O₄ Nanoparticles. *Advanced Materials Research*.
 1107, 420-425
- Arunkumar, S., Marimuthu, K. (2013). Concentration Effect of Sm³⁺ ions in B₂O₃-PbO-Bi₂O₃-ZnO Glasses: Structural and Luminescence Investigations. *Journal of Alloys and Compounds*. 565, 104-114
- Ashiha, N. A. (2014). Structural and Optical Properties of Neodymium Doped Magnesium Lithium Tellurite Glass Embedded with Silver Nanoparticles. MSc Thesis UTM.
- Basavapoornima, C. H. and Jayasankar, C. K. (2014). Spectroscopic and Photoluminescence Properties of Sm³⁺ ions in Pb–K–Al Na Phosphate Glasses for Efficient Visible Lasers. *Journal of Luminescence*. 153, 233–241

- Bhardwaj, S., Shukla, R., Sanghi, S., Agarwal, A. and Pal, I. (2014). Spectroscopic Properties of Sm³⁺ doped Lead Bismosilicate Glasses using Judd–Ofelt Theory. *Spectrochimica Acta Part A: Molecular* and Biomolecular Spectroscopy. 117, 191–197
- Brahmachary, K., Rajesh, D. and Ratnakaram, Y. C. (2015). Radiative Properties and Luminescence Spectra of Sm³⁺ ion in Zinc Aluminum–Sodium-Phosphate (ZANP) Glasses. *Journal of Luminescence*. 161, 202–208
- Brauer, D. S. (2012). Phosphate Glasses, in Bio-Glasses: An Introduction. Jones, J. R. and Clare, A. G. (Eds.). Chichester, UK: John Wiley & Sons, Ltd
- Callister, W. D. Jr., Rethwisch, D. G. (2010). *Materials Science and Engineering: An Introduction*. (8th ed.). Hoboken, N.J.: John Wiley & Sons, Inc
- N., Tariwonga, Y., Djamalc, М., Kaewkhaoa, Chanthimaa. J., W.. Sangwaranateed, N. Sangwaranateee, N. (2018). Luminescence Properties and Judd-Ofelt Analysis of Sm³⁺ doped Aluminium Phosphate Glasses. Lithium Materials Today: Proceedings. 5, 15034–15039
- Cosmo, M. d. S. Jr, Artur S. G. N., Luciano A. B. (2014). Novel Samarium-Erbium and Samarium-Terbium Codoped Glass Phosphor for Application in Warm White Light-Emitting Diode, *Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII*, Proc. Of SPIE. 9003
- Czaja, M., Bodył, S., Gabrys'-Pisarska, J. and Mazurak, Z. (2009).Applications of Judd–Ofelt Theory to Praseodymium and Samarium ions in Phosphate Glass. *Optical Materials*. 31, 1898-1901

- Davis, E. A. and Mott, N. F. (1970) Philosophy. Magazine. 22, 903-922
- Do, P. V., Tuyen, V. P., Quang, V. X., Thanh, N. T., Thai Ha, V. T., Khaidukov, N.M., Lee, Y. I. and Huy, B. T. (2012) Judd Ofelt Analysis of Spectroscopic Properties of Sm³⁺ ions in K₂YF₅ Crystal. *Journal of Alloys and Compounds*. 520, 262–265
- Dousti, M. R., Sahar, M. R., Amjad, R. J., Ghoshal, S. K., Khorramnazari,
 A., Dordizadeh Basirabad, A. and Samavati, A. (2012). Enhanced
 Frequency Upconversion in Er³⁺ Doped Sodium Lead Tellurite Glass
 Containing Silver Nanoparticles. *The European Physical Journal D*. 66(237)
- Dousti, M. R., Sahar, M. R., Ghoshal, S. K., Raja, J. A. and Arifin, R. (2013). Plasmonic Enhanced Luminescence in Er³⁺: Ag co-doped Tellurite Glass. *Journal of Molecular Structure*. 1033, 79-83
- Dousti, M. R. (2014). Plasmonic Effect of Silver Nanoparticles on the Upconversion Emissions of Sm³⁺ Doped Sodium Borosilicate Glass. *Measurement*. 56, 117–120
- Elbashar, Y.H., Ali, M.I., Elshaikh, H.A., El-Din Mostafa, A.G. (2016).
 Influence of CuO and Al₂O₃ Addition on The Optical Properties of Sodium Zinc Phosphate Glass Absorption Filters. *Optik Int. J. Light Electron Opt.* 27(18), 7041–7053
- Elisa, M., Sava, B. A., Vasiliu, I. C., Monteiro, R. C. C., Veiga, J. P., Ghervase, L., Feraru, I. and Iordanescu, R. (2013). Optical and Structural Characterization of Samarium and Europium Doped Phosphate Glasses. *Journal of Non Crystalline Solids*. 369, 55–60
- Feltz, A. (1993). *Amorphous Inorganic Materials and Glasses*. Weinheim: VCH Verlagsgesellschaft mbH

- Fu, S. B., Chen, B. J., Zhang, J. S., Li, X. P., Zhong, H., Tian, B. N., Wang, Y. Z., Sun, M., Zhang, X. Q., Cheng, L. H., Zhong, H.Y. and Xia, H. P. (2014). High Upconversion Optical Gain of Er³⁺ Doped Tellurite Glass. *Applied Physics A*. 115, 1329–1333
- Guonian, W., Junijie, Z., Shixun, D., Jianhu, Y. and Zhonghong, J. (2005).
 Thermal Analyses, Spectral Characterization and Structural Interpretation of Yb³⁺ Doped TeO₂-ZnO-ZnCl₂ Glasses. *Physics Letters A*. 34, 285-290
- Jamalaiah, B. C., Vijaya Kumar, M. V. and Rama Gopal, K. (2011). Fluorescence Properties and Energy Transfer Mechanism of Sm³⁺ ion in Lead Telluroborate Glasses. *Optical Materials*. 33, 1643 -1647
- Khafagy, A. H., El-Adawy, A. A., Higazy, A. A., El-Rabaie, S. Eid, A. S. (2008). Studies of Some Mechanical and Optical Properties of (70-x)TeO₂ + 15B₂O₃ + 15P₂O₅ + xLi₂O Glasses. *Journal of Non Crystalline Solids*. 354, 3152–3158
- Khan, I., Rooha, G., Rajaramakrishna, R., Srisittipokakun, N., Kim, H. J., Kirdsiri, K. and Kaewkhao, J. (2018). Luminescence Characteristics of Sm³⁺ doped Lithium Barium Gadolinium Silicate Glasses for Orange LED's. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 214, 14–20
- Kumar, A., Rai, D. K. and Rai, S. B. (2003). Optical Properties of Sm³⁺ ions doped in Tellurite Glass. *Spectrochimica Acta Part A*. 59, 917–925
- Kumar, K. A., Babu, S., Reddy Prasad, V., Damodaraiah, S. and Ratnakaram, Y. C. (2017). Optical Response and Luminescence Characteristics of Sm³⁺ and Tb³⁺/Sm³⁺ co doped Potassium-Fluoro Phosphate Glasses for Reddish Orange Lighting Applications. *Materials Research Bulletin*. 90, 31–40

- Lal, S. Link, S. Halas, N.J. (2007). Nano-Optics from Sensing to Waveguiding. *Nature Photonics*. 1, 641-648
- Lim, K. S., Vijaya, N., Kesavulu, C. R. and Jayasankar, C. K. (2013). Structural and Luminescence Properties of Sm³⁺ ions in Zinc Fluorophosphate Glasses. *Optical Materials*. 35, 1557–1563
- Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., Yu, J., Wang, X., Liu,
 X. and Pun, E. Y. B. (2005). Optical Absorption and Photoluminescence in Sm³⁺ and Eu³⁺ doped Rare-Earth Borate Glasses. *Journal of Luminescence*. 113, 121-128
- Linganna, K., Basavapoornima, C. and Jayasankar, C. K. (2015). Luminescence Propertiesof Sm³⁺ doped Fluorosilicate Glasses. *Optics Communications*. 344, 100–105
- Lohr, L. L. Spin-forbidden Electronic Excitations in Transition Metal Complexes. Amsterdam: Elsevier, 1972
- Lysenko, S., Jime'nez, J., Vikhnin, V. and Liu, H. (2008). Excited State Dynamics in Silver Nanoparticles Embedded in Phosphate Glass. *Journal of Luminescence*. 128, 821–823
- Maier, S.A. Atwater, H.A. (2005). Plasmonics: Localization and Guiding of Electromagnetic Energy in Metal/Dielectric Structures. *Journal of Applied Physics*. 98, 011101
- Mohan, S., Thind, K.S., Sharma, G. (2007). Effect of Nd³⁺ Concentration on The Physical and Absorption Properties of Sodium-Lead-Borate Glasses. *Braz. J. Phys.* 37(4), 1306-1313
- Mawlud, S. Q., Ameen, M. M., Sahar, M. R., Said Mahraz, Z. A. and Ahmed, K. F. (2017). Spectroscopic Properties of Sm³⁺ doped Sodium-Tellurite Glasses: Judd-Ofelt Analysis. *Optical Materials*. 69, 318–327

- Mawlud, S. Q., Ameen, M. M., Sahar, M. R., Said Mahraz, Z. A. and Ahmed, K. F. (2017). Thermal Stability and Judd-Ofelt Analysis of Optical Properties of Sm³⁺ doped Sodium Tellurite Glasses. *AIP Conference Proceedings*. 1888, 020032
- Mohd Saidi, M., Ghoshal, S. K., Arifin, R., Roslan, M. K., Rosnita, M., Wan Shamsuri, W. N., Abdullah, M. and Shaharin, M. S. (2018). Spectroscopic Properties of Dy³⁺ doped Tellurite Glass with Ag/TiO₂ Nanoparticles Inclusion: Judd–Ofelt Analysis. *Journal of Alloys and Compounds*. 754
- Moustafa, Y. M., El-Egili, K. (1998). Infrared Spectra of Sodium Phosphate Glasses. *Journal of Non-Crystalline Solids*. 240, 144-153
- Mura, E., Lousteau, J., Milanese, D., Abrate, S. and Vincenzo, M. S. (2013). Phosphate Glasses for Optical Fibers: Synthesis, Characterization and Mechanical Properties. *Journal of Non Crystalline Solids*. 362, 147–151
- Nur Aina Mardia Adnan (2012), Optical Absorption of Cobalt Oxide Doped Phosphate Glass. Bachelor of Science, Universiti Teknologi Malaysia, Skudai
- Nurulhuda, M. D. (2015). Physical and Spectroscopic Characterisation of Samarium Doped Magnesium Tellurite Glass Embedded Silver Nanoparticles. PhD Thesis UTM
- Okasha, A., Abdelghany, A. M., and Marzouk, S. Y. (2017). Judd Ofelt Analysis of Spectroscopic Properties of Sm³⁺ doped P₂O₅–SrO Glasses. *J Mater Sci: Mater Electron.* 28, 12132-12138
- Oueslati, R. O., Krimi, S., Jacques, J. V., Khattech, I., El Jazouli, A. and Jemal, M. (2014). Structural and Thermochemical Study of Na₂O–ZnO–P₂O₅ Glasses. *Journal of Non-Crystalline Solids*. 390, 5 -12

- Pan, Z., Crosby, A., Obadina, O., Ueda, A., Aga, R. Mu, R., Morgan, S. H.
 (2010).Study of Tb Doped Li₂O-LaF₃-Al₂O₃ -SiO₂ Glasses
 Containing Silver Nanoparticles. *MRS Sym.Proc.* 1028, 1208-O09-16
- Rahman, I. A., Ayob, M. T. M., Mohd, H. M. K., Ahmad, A. F., Sharin, S., Mohamed, F., Ab Aziz, S. and Radiman, S. (2016). Effect of Silver Nanoparticle Addition on the Structure and Characteristics of Radio Photoluminescence Glass Dosimeter. *Malaysian Journal of Analytical Sciences*. 20(1), 64 – 72
- Ramteke, D. D., Balakrishna, A., Kumar, V. and Swart, H. C. (2017). Luminescence Dynamics and Investigation of Judd Ofelt Intensity Parameters of Sm³⁺ ion containing Glasses. *Optical Materials*. 64, 171–178
- Rani, S., Sanghi, S., Agarwal, A. and Ahlawat, N. (2009). Influence of Bi₂O₃ on Optical Properties and Structure of Bismuth Lithium Phosphate Glasses. *Journal of Alloys and Compounds*. 477, 504 509
- Ravangvong, S., Chanthimab, N., Tariwong, Y. and Kaewkhao, J. (2017).
 Comparative Study of Al₂O₃-MO-BaO-P₂O₅ Glasses doped with Sm³⁺ (MO =Na₂O and ZnO). *Materials Today: Proceedings.* 4, 6415–6422
- Reddy, C. P., Naresh, V., Babu, B. C. and Buddhudu, S. (2014).
 Photoluminescence and Energy Transfer Process in Bi³⁺/Sm³⁺
 CoDoped Phosphate Zinc Lithium Glasses. Advances in Materials Physics and Chemistry. 4, 165-171
- Rivera, V. A. G., Ledemi, Y. Osorio, S. P. A. Manzani, D., Messaddeq, Y., Nunes, L.A.O., and Jr, E.A. (2012). Efficient Plasmonic Coupling Between Er³⁺: (Ag/Au) in Tellurite Glasses. *Journal of Non Crystalline Solids*. 358 (2), 399-405

- Sahar, M. R., Sulhadi, K. and Rohani, M. S. (2008). The Preparation and Structural Studies in the (80-x)Te₂O-20ZnO (x)Er₂O₃Glass System. *Journal of Non Crystalline Solids*. 345, 1179-1181
- Sahar, M. R., Sazali, E. S. and Amjad, R. J. (2012). Structural and Optical Properties of Rare Earth Doped Phosphate Glass Containing Nanoparticles. *Seminar Nasional Fisika 2012*. 9 Jun. Jakarta
- Salagram, M., Prasad, V. K., and Subrahmanyam, K. (2002) Optical Band Gap Studies on xPb₃O₄-(1-x)P₂O₅ Lead [(II , IV)] Phosphate Glasses. *Optical Materials*. 18, 367-372
- Sangwaranateea, N., Chanthimab, N., Tariwongb, Y. and Kaewkhaob, J. (2018). Effect of Alkali Oxide on Optical and Luminescence Properties of Sm³⁺ doped Aluminium Phosphate Glasses. *Materials Today: Proceedings.* 5, 13891-13895
- Selvi, S., Marimuthu, K. and Muralidharan, G. (2015). Structural and Luminescence Behavior of Sm³⁺ ions doped Lead Boro Telluro Phosphate Glasses. *Journal of Luminescence*. 159, 207–218
- Shamshad, L., Ali, N., Ataullah, Kaewkhao, J., Rooh, G., Ahmad, T. and Zaman, F. (2018). Luminescence Characterization of Sm³⁺ doped Sodium Potassium Borate Glasses for Laser Application. *Journal of Alloys and Compounds*. 766, 828-840
- Sharma, Y. K., Surana, S. S. L., and Singh, R. K. (2009). Spectroscopic Investigations And Luminescence Spectra of Sm³⁺ Doped Soda Lime Silicate Glasses. *Journal of Rare Earths*. 27, 773–780
- Siti Amlah, M. A. (2016). Structural, Optical and Magnetic Properties of Samarium Doped Zinc Phosphate Glasses Embedded With Nickel Nanoparticles. PhD Thesis UTM

- Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H. and Férid, M. (2015). Effect of Silver Nanoparticles on Spectroscopic Properties of Er³⁺ doped Phosphate Glass. *Optical Materials*. 46, 454–460
- Som, T., Karmakar, B. (2009). Enhancement of Er³⁺ Upconverted Luminescence in Er³⁺: Au-Antimony Glass Dichroic Nanocomposites Containing Hexagonal Au Nanoparticles. *Journal of the Optical Society of America B*. 26, B21-B27
- Srihari, T. and Jayasankar, C. K. (2017). Spectral Investigations of Sm³⁺ doped Niobium Phosphate Glasses. *Optical Materials*. 66, 35-42
- Tashtoush, N. M. and El-Desoky, M. M. (2007). Insignificant Mixed-Alkali Effect in Li₂O–Na₂O–Fe₂O₃–P₂O₅ glasses. *Phys. Stat. Sol. (a).* 10, 3445–3453
- Tripathi, G., Rai, V. K., Raia, A., Rai, S.B. (2008). Energy Transfer Between Er³⁺:Sm³⁺ Codoped TeO₂–Li₂O Glass. Spectrochimica Acta Part A. 71, 486-489
- Venkatarao, K., Seshadri, M., Venkateswarlu, C. and Ratnakaram, Y. C. (2009). Spectroscopic Properties and Judd-Ofelt Analaysis of Sm³⁺ and Dy³⁺ doped Chlorophosphate Glasses. *IOP Conf. Series: Materials Science and Engineering*. 2, 012045
- Vodnik, V. V., S`aponjic', Z., Dz`unuzovic', J. V., Bogdanovic', U., Mitric', M. and Nedeljkovic', J. (2013). Anisotropic Silver Nanoparticles as Filler for the Formation of Hybrid Nanocomposites. *Materials Research Bulletin*. 48, 52-57
- Weng, C. Z., Chen, J. H. and Shih, P. Y. (2009) Effect of Dehydroxylation on the Structure and Properties of ZnCl₂ ZnO–P₂O₅ Glasses. *Materials Chemistry and Physics*. 115(2), 628-631

- Yamsuk, Y., Yasaka, P., Sangwaranatee, N. and Keawkao, J. (2018).
 Fabrication and Characterization of Sm³⁺ doped Zinc Barium Borate Glasses. *Ukr. J. Phys.* 63(7), 608-615
- Yusoff, N. M., and Sahar, M. R. (2015). Effect of Silver Nanoparticles Incorporated with Samarium-Doped Magnesium Tellurite Glasses. *Physica B: Condensed Matter*.456, 191–196
- Yusoff, N. M., Sahar, M. R. and Ghoshal, S. K. (2015). Sm³⁺: Ag NPs assisted Modification in Absorption Features of Magnesium Tellurite Glass. *Journal of Molecular Structure*. 1079, 167–172