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ABSTRACT 

Carbon fibre reinforced polymers (CFRP) sheets have been widely used in 

reinforced concrete (RC) structures for retrofitting. This study proposed the 

application of CFRP strips for internal confinement of RC columns. Experimental 

works, numerical simulations and analytical calculations were included in this study. 

Experimental works involved in quasi-static cyclic testing of eight full-scale RC 

columns that were internally confined by CFRP strips with different distances and 

widths. The specimens were divided into two groups a) column confined by CFRP 

stirrups (FRP) and b) column confined by CFRP spirals (SFRP). The obtained results 

from each group were compared with a reference column that was confined with the 

carbon steel bar. Numerical studies involved in a parametric investigation about the 

effects of different intensities of axial load and distances between CFRP strips on the 

cyclic responses of CFRP confined columns. Finite element models of two columns 

confined with CFRP stirrups and spirals were established in ABAQUS software and 

validated using the experimental results. Analytical calculations involved in proposing 

a step-by-step method for estimating the ultimate load of CFRP confined columns. The 

proposed method was verified through a comparison between experimental results and 

analytical calculations. Results of experimental works showed that all columns 

experienced a flexural type crack along their height. No buckling of longitudinal bars 

and CFRP rupture were observed. CFRP confined columns had up to 73% larger 

effective stiffness when compared with the reference columns. The CFRP confined 

columns also showed up to 63% larger ultimate load and effective yield strength when 

compared with the reference columns. Besides, the ductility ratio of CFRP confined 

columns was up to 48% larger than the reference columns. Moreover, the CFRP 

confined columns exhibited up to 96% larger cumulative energy dissipation and 

equivalent damping ratio when compared with the reference columns. Numerical 

simulation showed that the increase in the axial force of columns increased the stress 

on the surface of the concrete. The simulated columns showed buckling in longitudinal 

bars when the axial force was increased to 400 kN. Moreover, up to 45% reduction in 

the ultimate strength and its corresponding displacement were observed when axial 

force was increased to 400 kN. Increase in the axial force decreased the ductility ratio 

and effective yield strength of simulated columns up to 29%. Meanwhile, an increase 

in the distance between strips enlarged the area of the plastic zone in the concrete and 

longitudinal bars. Increase in the distance between CFRP strips decreased the ultimate 

load of columns up to 40%. The ductility ratio of columns was decreased by 22% when 

the distance between their strips was increased to 250 mm. Results also indicated that 

increase in the distance between strips decreased the effective yield strength of 

columns up to 35%. In summary, it was concluded that columns confined internally 

by CFRP stirrups and spirals had a superior cyclic behaviour when compared with the 

columns confined by carbon steel.   
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ABSTRAK 

Lembaran polimer bertetulang serat karbon (CFRP) telah digunakan secara 

meluas dalam struktur konkrit bertetulang (RC) untuk tujuan pengubahsuaian. Kajian 

ini mencadangkan penggunaan jalur CFRP untuk pelitupan dalaman tiang RC. Kerja-

kerja eksperimen, simulasi berangka dan pengiraan analitik dimasukkan dalam kajian 

ini. Kerja-kerja eksperimen melibatkan ujian kitaran kuasi-statik terhadap lapan tiang 

RC berskala penuh yang dilitup secara dalaman oleh jalur CFRP dengan jarak dan 

lebar yang berlainan. Spesimen-spesimen dibahagikan kepada dua kumpulan a) tiang 

yang dilitup oleh jalur CFRP (FRP) dan b) tiang yang dilitup oleh lingkaran CFRP 

(SFRP). Keputusan yang diperoleh dari setiap kumpulan dibandingkan dengan tiang 

rujukan yang dilitupi dengan keluli karbon. Kajian berangka melibatkan penyiasatan 

parametrik mengenai kesan intensiti beban paksi yang berbeza dan jarak antara jalur 

CFRP dengan tindak balas kitaran bagi tiang yang dilitup oleh CFRP. Dua tiang model 

elemen terhingga yang dilitup dengan jalur dan lingkaran CFRP telah dibangunkan 

dalam perisian ABAQUS dan disahkan dengan menggunakan hasil eksperimen. 

Pengiraan analitik terlibat dalam mencadangkan kaedah langkah demi langkah untuk 

menganggar beban muktamad tiang yang dilitup oleh CFRP. Kaedah yang 

dicadangkan telah disahkan melalui perbandingan antara hasil eksperimen dan 

pengiraan analitik. Hasil kerja eksperimen menunjukkan bahawa semua tiang 

mengalami retakan jenis lentur sepanjang ketinggiannya. Tiada tetulang yang bengkok 

dan CFRP yang pecah dapat diperhatikan. Tiang yang terlitup oleh CFRP mempunyai 

kekukuhan berkesan 73% lebih besar jika dibandingkan dengan tiang rujukan. Tiang 

terlitup oleh CFRP juga menunjukkan kekuatan muatan tertinggi dan kekuatan muatan 

berkesan 63% lebih besar berbanding dengan tiang rujukan. Di samping itu, nisbah 

kemuluran tiang yang dilitup oleh CFRP adalah sehingga 48% lebih besar daripada 

tiang rujukan. Selain itu, tiang-tiang terlitup oleh CFRP mempamerkan pelesapan 

tenaga kumulatif dan nisbah redaman setara sehingga 96% lebih besar apabila 

dibandingkan dengan tiang rujukan. Simulasi berangka menunjukkan bahawa 

peningkatan kekuatan paksi tiang meningkatkan tekanan pada permukaan konkrit. 

Tiang simulasi menunjukkan tetulang membengkok apabila daya paksi dinaikkan 

kepada 400 kN. Selain itu, pengurangan sehingga 45% kekuatan muktamad dan jarak 

lenturan dapat diperhatikan apabila daya paksi dinaikkan kepada 400 kN. Peningkatan 

daya paksi didapati menurunkan nisbah kemuluran dan kekuatan efektif tiang simulasi 

maksimum sebanyak 29%. Sementara itu, peningkatan jarak antara jalur 

meningkatkan pembesaran kawasan zon plastik dalam konkrit dan tetulang. 

Peningkatan jarak antara jalur CFRP mengurangkan beban muktamad tiang sehingga 

40%. Nisbah kemuluran tiang pula berkurang sebanyak 22% apabila jarak antara 

jalurnya meningkat kepada 250 mm. Hasil analisa juga menunjukkan bahawa 

peningkatan jarak antara jalur menurunkan kekuatan muatan berkesan tiang sehingga 

35%. Ringkasnya, boleh disimpulkan bahawa tiang yang dilitup secara dalaman oleh 

jalur dan lingkarang CFRP mempunyai kelakuan kitaran yang tinggi apabila 

dibandingkan dengan tiang yang dikurungi oleh keluli karbon.   
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INTRODUCTION 

1.1 Introduction  

The majority of structures and infrastructures worldwide use reinforced 

concrete (RC). For many years, carbon steel has been used for making reinforcement 

bars, hoops and ties. However, in addition to corrosion of steel reinforcements, RC 

faces other problems which relate to confinement in RC elements. Lateral 

reinforcements used to confine the longitudinal bars play a vital role in the ultimate 

load capacity and ductility of RC members like columns (Jing et al., 2016). While 

corrosion of steel degrades tensile capacity and service life of the structure, improper 

design and inadequate transverse reinforcement may lead to buckling of main rebars 

and shear failure (Murray, 2013; Goretti et al., 2017). In many existing columns, lateral 

reinforcement is provided using 6 to 8 mm diameter bars with 90˚ hooks at about 200-

250 mm spacing (Kaushik and Jain, 2007). As can be seen from Figure 1.1, these RC 

columns are vulnerable when subjected to severe ground motions. 

As Figure 1.2 shows, in recent decades, the usage of Fibre-Reinforced-Polymer 

(FRP) has significantly increased due to its durability, higher strength-to-weight ratio 

and ability to be formed in any shape and size (Tamon, 2005; Burgoyne, 2009). The 

FRP bars have been introduced to replace steel bars as longitudinal reinforcements and 

stirrups due to their high corrosive resistance (Mohamed et al., 2014; Maranan et al., 

2018). So far, researchers have studied the effect of externally bonded FRP sheets on 

the increase in the axial load capacity of columns.  
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Figure 1.1 Columns failure in RC buildings due to poor shear design during 2004 

Sumatra Earthquake and Tsunami; (a), (b) and (c) buckling of longitudinal bars due to 

90˚ hooks opened up and (d) shear failure of column at beam-columns joint (Kaushik 

and Jain, 2007) 

 

    
                               (a)                                                               (b) 

Figure 1.2   FRP sheets wrapped around RC parts to enhance shear and flexure 

strength; (a) columns and (b) garage beams (Alkhrdaji, 2015) 

Due to the potential of FRP composites in RC construction, the application of 

FRP has become an interesting topic among researchers. Several design guidelines 

(a) (b) 

(c) (d) 
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have been published including ACI 440.1R-15 (2015), ACI 440.2R-08 (2008), 

CAN/CSAS806-12 (2012), CSA-S806-02 (2002), CNR-DT 202 (2005, 2004) and 

CNR-DT 204 (2006, 2007). Some studies on durability of FRP composites have also 

been conducted under harsh environment and severe loadings. So far, FRP composites 

show good durability in accelerated aging test and excellent response under cyclic 

load, blast load, and impact load. 

This study is conducted to investigate the behaviour of internally confined RC 

columns by FRP strips under a constant axial load and cyclic lateral loading. The 

failure mode, ultimate load capacity, ductility and energy dissipation capacity of 

columns were studied experimentally. Numerical studies were performed to 

investigate the effect of different intensities of axial load and different configuration 

of FRP strips on the cyclic response of columns.  

1.2 Problem Statement 

Axial load capacity of RC columns is directly related to the confinement 

condition that is provided for concrete (Mander et al., 1988). As can be seen from 

Figure 1.3, the higher the confinement rate in concrete the higher its compressive 

strength. Therefore, columns with a better confinement condition have a higher axial 

load capacity (Mohamed et al., 2014). In general, confined condition for concrete in 

RC columns is provided through transverse reinforcements (Vellenas et al., 1977; 

Scott et al., 1982; Mander et al., 1988). Transverse reinforcements that can also 

increase the shear force capacity can be in the shape of circular hoops, spirals and cross 

ties. For many years, carbon steel has been used for making the reinforcement bars, 

hoops and ties. Different shapes, types, cross-section and arrangement of transverse 

reinforcement contribute to different level of confinement (Mander et al., 1988). 

However, one main problem with carbon steel stirrups is its corrosion in humid and 

harsh environmental condition (Apostolopoulos and Papadakis, 2008; Zhao et al., 

2018). Figure 1.4 shows an example of corroded stirrups in RC columns. The corroded 

stirrups have caused the loss of bond between reinforcement and concrete (Tapan et 

al., 2016). Thus, the axial load carrying capacity of the column decreased due to the 
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loss of core concrete confinement and heavily cracks of concrete cover. This can be 

seen in Figure 1.5, where the compressive strength of corroded concrete is lower than 

the compressive strength of uncorroded concrete.  

 

Figure 1.3 Typical stress-strain curves of confined and unconfined concrete 

(Mander et al., 1988) 

 

       
                                         (a)                                             (b) 

Figure 1.4 Corrosion damage of RC columns; (a) completed deteriorated of 

stirrups and (b) severe damage of steel rebars (Tapan et al., 2016)  
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                                   (a)                                                                (b) 

Figure 1.5 The compressive strength of (a) corroded core concrete and (b) 

corroded concrete cover (Yu et al., 2020) 

 

Another main issue with confinement in RC element is the improper design 

and inadequate transverse reinforcement which may lead to structural failure during 

earthquake (Lynn et al., 1996; Alih and Vafaei, 2019). As can be seen from Figure 1.5 

and 1.6, large spacing between stirrups and the usage of 90˚ hooks have been found in 

many of the damaged columns during past earthquakes. In addition, according to Bikçe 

and Çelik, (2016), failure analysis of newly constructed RC buildings designed 

according to 2007 Turkish Seismic Code (TEC) during the October 23, 2011 Van 

earthquake were severely damaged. Based on the analysis, it was found that the 

building has not been constructed in accordance with the project and thereby TEC 

2007. Inadequate stirrups without crossties, and short length and insufficiently 

dilatation of hooks have been found in the damaged columns. This shows difficulties 

to designers and engineers to ensure the implementation of the restrictions stated in 

the design codes during construction.  

Nowadays, when it comes to corrosion problems of carbon steel 

reinforcements, two options are available: a) usage of stainless-steel reinforcements 

and b) application of Fibre Reinforced Polymers (FRP) (Burgoyne, 2009; Alih and 

Khelil, 2012). The main issue with stainless steel reinforcements is related to their 

expensive cost compared to carbon steel and FRPs. Usage of FRP bar as the 

replacement for carbon steel reinforcements has been studied by other researchers 

(Mohamed et al., 2014; Kosmidou et al., 2018; Maranan et al., 2018). Many studies 

have investigated the effect of externally mounted FRP sheets on the increase in the 

axial load capacity and the dynamic performance of columns (Kim et al., 2013; Jiang 
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et al., 2016; Alotaibi and Galal, 2017; Campione et al., 2018). Previous investigations 

have mostly been conducted for the purpose of retrofitting of existing columns and 

promising results were obtained. However, so far, there is very limited study has 

investigated the usage of FRP strips for the internal confinement of RC columns (Tahir 

et al., 2019). Therefore, this study investigates the cyclic behaviour of concrete 

columns internally confined by carbon fibre reinforced polymer (CFRP).  

    
(a) 

         
                                                                         (b) 

Figure 1.6 Large spacing between the stirrups lead to column failure; (a) damaged 

column during 2015 Gorkha Earthquake  and (b) column failure lead to building 

collapses during 2004 Sumatra Earthquake and Tsunami  (Saatcioglu et al., 2005; 

Sharma et al., 2016)  
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Figure 1.6 Buckling of longitudinal reinforcement during earthquakes due to 

improper detailing of confinement; (a) Expo building, Talcahuano during 2010 Chile 

Earthquake and Tsunami, (b) Van Nuys Holiday Inn building, California 1994 

Northridge Earthquake, (c) Imperial County Services building California 1994 

Northridge Earthquake and (d) Parking garage of the Digicel building 2010 Haiti 

earthquake  (Olsen et al., 2010; Faison et al., 2004; Paultre et al., 2013)  

 

It should be mentioned that CFRP strips have superior properties compared to 

the mild steel used as stirrups in conventional designs (Quiertant and Clement, 2011; 

Alsayed et al., 2014; Chellapandian et al., 2017). Table 1.1 shows the comparison 

between these two materials. As can be seen, CFRP composites have more than 10 

times the tensile strength and are 60 times lighter than the carbon mild-steel 

reinforcements used in conventional stirrups. Not only is the CFRP superior in terms 

of tensile strength compared to carbon steel, the light-weight property of FRP will 

reduce the overall weight of the structure in which it will improve seismic resistance 

in buildings (Lee et al., 2016; Vandanapu and Krishnamurthy, 2018). This research 

may be used by practicing engineers and designers and therefore will help reduce 

maintenance and repair cost. These benefits together with the high resistance of CFRP 

against corrosion and harsh environment were the motivations for conducting this 

study. 

(a) (b) 

(c) (d) 

Opened 90˚ 

hooks 
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Table 1.1 Summarised properties of FRP sheets and mild steel grade 

Properties CFRP composites Mild steel 

Modulus of elasticity 200-800 GPa 200 GPa 

Density 1.75-1.95 g/cm3 7.8 g/cm3 

Strength 2500-6000 MPa 200-380 MPa 

Weight 0.0062 kg/m 0.395 kg/m 

 

1.3 Objective of Study 

As mentioned earlier, the application of CFRP sheets as a transverse 

reinforcement in RC columns resulted in many benefits for the construction industry. 

Therefore, the main objective of this study is to investigate the cyclic response (i.e. 

ultimate load, ultimate displacement, ductility ratio, energy dissipation, effective yield 

strength, etc.) of RC columns that have been internally confined with CFRP strips 

when subjected to a reversed cyclic loading. The following are the specific objectives: 

(a) To experimentally investigate the cyclic response of RC columns internally 

confined with CFRP strips and compare them with that of carbon steel.  

(b) To numerically determine the effects of different axial force and distance of 

CFRP strips on the cyclic response of RC columns internally confined with 

CFRP strips. 

(c) To analytically propose a method for estimating the ultimate load of RC 

columns internally confined with CFRP strips. 

 

1.4 Scope of Study 

This study focused on the cyclic response of reinforced concrete columns 

internally confined with CFRP strips. Experimental works were conducted on eight 

ful-scale RC columns with the height of 1500 mm and cross-sectional size of 200 mm 

x 200 mm. The samples consisted of two main groups: a) three columns with CFRP 



9 

 

stirrups and b) three columns with CFRP spirals. For the sake of comparison, two 

columns were confined with carbon steel stirrups and spirals with the spacing of 100 

mm as reference samples. The compressive strength of concrete used in this study was 

25 MPa. The yield strengths of steel bars with the diameter of 12 and 6 mm were 391 

and 563 N/mm2, respectively. In this study, columns confined with stirrups were 

reinforced with four longitudinal reinforcement bars, while six longitudinal 

reinforcement bars were employed in columns confined with spirals. Carbon fibre 

reinforced polymer (CFRP) sheets with the tensile strength of 4900 MPa were used in 

this study. In order to study the effect of thickness and distance between the CFRP 

strips, two samples were constructed and tested using a double layer of CFRP strips 

with 150 mm distance between the strips, respectively. The column samples were 

tested experimentally under a constant axial load together with a cyclic load based on 

FEMA 461 loading protocol. Moreover, in order to conduct a parametric study on the 

cyclic response of RC columns, a nonlinear analysis by means of Finite Element (FE) 

software ABAQUS 6.14 was performed. In the numerical study, different intensities 

of axial loads and different configurations of CFRP strips were investigated. An 

analytical method was proposed for estimating the ultimate load of columns internally 

confined by CFRP strips.  

1.5 Significance of Study 

This study examined the efficiency of CFRP strips to be used as the 

replacement for conventional carbon steel stirrups in RC columns. The outcome of this 

research can reduce the corrosion problem as well as increase the axial load capacity 

of the columns. By using CFRP composites in concrete structures, the dynamic 

behaviour of RC columns can also be improved. Easy installation and construction of 

CFRP strips as transverse reinforcement allow designers and engineers to make sure 

that the real design is implemented during the construction process. This is important 

because lack of attention to the implementation of the restrictions given in the design 

codes could cause failure of the building when subjected to severe loading such as 

earthquake. 
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1.6 Outline of the Thesis 

This thesis consists of seven chapters. The arrangement of the chapter is as 

follows: 

 

Chapter 1 describes the introduction of the study, the problem statement, the 

objectives, and the scope of the study, and explains the significance of this research.  

 

Chapter 2 presents the literature review regarding the failure of columns due to 

seismic events and existing guidelines for the seismic design of columns, as well as 

the effect of steel corrosion in concrete. A detailed explanation about FRP composites 

reinforced concrete members and the durability of FRP under harsh environment are 

presented in this chapter. Advantages and disadvantages of FRP composites are 

discussed in this chapter as well.   

 

Chapter 3 describes the methodology employed for achieving the defined 

objectives. The details of experimental works and their properties are explained in this 

chapter. This chapter also explains about the test setup and the employed loading 

protocol. It also describes the procedure of numerical studies and analytical 

calculations. 

 

Chapter 4 discusses the obtained results from the experimental tests. The 

failure mechanism of columns, ultimate load, ductility and energy dissipation capacity 

of each sample are calculated and explained in this chapter.  

 

Chapter 5 describes the numerical analysis used to conduct a parametric study 

on the CFRP strip internally confined RC columns. Validation of Finite element 

models is presented in this chapter. Results of the parametric study which included the 

effect of different intensities of axial load and different configurations of FRP strips 

are presented in this chapter. 
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Chapter 6 presents the proposed method for analytical calculation of ultimate 

load of RC columns internally confined with CFRP strips. The comparison between 

analytical and experimental results is also presented in this chapter.  

 

Finally, Chapter 7 summarises and concludes the entire thesis. The research 

findings, contributions of the thesis and recommendations for future work are also 

discussed in this chapter.  
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