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ABSTRACT 

 

 

 

 

Hydrolysis of hemicellulose to sugar such as xylooligosaccharide (XOS) is an 

alternative method to reduce the naturally abundant lignocellulose biomass waste such 

as oil palm empty fruit bunches (OPEFB). To achieve this, enzymatic hydrolysis has 

been envisioned as a highly potential method in converting hemicellulose to XOS. 

However, the conventional use of free enzymes is always hampered by the low 

stability of the enzyme, difficulty in recovery, and non-recyclability. These limitations 

can be solved by enzyme immobilization, such as cross-linked enzyme aggregate 

(CLEA), in which the immobilization occurs without a solid carrier. The interaction 

between the amine group at the enzyme with the crosslinker plays a significant role in 

determining the immobilization efficiency. Nevertheless, the low content of lysine at 

the surface of the enzyme could be a problem to achieve efficient cross-linking. In this 

study, a three-dimensional (3D) model of xylanase (rXyn) from Aspergillus fumigatus 

RT-1 was developed using Modeller v9, and surface analyzed using Swiss PDB 

Viewer. In silico mutagenesis was performed at four residues on the surface of the 

enzyme (mXyn) and docked with glutaraldehyde using AutoDock. Molecular 

Dynamic (MD) simulation was performed on all structures (rXyn, rXyn-glu, mXyn, 

and mXyn-glu) for 1 ns at four different temperatures, and it was found that the 

structures were stabilized when docked with glutaraldehyde. The recombinant 

xylanase (rXyn) was mutated using site-directed mutagenesis at four different residues, 

mainly at the back of the enzyme and away from the catalytic site. The parameters of 

CLEA (choice of precipitants, the concentration of precipitant, concentration of 

crosslinker, concentration of bovine serum albumin (BSA), and cross-linking time) 

were optimized. The mXyn-CLEA-BSA was found to be able to recover higher 

xylanase activity at 137.08 % compared to the rXyn-CLEA, rXyn-CLEA-BSA, and 

mXyn-CLEA, which showed lower recovery activity at 96.64%, 104.71%, and 

115.48%, respectively.  At 70 °C for 60 minutes, mXyn-CLEA-BSA achieved the 

highest stability than the other CLEAs and free enzymes. mXyn-CLEA-BSA also 

successfully retained more than 40% of its activity after 5 cycles, whereas in the same 

cycle, rXyn-CLEA lost its total activity. In comparison, rXyn-CLEA-BSA and mXyn-

CLEA only retained 19.66% and 21.41% of its activity, respectively. Therefore, the 

performance of mXyn-CLEA-BSA was further investigated in the catalytic reaction 

using pre-treated OPEFB under optimized reaction conditions.  Four different sizes of 

CLEA particles and three different sizes of OPEFB was used to study the diffusional 

effect. The smaller size of CLEA particle and OPEFB were found to give higher 

hemicellulose yield. From high performance liquid chromatography analysis, the 

reaction between mXyn-CLEA-BSA and OPEFB produced xylotriose and small traces 

of xylose, with 0.361 mg/mL and 0.044 mg/mL, respectively. These findings showed 

that the combination of protein surface engineering and CLEA technology could 

improve xylanase stability and reusability by strengthening the intermolecular linkages 

between xylanase and glutaraldehyde. Furthermore, the developed CLEAs offers a 

great advantage in synthesizing XOS from the insoluble substrate. 
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  Hidrolisis hemisellulosa kepada gula seperti xilooligosakarida (XOS) adalah 

antara kaedah alternatif untuk mengurangkan limpahan buangan biojisim 

lignosellulosa seperti tandan buah kosong kelapa sawit (OPEFB). Untuk mencapainya, 

hidrolisis enzimatik adalah dilihat sebagai kaedah berpotensi tinggi dalam menukarkan 

hemisellulosa kepada XOS. Walaubagaimanapun, penggunaan konvensional enzim 

bebas kebiasaannya terbantut disebabkan oleh kestabilan enzim yang rendah, 

kesukaran dalam perolehan dan sifatnya yang tidak boleh diguna semula. 

Permasalahan ini boleh diselesaikan dengan menggunakan immobilisasi enzim seperti 

agregat enzim terpaut silang (CLEA) di mana immobilisasi berlaku tanpa penggunaan 

pembawa pepejal. Walaupun begitu, kandungan lisin yang kurang pada permukaan 

enzim boleh menyebabkan masalah untuk mencapai pautan silang yang cekap. 

Interaksi antara kumpulan amina pada enzim dengan pemaut silang memainkan 

peranan yang penting dalam menentukan kecekapan immobilisasi. Dalam kajian ini, 

model 3 dimensi xilanase (rXyn) dari Aspergillus fumigatus RT-1 telah dihasilkan 

menggunakan Modeller v9 dan permukaan enzim telah dianalisis menggunakan Swiss 

PDB Viewer. Mutasi in silico telah dijalankan pada empat baki pada permukaan enzim 

(mXyn) dan telah didokkan bersama glutaraldehida menggunakan AutoDock. 

Simulasi Dinamik Molekular (MD) telah dilakukan pada semua struktur (rXyn, rXyn-

glu, mXyn, mXyn-glu) selama 1 ns pada empat suhu berbeza dan didapati stuktur telah 

distabilkan apabila didokkan bersama glutaraldehida. Xilanase rekombinan (rXyn) 

telah dimutasi menggunakan kaedah mutasi teraruh pada empat baki berbeza 

khususnya pada bahagian belakang enzim dan jauh dari tapak bermangkin. Paramater 

untuk CLEA (pemilihan agen pemendakan, kepekatan agen pemendakan, kepekatan 

agen pemaut silang, kepekatan albumin serum bovin (BSA) dan masa pemaut silang) 

telah dioptimasi. mXyn-CLEA-BSA telah didapati mampu untuk memulihkan aktiviti 

xilanase yang tinggi pada 137.08% berbanding rXyn-CLEA, rXyn-CLEA-BSA dan 

mXyn-CLEA yang menunjukkan kepulihan aktiviti yang rendah pada 96.64%, 

104.71% dan 115.48%. Pada suhu 70°C selama 60 minit, mXyn-CLEA-BSA telah 

mencapai kestabilan yang paling tinggi berbanding CLEA yang lain dan enzim bebas. 

mXyn-CLEA-BSA juga berjaya mengekalkan lebih 40% aktiviti enzim setelah 5 

kitaran, sedangkan pada kitaran yang sama, rXyn-CLEA telah hilang semua aktiviti. 

Sebagai perbandingan, rXyn-CLEA-BSA dan mXyn-CLEA masing-masing hanya 

mengekalkan 19.66% dan 21.41% aktiviti. Oleh itu, prestasi mXyn-CLEA-BSA telah 

dikaji dengan lebih lanjut di dalam tindakbalas bermangkin menggunakan OPEFB 

terawat dibawah keadaan tindakbalas yang optimum. Empat saiz zarah CLEA yang 

berbeza dan tiga saiz OPEFB yang berbeza digunakan untuk mengkaji kesan resapan. 

Saiz zarah CLEA dan OPEFB yang lebih kecil didapati mampu menghasilkan 

hemisellulosa yang tinggi. Berdasarkan analisis kromatografi cecair prestasi tinggi, 

tindakbalas antara mXyn-CLEA-BSA dan OPEFB menghasilkan xilotriosa dan jejak 

kecil xilosa dengan nilai masing-masing sebanyak 0.361 mg/mL and 0.044 mg/mL. 

Dapatan ini menunjukkan kombinasi kejuruteraan permukaan protin dan teknologi 

CLEA dapat memperbaiki kestabilan dan kebolehan guna semula xilanas dengan 

memperkuatkan jalinan antara molekul di antara xilanas dan glutaraldehida. 

Tambahan lagi, CLEA yang dihasilkan menawarkan kelebihan besar dalam 

menghasilkan XOS dari substrat tak larut. 
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for all images to provide a comparative account of the 

similarities and differences in the structural 

appearances of the four developed xylanase CLEAs 

 

 

 

 

 

100 

 

Figure 4.22 Thermal inactivation kinetics of (a) rXyn (b) mXyn (c) 

rXyn-CLEA, (d) mXyn-CLEA, (e) rXyn-CLEA-BSA 

and (f) mXyn-CLEA-BSA at four dif ferent 

temperatures, 50°C (blue), 60°C (orange), 70°C (grey) 

and 80°C (yellow). 
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Figure 4.23 Effect of temperature on enzyme activity recovery of 

free xylanases and xylanase-CLEAs. The activities are 

normalized relative to the highest activity value. 

Enzyme were incubated in 50 mM sodium acetate 

buffer at different temperatures for 5 min, in 

accordance with xylanase assay conditions. The 

experiments were performed in triplicate and the error 

bars represent the percentage error in each set of 

determinations. 
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Figure 4.24 Effect of thermal stability over time on the enzyme 

activity recovery of free xylanases and xylanase 

CLEAs. The experiments were performed in triplicate, 

and the error bars represent the percent error in each 

set of determinations 
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Figure 4.25 Effect of pH on recovery of enzyme activity of free 

xylanases and xylanase-CLEAs. The activities are 

normalized relative to the highest activity value. 

Enzymes were incubated in different pH buffers at 

70°C for 5 min. The experiments were performed in 

triplicate and the error bars represent the percentage 

error in each set of determinations. 
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Figure 4.26 pH stability of free xylanases and xylanase-CLEAs. 

Enzymes were incubated without substrate in varied 

pH buffer at 70°C for 30 min. the experiments were 

performed in triplicate, and the error bars represent the 

percentage error in each set of determinations. 
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Figure 4.27 Reusability of xylanase CLEAs. The residual activity 

of xylanase in the first cycle was 100%. The 

experiments were performed in triplicate, and the error 

bar represents the percent error in each set of readings. 
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Figure 5.1 Enzymatic hydrolysis of mXyn-CLEA-BSA on 

different pretreated OPEFB loading. Other operating 

condition was set at T= 50°C, 50U of mXyn-CLEA-

BSA, pH 5.0 (50 mM), t = 24 h, 150 rpm. The error 

bars represent standard deviations of at least three 

replicates. The highest hemicellulose hydrolysis was 

achieved at 4% (w/v) of pretreated OPEFB loading. 
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Figure 5.2 Pretreated OPEFB hydrolysis on different mXyn-

CLEA-BSA loadings. Other operating conditions was 

set at T= 50°C, 4% (w/v) pretreated OPEFB loading, 

pH 5.0 (50 mM), t = 24 h and 150 rpm. The error bars 

represent standard deviations of at least three 

replicates. The highest hemicellulose hydrolysis was 

achieved at mXyn-CLEA-BSA loading of 80U. 
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Figure 5.3 Hemicellulose hydrolysis of pretreated OPEFB on 

various temperatures. Other operating condition was 

set at 4 % pretreated OPEFB loading, 80 U xylanase 

loading, pH 5.0 (50 mM), t = 24 h and 150 rpm. The 

error bars represent standard deviations of at least 

three replicates. The highest hemicellulose hydrolysis 

was achieved at temperature 60°C. 
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Figure 5.4 Effect of pH on the hydrolysis of pretreated OPEFB. 

Other operation condition was set at T = 60°C, 4 % 

pretreated OPEFB loading, t = 24 h and 150 rpm. The 

error bars represent standard deviations of at least 

three replicates. The highest hemicellulose hydrolysis 

was achieved at pH 5.0 
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Figure 5.5 Effect of agitation rate on the hydrolysis of pretreated 

OPEFB. Other operation condition was set at T = 

60°C, 4 % pretreated OPEFB loading, t = 24 h and 150 

rpm. The error bars represent standard deviations of at 

least three replicates. The highest hemicellulose 

hydrolysis was achieved at 150 rpm of agitation rate. 
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Figure 5.6 Pretreated OPEFB hydrolysis on various incubation 

times. Other operating conditions was set at T = 60°C, 

4 % pretreated OPEFB loading, 80 U xylanase 

loading, pH 5 (50 mM), t = 24 h and 150 rpm. The 

error bars represent standard deviations of at least 

three replicates. Incubation periods of 48 h was 

selected as the best period for achieving high 

percentage of hemicellulose hydrolysis from the 

OPEFB. 
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Figure 5.7 Morphology analysis of four different size of CLEAs 

particle caused by different agitation speed.  (a) 100 

rpm produced average particle size = 2.85 µm, (b) 150 

rpm produced average particle size = 2.15 µm, (c) 200 

rpm produced average particle size = 1.38 µm, (d) 250 

rpm produced average particle size = 0.94 µm 
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Figure 5.8 Hemicellulose hydrolysis of different size of CLEAs 

particle towards different size of OPEFB. Other 

operating conditions was set at T = 60°C, 4 % 

pretreated OPEFB loading, 80 U xylanase loading, pH 

5 (50 mM), t = 48 h and 150 rpm. The error bars 

represent standard deviations of at least three 

replicates 
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Figure 5.9 Kinetic curves of the enzymatic hydrolysis of OPEFB 

using mXyn-CLEA-BSA at different temperatures 

from 0 h until 48 h. Other operating conditions were 

set at optimum value of mXyn-CLEA-BSA hydrolysis 

(mXyn-CLEA-BSA loading = 80 U, substrate loading 

= 4%, pH = 5.0) 
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Figure 5.10 Linear dependences of kinetic variables, degree of 

hydrolysis (α) vs different time (t) in logarithmic 

coordinates at given temperatures for 4% of pretreated 

OPEFB. 
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Figure 5.11 Linear form of Prout-Tompkins equation for different 

temperatures. 

 

137 

 

Figure 5.12 Linear relation between ln k and 1/T. 138 

 

Figure 5.13 Dependences of the enzymatic hydrolysis current rate 

of hydrolysis, ʋ on the degree of substrate conversion, 

α for different temperatures. 
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INTRODUCTION 

 

 

 

 

1.1 Introduction 
 
 

The depletion of conventional energy, such as fossil fuel, has become a 

significant concern in recent years. The scarcity of this energy has resulted in 

increasing demand for alternative energy sources, parallel with the world moving into 

an era of renewable energy and energy efficiency. Lignocellulose biomass is a 

sustainable resource that can produce various bioproducts and biofuels (Billion-Ton, 

2016). It is also a promising candidate to replace heavy dependence on fossil materials 

due to its abundant availability as agriculture and forest residues or in the form of a 

waste stream of any agriculture mills. In general, Lignocellulosic biomass consists of 

40-50% of cellulose, 25-30% of hemicellulose, and 15-20% of lignin as the main 

constituents, with a small amount of pectin, extractive, protein, and ash (Menon and 

Rao, 2012; Jørgensen, Kristensen and Felby, 2007). While lignin and cellulose have 

been traditionally explored for decades with so many applications and inventions, 

surprisingly, hemicellulose has not yet been extensively studied. To date, there are so 

many innovations and materials produced from hemicelluloses (Martin-Sampedro et 

al., 2014), including xylooligosaccharide (XOS), a high-value prebiotic which can 

produced via enzymatic hydrolysis. 

The enzyme is a remarkable biocatalyst due to its high catalytic activity, able 

to operate under mild conditions, and lack of undesirable side reactions. For decades, 

they have been exploited in an increasing scale of pharmaceutical, food, and chemical 

industries (Rodrigues et al., 2013). However, the industrial application of biocatalysts 

is generally hampered by insufficient stability or activity under harsh conditions. 

Researchers have paid a lot of attention to the robust immobilized catalysts that are 

highly stable, cost-effective, and allow multiple reuses of the enzyme to overcome 

these limitations.  For example, a study was conducted to immobilize horseradish 

peroxidase (HRP) on a 60 nm reduced graphene oxide (RGO) as a carrier through 
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covalent immobilization using glutaraldehyde as the crosslinker (Besharati Vineh et 

al., 2018). After 120 minutes at 40 °C, the immobilized HRP retained 90% of the initial 

activity while the soluble enzyme only retained 60% initial activity. Similarly, a study 

conducted by Zhang and co-workers (Zhang et al., 2015) also found a stable 

immobilized HRP on RGO up to 7-fold after comparing with graphene and graphene 

oxide (GO). Nowadays, there are plenty of carriers that have been used and 

successfully produced a highly stable enzyme. For example, agarose beads (de 

Oliveira et al., 2018), magnetic nanoparticles (Meng et al., 2014), carbon nanotubes 

(Ahmad and Khare, 2018), and so much more. However, usage of carriers will often 

lead to the dilution of enzyme activity, which subsequently decreased productivity 

(Tischer and Kasche, 1999; Truppo et al., 2012), and some of the physical adsorptions 

will not be strong enough to keep the enzyme intact to the carrier, especially when the 

process undergoes rigorous industrial conditions (Sheldon and van Pelt, 2013).  

Furthermore, immobilization of enzymes can also be performed by 

encapsulation or entrapment. The enzymes are trapped inside a gel, fibres, or lattice 

structure of a material or polymer membrane. There are a few reports which showed 

that the method could develop a stable immobilized enzyme. Du and co-workers (Du 

et al., 2017) fabricated catalase using a combination of enzyme nanocapsules and 

metal-organic framework (MOF). The same group (Du et al., 2019) also developed a 

facile and controllable strategy of constructing metal-organic framework-based 

(MOF-based) hollow composites via a protein-induced soft-templating pathway.  Both 

of these approaches resulted in an immobilized biocatalyst with significant 

improvement of thermal stability, storage stability and reusability. Nonetheless, the 

method has a crucial drawback especially when large molecule of substrates was used 

as it will face difficulty to penetrate into the enzyme. Therefore, carrier-free 

immobilized enzymes such as cross-linked enzyme aggregates (CLEAs) is the most 

promising and it has gained much attention due to its robustness, simplicity in 

preparation and also product separation in industrial application (Shaarani et al., 2016). 

These approaches are advantageous over carrier-bound enzymes as the final 

preparation have higher volumetric activity and are highly stable under unnatural 

conditions (Cao et al., 2003; Gao et al., 2015). 



3 

 

The preparation of CLEAs is a straightforward immobilization strategy that 

involves two main steps, which are the precipitation of crude enzyme by aggregating 

with precipitants such as organic solvents, non-ionic polymer, or salts followed by 

subsequent cross-linking of the precipitated enzymes using a bifunctional reagent such 

as glutaraldehyde, aldehyde-dextran or L-lysine (Sinirlioglu et al., 2013; Fuentes et 

al., 2004; Ayhan et al., 2012). Between these two steps, enzyme precipitation is crucial 

part because the chosen precipitating agent will determine the appearance of CLEA 

formed. For instance, using 2-propanol will produce a sticky CLEA, causing a problem 

during CLEA separation.  The problem was disclosed by Jung and co-workers (Jung 

et al., 2013) in the one-pot bioconversion of sucrose to trehalose. Recently, quite a 

number of CLEA preparations have been developed, making this method promising 

and has many aspects to explore further. For instance, CLEA can be prepared by using 

more than one enzyme. This innovation is called multi or combi-CLEA. Goetze and 

co-workers (Goetze et al., 2017) prepared a combi-CLEA exhibiting pectinase, 

polygalacturonase, pectin lyase and pectin methyl esterase for grape juice clarification 

using feather meal (FM) and bovine serum albumin (BSA) as a proteic feeder. Another 

development in CLEA preparation is a carrier-bound CLEA which utilized carrier-free 

and carrier-bound concepts using a single enzyme (Gao et al., 2015) and the 

development of porous-CLEA which utilized pore-making agent such as starch to 

minimize the mass transfer limitation (Jiang et al., 2014; Wang et al., 2011; Talekar 

et al., 2012). The latest development in CLEA preparation is magnetic CLEA, which 

focused on CLEA separation. (Purohit et al., 2017; Nadar and Rathod, 2016). The 

approach has gained much interest due to the ease of CLEA recovery, thus, making 

the downstream processing a lot easier.  

However, apart from the CLEA development mentioned here, the cross-linking 

mechanism might not be as effective as expected, especially for enzymes with low free 

amino residue contents. High content of free amino, especially on the surface of the 

enzyme, is crucial because it will create strong intermolecular bonds between free 

amino and polymers or oligomers resulting from the aldol condensation of 

glutaraldehyde (Sheldon, 2011). It was reported that, xylanase has significant low 

amount of lysine residue from the total amino acid (Shaarani et al., 2016; Manrich et 

al., 2010). One way of compensating this is by the addition of BSA, which forms co-
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aggregates with an enzyme containing low lysine residue content. This approach can 

form CLEA with high activity and improved mechanical properties (Shah et al., 2006; 

Tükel et al., 2013). However, when BSA was added, the finding of a previous study 

that used laccase has shown a reduction in laccase stability by more than 50% 

compared to the free enzyme (Matijošyte et al., 2010). 

Another approach to increase lysine content is via protein engineering. By 

designing the enzyme with few amino acid mutations into lysine at several regions or 

by introducing specific groups or tags at the targeted region of the enzyme, the cross-

linking rate and chemical reactivity can be improved (Rodrigues et al., 2014). 

Simultaneously, the enzyme becomes more rigid and stable. For instance, the 

introduction of three lysine residues on the surface region of penicillin G acylase 

(PGA) that was already rich in lysine showed a tremendous stabilization factor (Abian 

et al., 2004). The observation showed the importance of lysine in enzymes' 

immobilization even though the number of lysines introduced was low. On the other 

hand, a study by Ryan and Ó’Fágáin (Ryan and Ó’Fágáin, 2007) reported that a 

directional and oriented immobilization of horseradish peroxidase (rHRP) onto a 

modified polyethersulfone (PES) membrane showed a negative effect on stability (free 

and immobilized state) when four constructed mutants containing two and three 

external arginines were replaced by lysine on the surface of the enzyme. The mutants' 

instability was caused by the reduction of hydrogen bonds as lysine could not form as 

many hydrogen bonds as arginine. Research on the modification of protein structure 

and amino acids substitution using site directed mutagenesis to improve intermolecular 

interaction of enzyme molecules by the crosslinker in CLEA has not yet been explored 

(Rodrigues et al., 2014). There is a knowledge gap in using protein engineering to 

modify xylanase's molecular structure and the interaction with the crosslinker, 

enabling us to understand the effect on enzyme reaction mechanism and kinetics.  

In this study, surface modification of xylanase is expected to improve the 

binding efficiency of cross-linking. To my knowledge, no surface modification of 

enzyme has been demonstrated for CLEA apart from site-directed covalent 

immobilization on a carrier. Homology modelling and energy minimization will be 

performed to obtain an optimized three-dimensional (3D) model for xylanase. By 
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analysing and mutating a few residues on xylanase's surface, the cross-linking 

efficiency and the stability and reusability of xylanase are expected to improve. 

Surface modification of xylanase by protein engineering is proposed as it is the most 

promising and efficient tool to achieve oriented enzyme immobilization. Thus, this 

study provided a significant opportunity to advance the understanding of lysine 

substitution at specific residues on xylanase's surface. Furthermore, the developed 

xylanase-CLEAs can be further utilized in the production of xylooligosaccharides 

(XOS). 
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1.2 Problem Statement 

 

 

Xylanase has been widely used in numerous application but it remains open 

for various discoveries and research. The xylanase used in this study was isolated from 

Aspergillus fumigatus RT-1 which has been studied previously in its soluble form 

(Abdul Wahab et al., 2016). Simply put, this xylanase is a mesophilic enzyme and its 

thermostability has been improved via random mutagenesis. However, in soluble form, 

the xylanase was unstable for a longer period of time and its activity was rapidly 

decreased. Due to this, CLEA has been introduced to further improve its stability. As 

explained in the sub-section 1.1, key important in CLEA is numerous number of lysine 

or free amino residue at the surface. Having a great number of lysine will introduce 

more intermolecular and intramolecular bond with cross-linker. However, this 

xylanase lack number of lysine at the surface which could potentially does not improve 

in enzyme’s stability once cross-linked and furthermore, the enzyme itself could 

possibly be easily leach out. Surface modification using protein engineering was 

proposed to increase the number of lysine on the surface. 

1.3 Research Goal 

 

 

1.3.1 Research Objectives 

 

 

There are three main objectives to be achieved in this study. The objectives 

are: 

 

a) To construct mutant xylanase with higher cross-linking efficiency based 

on data from molecular dynamic simulation 

b) To develop and characterize CLEA aggregates of recombinant and mutant 

xylanase with high enzyme recovery activity 

c) To evaluate the performance of developed CLEAs using pretreated oil 

palm empty fruit bunches (OPEFB) 
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1.3.2 Research Scopes 

 

 

This study emphasizes the surface engineering of xylanase, the design 

preparation of developed CLEAs, and hydrolysis of the developed CLEAs 

activity on oil palm empty fruit bunches (OPEFB) and its reaction process in 

xylooligosaccharides production. Therefore, the following scopes were 

outlined to achieve the objectives. 

  

(a) Computational design, analysis and molecular dynamic simulation of 

xylanase model using Modeller v9.13 and protein ligand complex 

simulation 

(b) Expression, partial purification and characterization of recombinant 

xylanase from Aspergillus fumigatus RT-1 

(c) Study on the effect of preparation parameters on the activity recovery in 

CLEA; types and concentration of precipitant, concentration of cross-

linker, cross-linking time and concentration of BSA. 

(d) Characterization in terms of biochemical, structural morphology and 

thermal inactivation kinetics of developed CLEAs (rXyn-CLEA, rXyn-

CLEA-BSA, mXyn-CLEA and mXyn-CLEA-BSA) 

(e) Screening the effect of several reaction conditions (substrate loading, 

enzyme loading, temperature, pH, agitation rate, incubation time and 

particle size) of the best developed CLEA on the hydrolysis of pretreated 

OPEFB 

(f) Quantification of XOS produced using the best developed CLEA on the 

hydrolysis of pretreated OPEFB 

(g) Evaluation of enzyme kinetics of xylanse on the pretreated OPEFB using 

modified Prout-Tompkins equation. 
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1.4 Novelties of The Study 
 
 

There are two novelties of this study. The novelties are: 

  

a) The improvement of cross-linking efficiency of CLEA-xylanase using 

computational analysis, including 3D model development, 3D structure 

assessment, and surface analysis, has not been carried out yet by previous 

researchers.  

b) This is the first report on enzymatic hydrolysis of pretreated OPEFB using 

CLEA technology to the best of my knowledge. Furthermore, this is the 

first report utilizing xylanase from Aspergillus fumigatus RT-1 for 

hydrolysis of pretreated OPEFB 
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