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ABSTRACT 

Filling thin-walled tubes with foam cores is a typical method to promote a 

desirable energy absorption performance and stabilize the crushing responses of thin-

walled tubes under impact loading. Auxetic foams as new class of cellular materials 

have recently gained popularity within the research community due to their enhanced 

mechanical properties. However, the energy absorption performance of auxetic foam-

filled tubes design information is very limited. The aim of this study is to evaluate the 

crush response, the energy absorption capacity and the deformation behavior of auxetic 

foam-filled square and circular tubes under quasi-static and dynamic axial loadings. 

For comparison, energy absorption performance of empty and conventional foam-

filled square and circular tubes was also experimentally and numerically examined 

with respect to deformation modes and load-displacement responses. All tube 

specimens were crushed at a constant loading rate of 3 mm/min for quasi-static loading 

and an initial impact velocity of 5 m/s was adopted for dynamic loading. In order to 

investigate the influence of tube effective parameters such as wall thickness, diameter, 

width and height, a series of parametric studies were conducted using validated finite 

element (FE) models. The initial finding reveals that both auxetic foam-filled square 

and circular tubes are superior to empty and conventional foam-filled tubes in terms 

of energy absorption capacity without a significant increase in the initial peak load. 

From the initial finding and due to the great potential of auxetic foam as cores, a new 

fabrication technique called Quasi Tri-axial Compression Method (QTCM) was 

developed to fabricate the auxetic foam with the maximum achievable negative 

Poisson’s ratio. The fabricated auxetic foam with optimal re-entrancy was then 

introduced as the core for the tubes. Moreover, energy absorption capacity of auxetic 

foam-filled tubes was experimentally quantified with the foam Poisson’s ratio ranging 

from -0.13 to -0.32. The results show that the energy absorbed by auxetic foam-filled 

square and circular tubes loaded dynamically are approximately 34.7% and 22% 

greater than that of conventional foam-filled square and circular tubes respectively. 

This is practically beneficial when higher kinetic energy needs to be absorbed in order 

to reduce the impact force transmitted to the occupant’s compartment. Furthermore, it 

is evident that an increase in the auxeticity level of foam filler enhances 

crashworthiness performance of filled tubes under both quasi-static and dynamic 

loading conditions. Above all, the primary outcome of this thesis is a design guideline 

for the use of an auxetic foam as a core for energy absorbing devices where axial 

impact loading is anticipated. 
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ABSTRAK 

Pengisian tiub berdinding nipis dengan teras busa adalah satu kaedah yang 

biasa digunakan untuk menghasilkan prestasi penyerapan tenaga yang dikehendaki 

dan menstabilkan tindak balas remuk tiub berdinding nipis di bawah bebanan 

hentaman. Busa auxetic sebagai kelas baru bahan bersel, baru-baru ini telah mendapat 

populariti di kalangan komuniti penyelidikan disebabkan oleh sifat-sifat mekanikal 

yang dipertingkatkan. Walaupun begitu, maklumat reka bentuk ke atas prestasi 

penyerapan bagi tiub terisi dengan busa auxetic adalah amat terhad. Tujuan kajian ini 

adalah untuk menilai tindak balas remuk, kapasiti penyerapan tenaga dan kelakuan 

ubahbentuk bagi tiub berbentuk segi empat sama dan bulat terisi dengan 

busa auxetic di bawah keadaan bebanan kuasi-statik dan dinamik. Sebagai 

perbandingan, prestasi penyerapan tenaga tiub kosong dan tiub terisi dengan busa 

konvensional telah juga diperiksa secara eksperimen dan numerik terhadap mod ubah 

bentuk dan tindak balas beban-anjakan. Semua spesimen tiub telah diremukkan pada 

kadar bebanan tetap iaitu 3 mm/min bagi bebanan kuasi-statik dan pada halaju awal 

hentaman iaitu 5 m/s bagi bebanan dinamik. Untuk menyiasat pengaruh parameter-

parameter tiub yang berkesan seperti ketebalan dinding, diameter, lebar dan 

ketinggian, satu siri kajian parametrik telah dijalankan dengan menggunakan model 

unsur terhingga (FE) yang telah disahkan. Penemuan awal menunjukkan bahawa 

kedua-dua tiub berbentuk segi empat sama dan bulat terisi dengan busa auxetic adalah 

lebih baik daripada tiub yang kosong dan tiub yang terisi dengan busa konvensional 

dari segi kapasiti penyerapan tenaga tanpa peningkatan beban puncak awal yang 

ketara. Dari penemuan awal dan potensi terbaik busa auxetic sebagai teras, satu teknik 

fabrikasi baru dinamakan Kaedah Kuasi Pemampatan Tri-paksi (QTCM) telah 

dibangunkan untuk menghasilkan busa auxetic dengan nisbah Poisson negatif 

maksimum yang boleh dicapai. Busa auxetic yang dihasilkan dengan re-

entrancy optimum kemudiannya telah diperkenalkan sebagai teras untuk tiub. Selain 

daripada itu, kapasiti penyerapan tenaga bagi tiub terisi dengan busa auxetic telah 

ditentukan secara eksperimen dengan nisbah Poisson busa berjulat dari -0.13 hingga -

0.32. Keputusan menunjukkan bahawa tenaga yang diserap oleh tiub segi empat sama 

dan bulat yang terisi dengan busa auxetic yang dibebani secara dinamik adalah 

masing-masing kira-kira 34.7% dan 22% lebih tinggi daripada tiub segi empat sama 

dan bulat yang terisi dengan busa konvensional. Ini adalah berfaedah secara 

praktikalnya apabila tenaga kinetik yang lebih tinggi perlu diserap untuk 

mengurangkan daya hentaman yang dipindahkan kepada ruang penghuni. Tambahan 

lagi, ianya jelas bahawa peningkatan tahap auxeticity bagi pengisi busa dapat 

meningkatkan prestasi tiub terisi di bawah kedua-dua keadaan bebanan kuasi-statik 

dan dinamik. Secara keseluruhannya, hasil utama tesis ini adalah satu garis panduan 

reka bentuk untuk penggunaan busa auxetic sebagai teras bagi peranti penyerapan 

tenaga yang mana beban hentaman adalah dijangkakan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Research  

Increased interest in vehicle safety and crashworthiness has led to considerable 

investigations on energy absorption capability, crush response, and progressive 

collapse mode of energy absorbing devices from experimental, analytical and 

numerical points of view [1-3]. Thin-walled tubular structures as an effective energy 

absorbing devices have been impressively considered in structural impact applications 

for mitigating adverse effect of impact with controllable deformation. Therefore, thin-

walled tubes have been extensively utilized in automobile industry since they are 

excellent at dissipating kinetic energy by progressive plastic deformation when 

subjected to different loading conditions. For instance, as indicated in Figure 1.1, crash 

boxes in automobile chassis are used for protecting the vehicle’s structure and the 

occupants in the event of impact.  

 

Figure 1.1 Crash boxes as an energy absorbing system [4] 

In general, principal factors like structural geometry, materials and loading 

conditions influence energy absorption capability of thin-walled structures remarkably. 

Hence, some beneficial numerical and experimental studies have been conducted to 

Crash boxes  
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determine crashworthy characteristic of thin-walled tubes of various cross-sections 

under different loading conditions [5-7].  

For many decades, progressive collapse mechanism and folding deformation 

of thin-walled tubes of various cross-sections have been widely investigated to figure 

out which cross-section could provide optimum crashworthiness performance [8, 9]. 

Crushing behavior and deformation modes of circular, rectangular, square, triangular, 

pyramidal, hexagonal and conical tubes under compressive axial loading were studied. 

Results of a study carried out by Nia and Parsapour [7], indicated that the cylindrical 

and triangular tubes exhibit the highest and lowest energy absorption capacity under 

compressive axial loading respectively.  

Despite all modifications done to enhance crashworthiness efficiency of thin-

walled structures, crush analysis and crashworthy response of foam-filled thin-walled 

tubes demonstrate grater energy dissipation, higher collapse resistance and fewer 

tendency to global bending than empty tubes [2, 10, 11]. Hence, crush response 

analysis of foam-filled tubes when loaded statically and dynamically has received 

increased attention in the literature [12, 13]. Accordingly, metallic and non-metallic 

foams have drawn extensive attention as fillers due to their good energy dissipation 

performance (since they can withstand large deformation when the load is kept 

constant). In an investigation on the crush and energy absorption responses of foam-

filled extruded aluminum square tube under dynamic and quasi-static axial loading, 

Hanssen et al. [14] observed that introducing foam filler causes two changes in the 

crushing mode which are: increase in the number of fold and shorter fold length. 

Asavavisithchai et al. [15] compared energy absorption capability of foam-filled and 

empty circular tubes of different length when subjected to static axial load. They also 

investigated the energy absorbed by foam-filed tube, foam and empty tube 

individually. The results reveal that due to interaction effect, the sum of the absorbed 

energy of foam and empty tube is less than the absorbed energy by foam-filled tube. 

In addition, existence of foam in the tube structure alters the diamond mode of empty 

tube to concertina mode. Recently, Othman et al. [16] found that introducing polymeric 

foam into the composite pultruded square tube enhances specific energy absorption 

and crush force efficiency of pultruded tubes when subjected to quasi-static axial 
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crushing. In a numerical parametric study, Ahmad and Thambiratnam [17, 18] found 

that inserting foam filler inside a conical tube may improve the collapse mode and 

crushing stability of a structure, resulting in greater crashworthiness performance 

under both oblique and axial loadings in the dynamic and quasi-static loading cases.  

In general, the density of foam filler is the most effective factor that controls 

deformation mode and crush response behavior of foam-filled tube subjected to impact 

loading. In other words, increasing the density of foam promotes energy absorption 

capability of foam-filled tubes [19, 20]. However, very high density of foam filler may 

cause many undesirable crushing characteristics such as global Euler buckling, 

premature tensile rupture and low weight effectiveness which greatly decrease the 

energy absorption capacity of filled structures [10, 21]. Reid et al. [10] observed that, 

global Euler buckling occurred when polymeric foam of density over 320 kg/m3 was 

inserted into square tube. Onsalung et al. [20] conducted a comparative experimental 

investigation on crush analysis of square tube filled with polymeric foam with densities 

200 kg/m3 and 300 kg/m3, and discovered that specific energy absorption of filled tube 

is great when  foam density 200 kg/m3 is used.  

Most foam materials inserted in the tubes have a level of capacity to absorb 

energy. One of the most common specifications is to have positive Poisson’s ratio 

(PPR) or zero Poisson’s ratio (ZPR). It is worth noting that the shearing effect is nearly 

zero for foam materials with ZPR. In recent decade, a special interest has been shown 

in invention of foams with negative Poisson’s ratio (NPR). Such foam materials that 

exhibit NPR are termed auxetic [22, 23]. Auxetic materials show an opposite behavior 

in which lateral expansion occurs during the longitudinal stretch and vice versa [24]. 

Figure 1.2 demonstrates the schematic deformation of material with PPR, ZPR and 

NPR under tensile strain. 

 
                   (a) (b)                    (c) 

Figure 1.2 Schematic behavior of  material with (a) PPR, (b) ZPR and (c) NPR 

[25] 
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The pioneer study on engineering mechanics of NPR was published by Love 

[26], who presented a material with Poisson’s ratio of −0.14 in two-dimensional (2D) 

plane. A preliminary work on the fabrication of re-entrant structure from a 

thermoplastic open cell foam was carried out by Lakes [22], who proposed two 

different fabrication methods for polymeric and metallic foams in details. The NPR 

property of auxetic materials offers several advantages such as enhancement of 

stiffness, energy dissipation, and indentation resistance (Figure 1.3) [25, 27, 28]. An 

improvement in these properties confers a great potential on the auxetic material to be 

used in a broad range of applications. The field of auxetic materials in science and 

engineering applications was practically initiated when the first NPR polyethylene 

foam was fabricated [29]. 

 

                                             (a)                                (b) 

Figure 1.3 Schematic deformation profile (indentation resistance) of (a) non-

auxetic and (b) auxetic materials [25] 

 The classical fabrication process of polymeric auxetic foams includes the 

following steps: tri-axially compressing of conventional foam, heating the compressed 

foam then cooling or relaxation operations [30]. Lakes [22] converted a polymeric 

open-cell foam into an auxetic one by applying one-stage compression to protrude the 

ribs of each cell inward. The previous process is then followed by heating the foam 

slightly above its softening temperature to produce re-entrant structures. However, this 

method has few drawbacks such as severe surface wrinkling of foam and instability in 

the re-entrant structure. In certain cases, the foam reverts back to the original structure 

after a long while [30]. Meanwhile, the auxeticity procedure proposed by Lake [22] 

has been applied by several researchers though with numerous modifications. For 
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instance, mold lubrication and the use of wires inside the mold for pulling the foam 

instead of pushing have been suggested to obviate the wrinkling problem [31]. Another 

way of solving the problem of wrinkles is applying the volumetric compression 

through several steps to obtain more homogeneous auxetic structures [30].  

The use of compressed carbon dioxide  [32] to modify the auxeticity process 

and application of solvents [33] as alternative to the heating stage have been suggested. 

In addition, replacing the rigid mold with a vacuum bag has also been reported in recent 

years [34]. Although the conversion process is carried out considering the above-

mentioned combination, the modality of either compression or heating process (and/or 

solvent or carbon dioxide) has a significant impact on the re-entrant structure and 

mechanical properties of the produced auxetic foams.  

1.2 Problem Statement  

One of the most important goals of designing an energy absorbing device is to 

enable maximum energy absorption while the mass is minimal. Hence, cellular 

materials like foams could be utilized as effective core materials for thin-walled 

structures to attain a lightweight design [14, 31]. This is due to great energy absorption 

performance of foam materials as they can endure large deformation at almost constant 

load. Due to the importance of understanding the crushing characteristics of foam-

filled tubes in the field of structural collapse and crashworthy design, a considerable 

amount of literature has been published on crush analysis of foam-filled thin-walled 

tubes [15, 17, 35].  

During the past 40 years, altering the density of foam fillers were considered 

as a variable parameter in crashworthiness analysis of foam-filled tubular structures 

[10, 20]. Variations in the foam density directly affect Young’s modulus, plateau stress 

and most other mechanical properties of foam material than Poisson’s ratio. 

Meanwhile, the effect of foam Poisson’s ratio has not been investigated in crush 

analysis of foam-filled tubular structures as an influencing parameter in determining 

mechanical deformation and crashworthiness performance of filled structures. 
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Regarding crush behavior, research information on using auxetic foam with NPR 

inside the thin-walled tubular structure as an absorber is still limited and sparse, 

notwithstanding their great potential to be an effective energy absorber. 

Despite all modifications done in the auxeticity process, it is obvious that the 

overall procedure has remained the same, i.e., a volumetric compression of the foam 

followed by heating and cooling processes.  Most established studies in the field of 

fabrication process concentrate on the heating operation or alternative ways of 

retaining the primary value of volumetric compression ratio of the foam and 

minimizing the problem of the foam reverting back to its original size. Meanwhile, the 

volumetric compression technique suggested by Lakes [22] has not been altered 

significantly except for the technique proposed by Chan and Evans [30]. The latter 

study adopted multi-stages volumetric compression ratio technique instead of a single-

stage procedure. However, the determined starting densification point (SDP) in one 

direction was used for the other directions in the compression process. Thus, the 

wrinkles and creases of the foam surface were minimized but not removed completely. 

Therefore, more modifications are needed as the mentioned problems -foam instability 

and surface creasing and wrinkling- still exist.  Furthermore, there is no published 

research on the determination of maximum allowable volumetric compression ratio as 

an influencing factor in converting process which determines auxeticity level of 

fabricated foam.  

1.3 Research Objectives 

The primary objective of this research is to evaluate the crush response and 

energy absorption performance of auxetic foam-filled tubes when subjected to 

compressive loading. Owing to the great potential of auxetic foam materials as a filler 

of thin-wall structures in energy absorption applications, an effort was made to 

improve the quality of the auxetic foam by employing a novel multi-stage compression 

methodology. Consequently, an optimum densification point for producing optimized 

auxetic foam in each of the three directions (x, y, z) was determined by a method called 

Quasi Tri-axial Compression Method (QTCM). Furthermore, the process of 
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determining heating time was also modified in order to promote long-term stability of 

fabricated foam with the maximum stress relaxation. This research provides design 

information on impact behavior and crashworthiness performance of auxetic foam-

filled tubes under quasi-static and dynamic loading to facilitate their application in 

energy absorbing systems.  

The specific objectives of this research are briefly outlined as follows; 

i) To determine densification points required for producing an optimum 

auxetic foam.   

ii) To evaluate the influence of foam re-entrancy on energy absorption 

capacity and crush response of auxetic foam-filled tubes under quasi-static 

and dynamic axial loadings.   

iii) To establish the influence of geometrical parameters on the energy 

absorption performance and deformation modes of auxetic foam-filled 

tubes. 

1.4 Research Scopes  

The scopes and limitations of this research are as follows. 

(a) For fabricating auxetic foam, polyurethane (PU) foam materials with densities 

of 35 kg/m3 and 45 kg/m3 were considered due to their availability, 

accessibility and affordability. 

(b) Square and circular thin-walled tubes were fabricated considering the 

following dimensions: thickness of 0.8 mm, outer width 26 mm and heights 

50 and 60 mm for the square tube and thickness of 1 mm, outer diameter of 38 

mm and height of 80 mm for the circular tubes. 
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(c) Tensile tests on aluminum tubes were conducted in accordance with ASTM 

E8M at a loading rate of 1mm/min. 

(d) Tensile and compression tests on conventional and fabricated auxetic foams 

were performed at a loading speed of 1 mm/min in accordance to ASTM 

D3574-95 standard. 

(e) Foam Poisson’s ratio was determined under compressive strain. Linear 

Variable Displacement Transducer (LVDT) was utilized to determine the 

lateral strain of polymeric foam under axial compressive load.  

(f) Measuring the lateral strain of polymeric foam under compressive strain and 

determining foam Poisson’s ratio using Linear Variable Displacement 

Transducer (LVDT).  

(g) Quasi-static axial crushing tests on the auxetic foam-filled tubes were 

conducted at a loading rate of 3 mm/min and 60% of original tube length as 

crushing length. 

(h) Drop weight impact tests on the filled tube specimens was performed at an 

impact speed of 5 m/s.  

(i) The auxetic foam-filled tubes under quasi-static axial loading was modeled 

using explicit nonlinear finite element commercial code LS-DYNA.  

(j) The FE models for empty tube, conventional foam-filled tube and auxetic 

foam-filled tube were validated using the experimental test results obtained in 

quasi-static loading.  

(k) The influence of effective tube parameters like wall thickness, height, 

width/diameter and slenderness ratio on energy absorption performance of 

empty tube, conventional and auxetic foam-filled tubes was evaluated. 
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1.5 Significance of Research 

The present study has generated new design information on the energy 

absorption performance and crush response of auxetic foam-filled tubes subjected to 

compressive axial loading conditions. It has also established the effects of material and 

geometrical parameters such as foam density, foam Poisson’s ratio, tube height, wall 

thickness, tube diameter and tube width on the energy absorption capacity of auxetic 

foam-filled tubes which enable efficient design of auxetic foam-filled tubes (square 

and circular cross-sections) as energy absorbing devices. 

 Practically, information obtained from this study can be employed to develop 

design guidelines for the use of auxetic foam-filled tubes as efficient energy absorbers, 

like vehicle protective structures. This will lead to an increase in the level of safety to 

the occupants of vehicles. 

At present, the suggested approach for fabricating auxetic foam with maximum 

achievable re-entrancy is still limited and sparse. Hence, the proposed Quasi Tri-axial 

Compression Method (QTCM) can be used to fabricate auxetic foam with maximum 

auxeticity level. Moreover, by applying this novel methodology, long-term stability 

was observed for the fabricated auxetic foam due to attainment of maximum stress 

relaxation. 

The auxetic foams developed in this study could potentially be used in 

numerous applications owing to their enhanced mechanical behavior compared to the 

conventional ones. From energy absorption point of view, the auxetic foam showed 

great potential to be used as an energy absorbing device in structural impact 

applications not limited to vehicular structures. 
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1.6 Outline of the Thesis 

This thesis entails seven chapters which are arranged thus. 

Chapter 2 provides a detailed literature review of the work related to the 

objectives and scopes of this thesis. The fundamental concept of structural 

crashworthiness, energy absorption characteristics, impact engineering, thin-walled 

structures, cellular materials and auxetic foam are summarized in this chapter. 

Furthermore, an investigation into the fabrication process of polymeric auxetic foam 

and experimental testing of such materials is also discussed.  

Chapter 3 details the research methodology used in this study. The detailed 

description of material testing, quasi-static and dynamic test conditions are given. 

Moreover, the development of the FE model for conventional and auxetic foam-filled 

tubes (square and circular cross-sections) under quasi-static axial loading is explained 

in this chapter.  

Chapter 4 describes the initial study on crush response and energy absorption 

capability of auxetic foam-filled square tube under quasi-static axial loading 

conditions.  

Chapter 5 elaborates the proposed methodology used for producing the auxetic 

foam with the maximum achievable negative Poisson’s ratio.  

Chapter 6 discusses the influence of Poisson’s ratio of auxetic foam core on 

crushing characteristic and energy absorption performance of auxetic foam-filled tubes 

under quasi-static and dynamic loadings. The interaction effect between the fabricated 

auxetic foam and tube walls is also determined. In addition, a parametric study of the 

energy absorption response of auxetic foam filled tube under quasi-static loading is 

presented.  

Chapter 7 summarizes the main conclusion and contribution of this study and 

the future work is eventually proposed.  
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