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ABSTRACT 

Simulation-based design in engineering is becoming very important nowadays 

due to the advancement of computing technology. In this arena, computer-aided design 

(CAD) for modelling and computer-aided engineering (CAE) for analysis are the two 

major components. They evolve independently despite dealing with the same object-

of-interest. The non-collaborative nature of CAD and CAE has resulted in more 

manpower and less computer time being used in the steps involved during data transfer 

for the modelling-analysis process, which can lead to many errors. Ideally, this process 

should be performed entirely by a computer without human intervention. In bridging 

the gap between the two, isogeometric analysis (IGA) was proposed to perform both 

modelling and analysis using the same basis functions, i.e., non-uniform rational B-

spline (NURBS). However, NURBS is formulated through the operation of tensor 

products, thus the refinement in the analysis process is found to be expensive due to 

excessive overhead of control points. This study presents the idea to develop more 

efficient methods by considering the NURBS only for modelling while the analysis is 

developed based on the Meshfree radial point interpolation method (RPIM). The main 

objective of this study is to construct and formulate a complete procedure for coupling 

NURBS and RPIM formulations, and written as N-RPIM. Computer code 

implementing N-RPIM is developed with MATLAB programming language. The N-

RPIM is constructed based on Galerkin weak form formulation and possess the 

Kronecker delta property, hence enabling easy imposition of essential boundary 

conditions. Furthermore, parametric studies of two-dimensional planar analysis are 

conducted to determine the optimum range and value of parameters in ensuring the 

best performance of the N-RPIM method. The method is validated by employing heat 

transfer and plane stress problems, and is then extended to model a cellular beam with 

complex geometry due to the existence of web-holes along its span. Two types of 

performance are assessed; the convergence rate for displacements and stresses 

predictions. The presented result shows that, the N-RPIM works well and provides a 

favourable comparison against established numerical method, i.e., finite element 

method (FEM). The converged solution is achieved faster and provides an exact 

solution of less than 90% of the number of nodes compared to FEM. The convergence 

of displacement is achieved when the total number of nodes reaches approximately 

5,000 nodes with an error of 0.005%, while more than 20,000 nodes required for the 

FEM to converge. In the prediction of stresses throughout the beam, the N-RPIM stress 

functions are readily continuous over the domain, whereas some post-processing 

would be required in FEM for smoothing the stresses value over the domain. This 

shows the potential of N-RPIM as an alternative numerical method in bridging the 

substantial bottleneck between CAD and CAE. In addition, by taking advantage of the 

exact geometry presented by NURBS and, with the flexibility and adaptivity of RPIM 

to determine field variables, this new method promises highly effective solutions when 

dealing with irregular domain problems.  
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ABSTRAK 

Rekabentuk berasaskan simulasi dalam bidang kejuruteraan menjadi sangat 

penting pada masa kini disebabkan oleh kemajuan teknologi pengkomputeran. Dalam 

arena ini, reka bentuk terbantu-komputer (CAD) untuk kerja pemodelan dan 

kejuruteraan terbantu-komputer (CAE) untuk kerja analisis adalah dua komponen 

utamanya. Kedua-dua teknologi ini berkembang secara berasingan walaupun di dalam 

menyelesaikan permasalahan yang sama. Sifat bukan kolaboratif CAD dan CAE telah 

menyebabkan banyak tenaga manusia dan kurang masa pengkomputeran digunakan 

semasa pemindahan data untuk proses pemodelan-analisis, yang boleh menyebabkan 

banyak kesalahan berlaku. Secara ideal, proses ini harus dilakukan sepenuhnya oleh 

komputer tanpa campur tangan manusia. Bagi menghubungkan keduanya, kaedah 

analisis isogeometrik (IGA) telah dicadangkan iaitu kerja-kerja pemodelan dan 

analisis menggunakan fungsi asas yang sama, iaitu B-spline rasional tidak seragam 

(NURBS). Walau bagaimanapun, NURBS dirumuskan melalui pengoperasian produk 

tensor, oleh itu proses penambahbaikan ketika analisis menjadi sukar kerana lebihan 

titik kawalan. Kajian di dalam tesis ini mengemukakan idea untuk mengembangkan 

kaedah yang lebih cekap dengan mempertimbangkan NURBS hanya untuk 

pemodelan, sementara analisis dikembangkan berdasarkan kaedah tanpa jejaring 

interpolasi titik jejarian (RPIM). Objektif utama kajian ini adalah untuk membina dan 

merumuskan prosedur lengkap penggabungan formulasi NURBS dan RPIM, dan 

ditulis sebagai N-RPIM. Kod komputer yang menjayakan N-RPIM telah dibangunkan 

dengan menggunakan bahasa pengaturcaraan MATLAB. N-RPIM dibina berasaskan 

formulasi bentuk lemah Galerkin dan mempunyai ciri-ciri Kronecker delta, dengan itu 

membolehkan penyelesaian syarat sempadan dilakukan dengan mudah. Seterusnya, 

kajian parametrik untuk analisis dua dimensi dilakukan bagi menentukan nilai 

parameter yang paling optimum di dalam memastikan prestasi terbaik kaedah N-

RPIM. Keberkesanan kaedah ini disahkan dengan menggunakan permasalahan 

pemindahan haba dan tekanan satah, seterusnya kajian diperluaskan dengan 

permodelan rasuk bersel dengan geometri kompleks kerana kewujudan lubang web di 

sepanjang rentangnya. Dua jenis prestasi telah dinilai; kadar penumpuan untuk anjakan 

dan ramalan tegasan. Keputusan menunjukkan bahawa N-RPIM memberikan 

perbandingan yang baik terhadap kaedah numerik yang biasa digunakan, iaitu kaedah 

unsur terhingga (FEM). Penumpuan dicapai lebih cepat dan memberikan penyelesaian 

tepat dengan bilangan titik kawalan 90% kurang berbanding FEM. Kadar penumpuan 

anjakan dicapai dengan jumlah titik kawalan mencapai kira-kira 5,000 dengan ralat 

0.005%, sementara lebih daripada 20,000 titik kawalan diperlukan untuk FEM 

menumpu. Untuk ramalan tegasan, N-RPIM memberi kelebihan melalui fungsi 

bentuknya yang berterusan, tanpa memerlukan pasca-proses bagi tegasan tidak 

berterusan yang biasa dilakukan di FEM untuk menyempurnakan nilai tegasan di atas 

domain. Ini menunjukkan potensi yang baik untuk N-RPIM sebagai kaedah berangka 

alternatif dalam merapatkan perbezaan di antara CAD dan CAE. Di samping itu, 

dengan memanfaatkan geometri tepat yang ditunjukkan oleh NURBS dan, fleksibiliti 

dan adaptasi RPIM di dalam menentukan pemboleh ubah medan, kaedah baru ini juga 

menjanjikan penyelesaian yang sangat berkesan bagi menangani masalah domain yang 

tidak teratur. 
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INTRODUCTION 

1.1 Introduction 

The development of digital computer and the growing number of challenges in 

engineering problems has spurred the growth of simulation-based design significantly, 

thereby changing the way engineers interact with engineering problems. Simulation-

based design concept refers to the simulation of the entire cycle of the engineering 

solutions, from concept development to detail design through implementation and 

integration of computer technologies and associated software tools. The use of 

simulation-based design significantly shortens the cycle thus giving immediate results 

in solving engineering problems. It further provides the engineers with immediate 

feedback on design decision, in turn, promising more comprehensive exploration and 

improved final design. 

The simulation-based design consists of two (2) major components. One is the 

geometric model, which is formulated in the language of Computer-aided Design 

(CAD) software, and the other is the analysis, which is normally derived using Finite 

Element Analysis (FEA) and known as Computer-aided Engineering (CAE) software. 

The editorial of the third special issue of ‘Advances in Finite Element Method' reported 

that the global market growth for engineering software is worth about US$ 20 billion 

in 2014. Of that value, US$ 8-9 billion and US$ 4-5 billion are CAD and CAE software 

respectively, and others, e.g., architecture, manufacturing, etc., valued at US$ 6-8 

billion. The Compound Annual Growth Rate of the CAD software market is about 8-

9%, while for CAE software is about 15% (Cen, et al., 2016). 

CAD and CAE work independently despite dealing with the same object-of-

interest. The non-collaborative nature of CAD and CAE has caused engineering 
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designers and analysts tend to use a CAD software for design and CAE software for 

analysis separately (Roy, et al., 2008; Liu, et al., 2007). The construction of 

geometrical model is first represented using CAD software, the mesh is then generated 

from that CAD data, and lastly the analysis is performed using CAE software. The 

effort to convert CAD data to quality mesh is greater than that for analysis. It is 

estimated that about 80% of the entire time is devoted to mesh generation and analysis-

suitable geometry, and 20% is devoted to analysis, in which the ratio of 80:20 for 

modelling-analysis seems to be a very common industrial experience (Cottrell, Hughes 

and Bazilevs, 2009). The concern is more manpower and less computer time in the 

steps involved due to the differences in the descriptions of the CAD and CAE system, 

which can lead to many errors. Therefore, ideally the process would be fully performed 

by computer without human intervention.  

Many efforts have been made to bridge the gap between CAD and CAE. 

Several commercial CAD and CAE software have made significant improvements in 

the integration of both, but most of these software only allow cooperation within the 

authorized designated CAD or CAE systems and still did not fully integrate the two. 

Another attempt is the coupling CAD-CAE systems based on mathematical models. 

This method requires not only a wealth of knowledge, experience and effort, but also 

appropriate numerical techniques, and skills in scripting programming languages. 

Although the process is complex, the outcomes lead to obtain a global solution to the 

issue. As such, it has been a favourite topic for researchers lately, as well as the interest 

in this study.  

1.1.1 Toward Optimization of CAD and CAE 

Over the last few decades, FEA plays an important role in CAE software. FEA 

is a simulation concept developed from the theoretical basis established by the Finite 

Element Method (FEM). FEM history began in 1943 when Richard Courant 

introduced a method for solving certain boundary-value problems for the solution of 

PDE which is the basis of the FEM idea (Williamson, 1980). In 1968, Ergatoudis, Irons 

and Zienkiewicz introduced isoparametric representation in FEM. The main idea of 
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isoparametric is the shape functions used for unknown values (displacements) are the 

same as the shape functions used for elemental geometric mapping. The first 

mathematical proofs on the properties of the FEM were published by Babuska and 

Aziz (1972). 

FEM was created as numerical techniques for finding an approximate solution 

for Partial Differential Equations (PDE). In the formulation, a continuum with a 

complicated shape is divided into several elements. The individual elements are 

connected together by a topological map called a mesh. Due to its capability to 

simulate nonlinear behaviour, this numerical technique is well established and the most 

popular choice for analysis tools in the CAE system. However, the creation of a mesh 

and the non-smooth 𝐶0-continuity across element boundaries in FEM has become a 

major drawback in FEM, leading to the developments of new numerical techniques, 

e.g., the Meshfree methods. 

The predominant technology used by CAD is the Non-Uniform Rational B-

Splines (NURBS). The NURBS basis function is a mathematical model, which 

provided an efficient and numerically stable algorithm that can exactly represent all 

conic sections and allows very flexible modelling. NURBS properties are able to be 

refined through knot insertion, 𝐶𝑝−1-continuity for 𝑝𝑡ℎ order of NURBS, and is more 

robust regarding mesh distortion. 

The above explanation clearly shows that the development and evolution of 

CAE analysis model is independent of the CAD model, and vice versa. Engineering 

designers and analysts tend to use CAD software for design and CAE software for 

analysis separately, thus analysis-suitable models are not automatically meshed from 

CAD geometry. Fundamental changes must be made to integrate both completely. 

Therefore, to optimize the current process, Hughes, et al. (2005) pioneered 

Isogeometric Analysis (IGA). IGA offers the possibility of coupling methods for 

modelling and analysis into a single process. The endeavour is to mutually utilize 

computational geometry technologies and computational engineering analysis 

technologies.    
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1.1.2 IGA Merging Modelling and Analysis into One Model 

IGA is being researched to fill up the existing gap between the worlds of CAD 

and CAE, with fully integrate the engineering design and analysis processes, and hence 

provide a better-approximated result. IGA’s concept outlined by Hughes, et al. (2005) 

was to employ NURBS basis functions not only for exact geometry discretization but 

also directly adopt to approximate the unknown fields in numerical analysis. IGA has 

facilitated the design iteration and avoids geometry errors introduced by the FEM 

discretization at domain boundaries. IGA can be considered a successful merging of 

CAD and CAE. This has saved a lot of time taken by manpower for the entire process, 

thereby reducing more human errors.  

However, NURBS basis functions are formulated through the operation of 

tensor products. This leads to an excessive overhead of control points and refinement 

which is found to be a global operation. Moreover, when the geometry is topologically 

complex, subdivision into multi-patch domains is needed, resulting in inconsistencies 

at patch boundaries. These deficiencies have a negative impact on numerical analysis.  

1.1.3 Continuous Work of IGA 

Many advanced techniques have been introduced to improve the issues in IGA. 

T-splines is the earliest method that has been developed to correct the deficiencies of 

NURBS basis functions by employing local refinement. However, the development of 

T-splines still relies on a structured grid in the parametric domains and this will still 

cause the h-refinement remains restricted.  

Another attempt to improve the issues were proposed by Sevilla, et al. (2008, 

2011). The method named NURBS-enhanced finite element method (NEFEM), 

considered the exact NURBS basis functions description only for the geometrical 

boundary of the domain while the solution of the numerical analysis was approximated 

with a standard piecewise polynomial interpolation. NEFEM preserved the 

computational efficiency of classical FEM analysis, thus allowed NURBS’s exact 
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geometry discretization. Nevertheless, creation of a mesh in FEM has always faced 

shortcomings including difficulties in adaptive analysis and low accuracy of stress. 

This situation did not seem to be a great advantage to the original issues in NURBS-

based IGA. 

On the other hand, integration of NURBS-based IGA with Meshfree method 

have been developed (Wang, et al., 2018; Zhang and Wang, 2017; Greco, et al., 2017; 

Chi and Lin, 2016; Valizadeh, et al., 2015; Wang and Zhang, 2014; Rosolen and 

Arroyo, 2013). The term ‘Meshfree’ was obtained from its ability to establish system 

algebraic equations for the whole problem domain without the use of a predefined 

mesh for the domain discretization, thus eliminating the FEM disadvantages as 

described in the previous paragraph. The formulation of Meshfree’s shape function is 

based on nodes in support domains which is contrary to the FEM’s procedure, and thus 

highly versatile and attractive approach for discretization. However, one of the major 

difficulties in the implementation is the non-interpolatory character of the 

approximation of the shape functions. The approximation does not pass through the 

nodal values in which interpolation of functions is not unity at nodes, thus does not 

possess Kronecker delta property. As a consequence, the imposition of essential 

boundary condition is less precise in comparison to a mesh based approximation.   

1.1.4 Meshfree Method as a New Class of Numerical Methods 

In recent years, a group of Meshfree methods have been developed and 

achieved remarkable progress. The inventions of Meshfree methods were motivated 

by the attempt to remove the need for predefined meshes which are required in FEM. 

A Meshfree method uses a pattern of nodes instead of mesh to discretize the analysis 

domain. Ease in programming due to no domain or surface meshing, make these 

methods very attractive.  

Construction of shape function is one of the most important and fundamental 

tasks in developing a Meshfree method. In the early development of Meshfree 

methods, i.e., Moving Least Squares or Reproducing Kernel, the shape functions are 
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based on polynomial reproduction have been widely used. However, special treatments 

are needed for imposing the essential boundary conditions, because the approximation 

function does not possess Kronecker delta property. 

A Meshfree point interpolation method (PIM) was proposed to address the 

issue (Liu and Gui, 2001a, 2001b; Wang, et al., 2001). The PIM employed 

polynomials as its basis functions, in which the number of shape function is the same 

as the number of nodes. Hence, the PIM shape functions possess Kronecker delta 

property. However, PIM has weaknesses in which the moment matrix of the shape 

functions could be singular. Therefore special techniques are needed to overcome the 

issue. Wang and Liu (2002) proposed radial basis functions (RBF) to overcome the 

singularity issue and termed as Radial PIM (RPIM). It has been proven that the 

moment matrix of RBF interpolations is invertible for constructing shape functions in 

PIM. The RPIM has recently made remarkable progress in the Meshfree method of 

solutions. Its approximation function passes through each node point in the influence 

domain, thus makes the implementation of essential boundary conditions much easier 

and reducing complexity in numerical algorithms than other Meshfree methods. 

1.2 Problem Statement 

The key idea of IGA is to employ the same basis functions, i.e., NURBS, used 

by CAD to model the geometry are also used to approximate the unknown fields in 

numerical analysis. Unfortunately, the basis function of NURBS is formulated through 

the operation of tensor products, thus it has certain weaknesses that make a significant 

impact on numerical analysis. Due to the tensor product nature, the control points are 

required to lie in a structured grid. That means, in the context of local mesh refinement, 

adding a new control point requires the addition of an entire row or column of control 

points to maintain the product structure of this tensor. This results in excessive 

overhead of control points which contain no significant geometric information. 

Therefore, a large percentage of nodes are only needed to satisfy topological 

constraints.  
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Other techniques have been developed to address the weaknesses of IGA, 

where the basis function of NURBS is only used to model the geometrical domains 

while the field approximations in the numerical analysis remain with standard FEM 

shape function.  Nonetheless, due to the meshes concept and the piecewise continuous 

nature of the predefined mesh in FEM, this method does not seem to be of great 

advantage to the original issues in IGA. The non-smooth 𝐶0-continuity basis functions 

at the interfaces of the boundaries in FEM elements affected the accuracy of stress 

analysis. The stress is a function of a gradient for the displacement, therefore 𝐶0-

continuity across the boundaries results in stress values being undefined at these 

boundaries, thus required special techniques in the post-processing stage in order to 

achieve better accuracy.  

In an effort to improve the weaknesses of the IGA and the coupled of NURBS-

FEM, another attempt has been made to couple NURBS with Meshfree approximation. 

It follows a similar approach to the one employed in a coupling NURBS and FEM, but 

a Meshfree method is used in the field approximations. A Meshfree method is a group 

of numerical methods that sharing the same techniques, i.e., do not require predefined 

meshes information to construct the approximation function. The shape functions can 

achieve essentially arbitrary order of continuity and completeness. It breaks the mesh-

based view in IGA and FEM analysis further introduces the idea of getting rid of 

meshes concept in coupling CAD and CAE, therefore highly versatile for 

discretization and becomes a more promising technique.  

Even though the benefits of Meshfree concept in domain discretization are 

visible, current studies on coupling NURBS and Meshfree have shown difficulties in 

imposing essential boundary conditions because of the boundary description of domain 

discretized by Meshfree particles is less precise. This is due to the character of the 

selected shape functions are not unity at nodes, thus does not possess the Kronecker 

delta property, in turn, the analysis needs special schemes to ensure these desired 

features. Therefore, more studies, in particular to improve the Meshfree shape 

functions in the coupled CAD and CAE should be enhanced.  
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1.3 Research Goal  

The Meshfree RPIM has been proven to possess the Kronecker delta property. 

Its approximation function passes through each node point in the influence domain, 

thus makes the implementation of essential boundary conditions can be imposed 

directly. The ability of the RPIM to fit the domain nodes exactly will be able to 

improve the efficiency of the coupled NURBS and Meshfree, and in turn provide better 

analysis. Therefore, the main goal of this study is to integrate between CAD and CAE 

through coupling the formulations of NURBS basis functions and the Meshfree RPIM 

approximation. To reinforce the idea of this newly developed method, intensive studies 

will be conducted for two-dimensional (2D) planar analysis of heat transfer and plane 

stress problems. For engineering applications, this new method will be extended to 

model a cellular beam with complex geometry due to the existence of web-holes along 

its span. 

1.4 Research Objectives 

The objectives of this research are summarized as follows: 

1) To construct and formulate a coupled formulation of NURBS and Meshfree 

RPIM for 2D elastic solid problems, and to establish the corresponding source 

codes.  

2) To determine the optimum range and value of parameters in ensuring the best 

performance of the developed formulation by conducting parametric studies 

and validate the results against benchmark problems.  

3) To evaluate the performance of the developed formulation in engineering 

applications by performing analysis on cellular beams with various boundary 

conditions and validate the result against established numerical method, i.e., 

FEM.  
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1.5 Research Scope and Limitation 

The formulation is applied for 2D planar analysis of heat transfer and plane 

stress equations. Heat transfer is a scalar field problem, therefore, it will be used to 

facilitate the discussion on the development of the formulation. The effectiveness of 

the developed formulation is then tested by analysing the plane stress equations. All 

assumptions in heat transfer and plane stress equations holds. The material of the 

element assumed linearly elastic. The deflection of the element is considered small and 

the plane sections remained plane after deformation. 

For engineering applications, the formulation is used to analyse cellular beam 

problems with multiple web openings. Since the study focusses on the accuracy of 

irregular domain analysis, the geometric modelling of the cellular beam only consider 

the web region with openings without the flanges. 

Although one of the main advantages of the Meshfree method is the ease of 

treating the irregular arrangement of nodes in the refinement process, due to the 

structured nature of NURBS mapping, only uniform distribution of nodes is 

considered. Three types of Radial Basis Functions (RBFs) are considered in the 

construction of the Meshfree RPIM shape functions i.e. Multi-quadrics (RBF-MQ), 

RBF-Gaussian (RBF-EXP), and RBF-Thin Plate Spline (RBF-TPS). 

The study strictly involves mathematical derivations and computer 

programming, therefore the validation and verification of the works are carried out 

against standard benchmarking numerical method i.e. test patch and cantilever beam 

subjected to distributed vertical load. For cellular beam analysis, as no closed-form 

solution is available, the exact solution is estimated from established commercial FEM 

software i.e. COMSOL, set up with very fine mesh. The source codes of the developed 

formulations are written in MATLAB (Matrix Laboratory) programming language 

developed by MathWorks.    
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1.6 Outline of Thesis 

This present chapter gives a brief introduction to the issues of coupling 

methods for analysis and modelling into a single process. The concept of IGA and the 

role of NURBS basis functions have been briefly explained. An overview of the 

Meshfree methods and the shortcomings issues have also been discussed in detail 

within the body of the text. The proposed idea of coupling RPIM and NURBS 

formulation is highlighted and objectives of the study are presented at the end of the 

chapter.  

In Chapter 2, an extensive review of the development of CAD and FEM in the 

simulation-based design and the contribution in the construction industry is reviewed. 

The review starts with early development of the technology. Till then, the study area 

has been extended to the recent development of IGA and Meshfree methods. The 

second part of the review touches on the development of RPIM in various attempts in 

solving structural mechanics problems and a review on the development of cellular 

beams with multiple web openings.   

The shape function of numerical solution is the main parameters that give 

numerical methods their own characteristic. Therefore, in Chapter 3, the construction 

of RBFs and NURBS basis function are derived in a step-by-step manner. The 

discussion of the RBFs is based on three (3) typical RBFs, that is, Multi-quadrics 

(MQ), the Gaussian (EXP), and the Thin Plate Spline (TPS). The Kronecker delta 

property and the satisfaction of the partition unity are also demonstrated. The 

discussion on NURBS formulation is based on the B-spline basis functions. Some 

common objects in engineering are also used to demonstrate the advantages of NURBS 

basis functions.  

Chapter 4 presents the development of a novel formulation of Meshfree method 

based on RPIM with the integration of NURBS basis functions, namely N-RPIM. To 

facilitate the complexity of the discussion, the steady heat transfer differential equation 

will be used as a mathematical model. Finally, through a numerical example, i.e., 

quarter ring element, the concepts of the proposed method are reinforced. The code is 
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developed using MATLAB programming language and the results were verified 

against the established numerical methods, FEM. 

In Chapter 5, the formulation of N-RPIM is extended to plane stress problems. 

The chapter begins with the discretization of the plane stress partial differential 

equation (PDE) in to algebraic equations by Galerkin Weighted-residual Method. 

Numerical testing of various numerical parameters have been conducted and validated 

against benchmark problems i.e. cantilever beam subjected to distributed vertical load 

published by Timoshenko and Goodier (1951). Then, using the optimum values of the 

numerical parameters, the convergence rate of the N-RPIM methods is assessed. 

This is followed by Chapter 6, to use the methods developed in real engineering 

application. The method was extended to model cellular beams problems with multiple 

web openings. The beam is produced from an original I-section of 𝑈𝐵1016 × 305 ×

222. Then, it was designed using Cellbeam software by Westok Ltd. The beams 

analysis is performed by dividing the domain into patches known as unit cells. 

Therefore, the geometrical modelling of the cellular beams is based on unit cells, and 

connectivity array is used for assembling of the stiffness matrices and forces vectors. 

Results are compared with FEM for validation purposes. 

In Chapter 7, the capabilities of developed formulation and numerical 

modelling are studied and discussed. Summarises the development of the formulation 

and its capability in terms of applications. Effects of numerical parameters on the 

formulation accuracy are concluded and several recommendations for future works are 

suggested.
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