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ABSTRACT  

Magnesium (Mg) and its alloys have recently gained attention among 
researchers due to their excellent biodegradable and mechanical properties.  However, 
poor corrosion resistance of Mg and its alloys have limited their clinical application.  
Rapid corrosion of Mg and its alloys may cause an implant failed before the bone has 
fully restored. The aim of this research was to enhance corrosion resistance of 
biodegradable implant substrate that is suitable for biomedical applications.  
Multilayer coating of nano-powders HA/MgO were coated on AZ31 magnesium alloy 
substrate via electrophoretic deposition (EPD) technique.  A coating was obtained by 
applying suitable EPD process parameters (applied voltage and deposition time) and 
coating approaches (single layer coating and multilayer coating).  The results of 
coating behaviour were characterised by means of XRD, and SEM to examine the 
coating surface morphologies and their phases.  Coating performances of HA, MgO, 
and HA/MgO coating were studied by immersion test, potentiodynamic test, and 
electrochemical impedance spectroscopy where all done in-vitro.  Elemental analysis 
was carried out using EDS to verify that the composed elements are biodegradable and 
harmless to the human body.  The results obtained in this research suggested that 
corrosion resistance of a coated sample was affected by its particles distribution 
structure.  Particles distribution structure with higher compactness showed a 
homogeneous coating layer and smaller surface defects.  In general, the multilayer 
coating approach has outperformed the single coating approach by demonstrating a 
higher compactness particle distribution structure.  Corrosion results of each group 
were compared, and the optimum process parameters were determined.  The optimum 
process parameters for single layer coating HA, MgO and HA/MgO were 2min/10V, 
30V/1min, and 15V/1min, respectively.  On the other hand, the optimum number of 
layers for multilayer coating HA, MgO and HA/MgO were 5 layers, 3 layers, and 2 
layers, respectively.  It was also found that composite coating of HA/MgO has 
successfully inherited the benefits and limitations of each coating powder.  
Furthermore, defects such as agglomeration and cracks were found significantly 
reduced to a lower degree in multilayer coating approach.  Among all of the coated 
samples, Laco-HA/MgO 2 layers coated with 5V/10 min each layer showed the highest 
corrosion resistance.  The significant improvement in inhibition efficiency achieved 
99.76% against the uncoated AZ31.  Based on these results, it was concluded that this 
sample has a great potential for biodegradable orthopaedic application.  Lastly, it was 
recommended to conduct cell viability measurement, biological reaction, and 
cytotoxicity test on Laco-2 layers by biological field researchers in the future.   

.   
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ABSTRAK 

Aloi berasaskan magnesium (Mg) akhir-akhir ini mendapat perhatian 
penyelidik-penyelidik dengan sifat biodegradasi dan mekanikalnya yang sangat baik. 
Walau bagaimanapun, ketahanan kakisan yang lemah telah menghadkan penggunaan 
klinikalnya. Kakisan Mg yang cepat boleh menyebabkan kegagalan implan sebelum 
tulang pulih sepenuhnya. Tujuan penyelidikan ini adalah untuk meningkatkan 
rintangan kakisan aloi biodegradasi implan substrak untuk kegunaan bioperubatan. 
Komposit pelbagai lapisan serbuk nano HA / MgO telah disalut pada substrak aloi 
magnesium AZ31 dengan teknik pemendapan elektroforetik (EPD) untuk 
meningkatkan ketahanan kakisannya. Lapisan tersebut dihasilkan dengan 
menggunakan proses parameter yang sesuai (voltan dikenakan dan masa pemendapan) 
dan pendekatan salutan (lapisan tunggal dan lapisan pelbagai lapisan) menggunakan 
teknik EPD. Hasil tingkah laku salutan dicirikan dengan XRD, dan SEM untuk 
memeriksa morfologi permukaan lapisan dan analisis fasa. Kadar kakisan lapisan HA, 
MgO dan HA / MgO dikaji dengan ujian rendaman, ujian potentiodynamic, dan 
spektroskopi impedans elektrokimia secara in-vitro. Analisis unsur dijalankan 
mengunakan EDS untuk mengesahkan produk sampingan kakisan terbiodegradasi dan 
tidak berbahaya terhadap kepada manusia.  Hasil kajian menunjukkan bahawa 
ketahanan kakisan sampel bersalut dipengaruhi oleh struktur taburan partikel.  Struktur 
taburan partikel dengan kepadatan ketumpatan yang lebih tinggi menunjukkan lapisan 
yang sekata dan kecacatan permukaan yang lebih kecil.  Secara umumnya, pendekatan 
salutan pelbagai lapisan menghasilkan struktur taburan partikel dengan kepadatan 
ketumpatan yang lebih tinggi berbanding dengan lapisan salutan tunggal.  Hasil kadar 
kakisan setiap kumpulan dibandingkan, dan parameter proses optimum ditentukan.  
Parameter proses optimum salutan tunggal HA, MgO dan HA / MgO masing-masing 
adalah 2min / 10V, 30V / 1min, dan 15V / 1min. Sebaliknya, bilangan lapisan optimum 
dalam pendekatan lapisan pelbagai lapisan untuk HA, MgO dan HA / MgO adalah 5, 
3, dan 2 lapisan. Selain itu, didapati juga salutan komposit HA / MgO telah berjaya 
mewarisi faedah dan batasan setiap salutan.  Selanjutnya, kecacatan seperti 
penggumpalan dan retakan telah berkurang pada tahap pembentukan yang lebih rendah 
dengan pendekatan pelbagai lapisan.  Di antara semua sampel yang disaluti, 2 lapisan 
Laco-HA/MgO yang tersalut pada 5V/10min setiap lapisan menunjukkan ketahanan 
kakisan tertinggi.  Sampel ini telah menunjukkan peningkatan yang ketara dengan 
99.76% perencatan kecekapan berbanding dengan AZ31 yang tidak disaluti.  
Berdasarkan hasil kajian ini, disimpulkan bahawa, Laco-komposit 2 lapisan berpotensi 
besar untuk aplikasi ortopedik terbiodegradasi. Pada masa hadapan, pengukuran daya 
maju sel, tindak balas biologi dan pengukuran ujian sitotoksisiti disyorkan untuk 
dilakukan oleh penyelidik bidang biologi. 
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CHAPTER 1 
 
 
 

INTRODUCTION 

 Background of Research 

A massive number of orthopaedic implant surgeries were performed in 

worldwide each year [1].  In general, implant devices have been categorised as 

permanent implant or as a temporary fracture fixation [2].  Nowadays, the most 

common bioimplant metallic alloys used are titanium alloy, 316L stainless steel or 

cobalt-chromium alloys.  However, the limitations of these materials are (i) it required 

second time of surgery to remove the implant as the bone has healed,  (ii) relatively 

high stiffness caused bone shielding effect [3] and (iii) toxic level as if high 

concentration were used [4, 5].   

Magnesium and its alloy (Mg) have gained significant attention in 

biodegradable implant as a temporary fixation to solve the stated problems.  Mg 

possesses with superior mechanical properties, bioactivity and lightweight (density of 

1.77 g/cm3 which closer to natural bone 1.8-2.1 g/cm3).  Mg2+ ion is the fourth most 

abundant cation in human body to helps metabolism activities in human body [6, 7] 

and to stimulate new bone growth [8, 9].  In the meantime, the decomposition element 

of Mg2+ is harmless to human body [10].  AZ31 is one of the most potential based 

material that performed a biodegradable, non-toxic, excellent strength materials. 

Details of AZ31 is stated at section 2.3. 

However, Mg degrade rapidly in psychological environment (pH 7.4-7.6) has 

limited the use of Mg in orthopaedic applications.  High degradation rate of the implant 

causes mechanical failure by losing its mechanical strength before bone has fully 

restored [7].  For decades, researchers has been trying to study the variable methods 

and solutions to fulfil the requirement for biomedical applications [11].   



2 
 

Clinical concern is ambivalent on a biodegradable implant degradation rate 

[12].  On one hand, a slow degradation rate is preferred in the initial stage to maintain 

the mechanical strength and biological favour [13, 14].  On the other hand, fast 

degradation is preferred after the bone has been consolidated.  In principle, an implant 

shall not remain inside a human body for unnecessary long period of time [12]. 

Therefore, surface coating has become an interesting option where it could effectively 

to achieve ambivalent implant requirements [12].  

In this research, an AZ31 Mg alloy is coated by using electrophoretic 

deposition (EPD).  Other coating methods such as thermal spray, pulsed laser 

deposition, dip coating has the limitations of controlling the thickness, and high 

temperature coating process.  Therefore, EPD comes out as relatively outstanding nano 

powder ceramic coating technique, easy fabricate, cost effective, and an excellent 

choice for ceramic nano powders colloid deposition as compared to other coating 

methods [15].  Besides, EPD is a coating process that allow the coating at room 

temperature, and with flexible coating thickness which suitable for low melting point 

Mg substrate.  Many studies of EPD are relates to its kinetic movement of charged 

particles motion [16-19].  However, the studies on coating approach such as the effects 

of multilayer coating, the particles distribution of multilayer approach, the corrosion 

resistance by applying various layers have not been reported.   

Hence, the aim of this research was to study the effects on suitable coating 

parameters of single layer approach and effectiveness of multilayer coating approach 

on HA and MgO coating powder.  Nano powders size is used to enhance the fine 

dispersion of HA and MgO in the suspension.  HA is one of the most common coating 

powders applied on implant to increase it biological favour while MgO natural 

protectiveness of Mg based alloy.  A synthetic compact MgO coated on AZ31 with the 

purpose of increase it corrosion resistance.  Through studies, MgO not commonly 

applied by using wet coating method such as EPD due to its hygroscopic character.  In 

this research, the aim is not only applying MgO but also applying composite HA/MgO.   

Composite coating of HA/MgO with co-deposition and layer by layer with co-

deposition method (named as Laco) was introduced to performance on HA/MgO.  
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HA/MgO composite coating is coated to enhancing implant corrosion resistance and 

maintaining the biological stability at the same time.  Multilayer coating of HA/MgO 

is to increase the coating compactness of the composite.  Composite of HA/MgO with 

the advantages of enhancing biological favour and increase the corrosion resistance of 

the implant.   

In this research, the focus on corrosion of biodegradable implant.  Adhesion 

and substrate roughness of biodegradable coating are unlike permanent implant 

coating where the features of coating adhesion or roughness of substrate implant are 

not critical.  A biodegradable coating is meant to be dissolved during the process and 

bonded with the new bone growth.   

 Problem Statement 

A permanent implant is an implant that used to serve patient for the life span 

of the implant such as non-loading implant at joint.  A biodegradable implant material 

it is expected to exist in human body, as a load bearing implant until the bone fully 

recover.   

However, rapid corrosion behaviour of Mg in physiological environment has 

limited its clinical application.  It reacts with high concentration of chloride (Cl-) in 

aqueous environment, and form soluble MgCl2 and hydrogen gas, H2 as the by-

products.  Hydrogen gas evolved is harmless to human body but with a rapid corrosion, 

and considerable amount of H2 might resulting undesired inflammation and creates an 

empty space weaken the adhesion between the substrate with adjacent bone.  

Rapid corrosion also results the risk of implant failure.  Implant may lose its 

mechanical integrity before the bone has fully healed.  Patient might face unnecessary 

pain and cost due to implant failure and extend the healing time.  

Current coating methods are limited by low melting point substrate of 

magnesium in the range of 500-650°C.  In general, the ceramic coating powder 
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requires a sintering process around 1300-1500°C.  Coating such as HA on titanium are 

eligible to perform a high sintering process but it is not applicable on magnesium-

based material.  Room temperature coating methods without sintering process caused 

coating powder in a loosen and less compactness condition.   

Currently, a permanent implant material is applied with a biological favour 

coating material to increase it biological favour.  However, a single coating as such 

insufficient for a biodegradable material to act as a biological favour and increase the 

corrosion resistance at the same time.  A biodegradable implant is unlike the permanent 

implant which possesses with high corrosion resistance.  Hence, it may lead to implant 

failure during the healing process.   

Besides, the stress shielding effect remain the issue of permanent implant 

materials.  Stress shielding effect is the effect that caused the low density of new bone 

growth as the implant is relatively too stiff to human bone.  The healed new bone 

growth with low density may cause the bone too weak as compared to a healthy healing 

bone and without the strength that is supposed to support human activities.  

 Purpose of Research 

This research addressed the problems described above namely, to increase the 

corrosion resistance of the magnesium alloy to synchronize between degradation rate 

of a magnesium alloy biodegradable implant and restoration period of a fracture bone.  

Firstly, to obtain a successful coated suspension parameters nano powders 

hydroxyapatite (HA), magnesium oxide (MgO) and nano composite HA/MgO 

respectively.  Secondly, to investigate the effects of various process parameters of EPD 

coating on HA, MgO and HA/MgO for single coating layers approach for the corrosion 

protection of on bare material magnesium alloy (AZ31).  Thirdly, to determine the 

multilayer coating approach of HA, MgO and HA/MgO to demonstrate enhancement 

of corrosion resistance of AZ31.  Forth, to investigate the composite deposition of 

HA/MgO coating has influenced to the coating layer by complementary the limitation 
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embodied by each coating behaviour to increase the corrosion resistance by using 

multilayer coating approach.  

 Objectives of the Research 

The principal objective of the research to increase corrosion resistance of 

magnesium alloy AZ31 by using electrophoretic deposition (EPD) with nano 

hydroxyapatite (HA), nano magnesium (MgO) and nano HA/MgO composite coatings 

with single layer and multilayer approaches for biomedical applications.  Specific 

objectives include: 

(a) To study the effects EPD coating process parameters of applied voltage and 

deposition time of nano powders HA and MgO in terms of its surface 

morphologies relates to particles mobility rate, agglomeration, and particles 

distribution structures.  

(b) To investigate the effects of EPD multilayer coating approach of HA nano 

powders HA and MgO coating behaviour (surface morphologies examination, 

deposition yield measurement, and coating thickness measurement) and 

corrosion resistivity (evaluated by immersion test, potentiodynamic test, and 

electrochemical impedance spectroscopy).  

(c) To investigate the effects of co-deposition HA/MgO and Laco-deposition 

HA/MgO composite coating behaviour (surface morphologies examination, 

deposition yield measurement, and coating thickness measurement) and 

corrosion resistivity (evaluated by immersion test, potentiodynamic test, and 

electrochemical impedance spectroscopy). 

 Significance of the Research 

The significant study of the research is to enhance the corrosion resistance of 

Mg base alloys with easy fabricate, and cost saving method.  The experimental works 
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have undertaken, particularly in investigate the potential used of Mg biodegradable 

implant in extending knowledge and greater understanding level of electrophoretic 

deposition (EPD) and its possibility to increase the corrosion resistance.  

This research also intended to extend the possible solution for biodegradable 

implant to apply practically.  An extending of multilayer coating approach to produce 

a high compact density and corrosion resistance of Mg implant to replace permanent 

implant in temporary bone fixation applications.  Hence, cost saving, and less suffering 

would have been borne by patients to conduct second time surgery all around the world.  

The quantitative analysing data that have accumulated in depth with effects 

process parameters would provide valuable information for future research.  An 

extensive study on Laco coating approach of HA/MgO extend the possibility to coat 

on Mg and provide the solution of Mg rapid corrosion.   

 Scope of the Research 

The powder using are limited to nano hydroxyapatite (HA) at the length of 40 

nm and nano magnesium oxide (MgO) is limited at the radius of 20 nm.  Substrate of 

the research of Mg alloy AZ31 with the size of 30 x 10 x 3 mm and coated with 3.0 

cm2 effective surface area.  Electrophoretic deposition (EPD) as the only coating 

method in this research by the process parameters limit with voltage and deposition 

time. 

The responses on the effect of the coating protection on AZ31 were limited to 

the coating characterizations (microstructure, deposition yield, phase, and coating 

thickness), and corrosion behaviour (immersion test, potentiodynamic test, and 

electrochemical impedance spectrometry test).  Machines that used to investigate 

coating behaviours are including optical microscope, X-ray diffraction, scanning 

electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and 

potentiostat.  In addition, all corrosion performance of coated samples were 

investigated in in vitro condition only. 
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