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ABSTRACT 

In this research, three surfactants, namely cetyl trimethyl ammonium bromide 

(CTAB), sodium lauryl sulfate (SLS) and polysorbate-80 (Tween 80) have been 

examined as corrosion inhibitors for mild steel in absence and presence of a thiophene 

derivative (2-methyl thiophene) in 2 M hydrochloric acid (HCl).  The inhibition action 

was investigated through weight loss, potentiodynamic polarization technique and 

electrochemical impedance spectroscopy (EIS).  The morphology before and after 

placing mild steel in the corrosive media was studied by scanning electron microscopy 

(SEM).  The inhibition efficiencies of these inhibitors were found to be depended on 

surfactant concentration, immersion time and temperature.  Adsorption isotherm was 

tested with Langmuir, Freundlich and Temkin models.  It was found that the adsorption 

of surfactants CTAB/SLS/Tween 80 in absence and presence of 2-methyl thiophene 

on mild steel surface fitted best to the Langmuir adsorption isotherm.  From the 

polarization curve, the inhibition of surfactants in presence of 2-methyl thiophene was 

observed to be a mixed type.  The interactive effects of inhibitor immersion time, 

temperature and concentration were optimized for maximum response of inhibition 

efficiency using Response Surface Methodology (RSM) based on Historical Data.  The 

potential of zero charge (PZC) at the metal-solution interface was determined for 

surfactants in absence and presence of 2-methyl thiophene to provide the mechanism 

of inhibition.  The positive value of Antropov’s “rational” corrosion potential (Er) for 

all the surfactants with respect to potential of zero charge (EPZC) suggested that mild 

steel surface is positively charged at open circuit potential in the presence of these 

inhibitors.  So, the most efficient surfactant in presence of 2-methyl thiophene as 

corrosion inhibitor follows this sequence: SLS > CTAB > Tween 80.  
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ABSTRAK 

Dalam penyelidikan ini, tiga surfaktan iaitu sitil trimetil ammonium 

bromida (CTAB), natrium lauril sulfat (SLS) dan polisorbat-80 (Tween 80) telah 

dikaji sebagai perencat kakisan bagi keluli lembut dengan ketiadaan dan kehadiran 

terbitan tiofena  (2-metil tiofena) di dalam asid hidroklorik (HCl) 2 M.  Tindakan 

perencatan telah dikaji melalui teknik pengurangan berat, teknik pengutuban 

potensiodinamik dan spektroskopi impedans elektrokimia (EIS).  Morfologi 

sebelum dan selepas meletakkan keluli lembut di dalam media mengakis telah dikaji 

dengan mikroskopi electron pengimbas (SEM).  Kecekapan perencatan perencat-

perencat ini didapati bergantung kepada kepekatan surfaktan, masa rendaman dan 

suhu. Isoterma penjerapan telah diuji dengan model Langmuir, Freundlich dan 

Temkin.  Didapati penjerapan surfaktan CTAB/SLS/Tween 80 dengan ketiadaan 

dan kehadiran 2-metil tiofena pada permukaan keluli lembut adalah paling sesuai 

dengan isoterma penjerapan Langmuir.  Daripada lengkung pengutuban, didapati 

perencatan surfaktan dengan kehadiran 2-metil tiofena adalah jenis campuran.  

Kesan interaktif masa rendaman, suhu dan kepekatan perencat telah dioptimumkan 

untuk gerak balas maksimum kecekapan perencatan menggunakan kaedah 

permukaan gerak balas (RSM) berdasarkan data sejarah.  Keupayaan cas sifar (PZC) 

pada antara muka logam-larutan telah ditentukan bagi surfaktan dengan ketiadaan 

dan kehadiran 2-metil tiofena untuk memberi mekanisma perencatan.  Nilai positif 

keupayaan kakisan Antropov "rasional" (Er) bagi setiap surfaktan terhadap 

keupayaan cas sifar (EPZC) mencadangkan bahawa permukaan keluli lembut adalah 

bercas positif pada keupayaan litar terbuka dengan kehadiran perencat-perencat ini.  

Jadi, surfaktan yang paling cekap dengan kehadiran 2-metil tiofena sebagai perencat 

kakisan adalah mengikut urutan berikut: SLS> CTAB> Tween 80. 
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INTRODUCTION 

1.1 Introduction 

Nowadays, many industries used pipelines as a means of transportation.  For 

instance, pipeline is widely used to transport petroleum.  It has a lot of benefits since 

it can transport any stable chemical through it.  Yet, metal pipeline are prone to 

corrosion especially in the presence of acid.  Many studies have been done in order to 

prevent these phenomena from happening.  One of the efficient ways to solve this 

problem is by using corrosion inhibitor. 

Many kinds of corrosion inhibitors have been employed [1].  Corrosion 

inhibitors have many interests in research for centuries [2-4].  Inhibitor is one 

significant method to overcome corrosion in aggressive media.  One of the main 

functions of the inhibitor is to remove water molecule or any existence corrosion-

active species from the metal surface and have the ability to interact with anodic and 

cathodic reaction sites in order to retard the oxidation and reduction process. 

Generally, corrosion occurred in the presence of oxygen and water and 

involving oxidation and reduction processes at anodic and cathodic site of reaction, 

respectively [5]. Inhibitors can be classified into four types, that are (i) inorganic 

inhibitor, (ii) organic inhibitor, (iii) surfactant inhibitor and (iv) mixed material 

inhibitors. 

Organic compounds have been widely used as a corrosion inhibitor as it 

contains nitrogen, sulfur and oxygen atoms and an aromatic ring [6].  Heteroatom and 

aromatic rings act as a reaction center of the adsorption process [7].  The role of the 

inhibitor is to substitute water on the surface of metal as well as to prevent an oxidation 
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and reduction from occurring.  It will react with anodic and cathodic reaction site at 

the surface.  Furthermore, it prevents water and corrosion-active species to get onto 

the surface of metal [8]. 

It was found that surfactant plays an important role in the inhibition process by 

adsorbing itself onto the metal surface via their functional groups [8]  Surfactant 

inhibitor can be divided into four types: Normally, surfactant has a hydrophilic (water 

loving) and a hydrophobic (water hating) part.  It is capable of reducing surface tension 

at the metal surface without using a high concentration of surfactant.  Many researchers 

have showed that surfactant is capable of inhibiting the corrosion [9-14]. 

1.2 Class of Surfactants 

 The surfactant can be divided into three classes, depends on used intention and 

preferences. 

(i) Used as emulsifiers, foaming agents, wetting agents, dispersants, etc. 

(ii) Based upon the specific chemical structure of its hydrophobic and 

hydrophilic part (eg, oxygen, nitrogen, amide and sulfonamide). 

(iii) Based on the charge carried by the surface-active part of the molecules; 

anionic, cationic, nonionic and amphoteric (and zwitterionic), which are 

commonly known in industry. 

1.3 Types of Surfactants 

 Surfactants can be classified into four types, which are anionic, cationic, 

nonionic and amphoteric (zwitterionic) surfactants. It depended on their head group 

charge. 
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(i) An anionic surfactant is the reaction product of an organic compound such as 

a high molecular weight or alcohol with an inorganic compound such as 

sodium hydroxide or sulfuric acid, yielding a product wherein the hydrophilic 

head group carries the negative charge such as carboxyl (RCOO-), sulfonate 

(RSO3
-), or sulfate (ROSO3

-).  The anionic surfactants have the advantage of 

being high and stable foaming agents.  Sodium lauryl sulfate (SLS) acts as an 

inhibitor on corrosion of mild steel in hydrochloric acid shows very good in 

efficiency [5].  Whereas, the synthesized anionic surfactant with phosphate 

group by Tawfik [15] showed increasing in inhibition efficiency with 

increasing the inhibitor concentration. 

(ii) Cationic surfactants are formed in reactions where alkyl halides react with 

primary, secondary, or tertiary fatty amines.  The hydrophilic group has a 

positive charge.  Cationic surface-active materials will be adsorbed on the 

positive charge surface by electrostatic force and neutralized the surface 

charge.  Cationic surfactants are too expensive but have some special properties 

such as germicidal action, which make them useful for certain special 

applications. 

(iii) Amphoteric surface-active material can form anionic or cationic when add to 

water and depends on the pH system used.  This surfactant has both the anionic 

and cationic ends and this type of surfactant normally has an amino and 

carboxylate group.  Amphoteric surfactants are mostly used in the production 

of shampoo and personal care product because it is not too strong. 

(iv) Nonionic surface-active agents have a hydrophobic/hydrophilic balance.  

Examples include polyoxyethylenated alkylphenols, alcohol ethoxylates, 

alkylphenol ethoxylates and alkanolamides.  These surfactants have the 

advantage that they are not affected by water hardness or pH change as the 

anionic and cationic surfactants are. 
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1.4 Physical Adsorption 

Physical adsorption or physisorption is well known as a weak molecular forces 

knowing as van der Waals forces that occurred between the adsorbate and the 

adsorbent.  In this study, adsorbate is referring to inhibitor ions or dipoles, while 

adsorbent is the electrically charged surface metal.  During the adsorption process, the 

electrical double layer is occurred between the metal/solution interfaces giving the 

surface charge to the metal.  There is no bond broken or formed during the adsorption 

process.  In physisorption, multilayer of adsorption might occur.  

One of the examples that can explain the concept above is the inhibition 

process occurred between cationic inhibitor and the metal surface in acidic media.  As 

we know, in acidic solution, there is an existence of halide ions.  At the beginning, 

these halide ions was oriented dipoles adsorb on the metal surface giving the negative 

charge of the surface metal.  This phenomena will increase the adsorption of the 

cationic inhibitor to the metal surface due to electrostatic forces occurred. 

1.5 Chemical Adsorption 

The other type of bonding/forces occurred at the metal/inhibitor interface is 

chemical adsorption or chemisorption.  This adsorption involved a strong covalent 

bond, which is there are bonds broken and formed during the process.  Normally, the 

chemisorption process occurred at high temperature because its required high 

activation energy in order to allow bonds broken or bonds forming.  The chemisorption 

process is more slowly compared to the adsorption process. 

The of nature of the metal and inhibitor plays an important role in 

chemisorption process due to charge sharing or charge transfer that might occurred 

during the process.  Inhibitors having an aromatic ring and heteroatom such as 

nitrogen, sulfur and oxygen atoms will increase the probability of the electron transfer 

occurred between these inhibitors and the metal surface that having vacant, low-energy 

electron orbitals.  The electron transfer occurred due to the lone-pair electrons or π 
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electrons of the inhibitors that will react as a reaction center during the chemisorption 

process. 

1.6 Background of Study 

Corrosion is the commonly known as metal deteriorates.  The corrosion process 

takes place when the metal is having a contact with oxygen or water molecule.  The 

process involved at both anodic and cathodic sites of the surface metal, which is the 

oxidation and reduction process occurred.  This process is known as electrochemical 

process, having the same features as a battery. 

In many industries, corrosion of metallic materials in acidic media has cost a 

lot of money.  In order to reduce the cost, the use of corrosion inhibitors have become 

interest and many kinds of inhibitor have been developed and well analyzed according 

to the types of metal and corrosive media.  Organic inhibitor is well known in acid 

corrosion due to its aromatic ring and heteroatoms (nitrogen, sulfur and oxygen atom) 

involved.  Aromatic ring and heteroatom are believed to have the ability to remove the 

water molecule or any corrosive-active species from the metal surface.  The good 

inhibitor must have an interaction with anodic and cathodic sites of the metal in order 

to retard the oxidation and reduction process. Hence, it can prevent the corrosion from 

occurring [16]. 

Besides organic inhibitor, surfactant inhibitor has a lot of attention too because 

of the chemical structure of its head group.  Surfactant inhibitor can inhibit the 

corrosion process by either physisorption (electrostatic) or chemisorption process.  It 

depends on the charge of the metal surface and head groups of the surfactant [16].  The 

use of surfactant inhibitor has proven to reduce the corrosion rate of metals in acidic 

media and became the main reason why the adsorption studies of inhibition process of 

surfactant inhibitor has a lot attention and considerable importance [17, 18].  
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1.7 Problem Statement 

Mild steel has been applied in many industries because of its good mechanical 

properties and reasonable cost.  However, the corrosion process of mild steel in acidic 

media cannot be avoided.  Hence, the use of corrosion inhibitor can reduce the 

corrosion rate or protect the steel surface from the acidic media.  The most popular 

used corrosion inhibitors are organic inhibitors due to its aromatic ring and 

heteroatoms (nitrogen, sulfur and oxygen atom). 

Thiophene derivatives have been widely used as organic inhibitors.  Thiophene 

derivative, namely 2-methyl thiophene will be used and investigate in this study in 

order to inhibit the corrosion process of mild steel.  This thiophene derivative was 

chosen because of its heterocyclic compound containing sulfur atoms that believe have 

the ability to retard the oxidation and reduction process involved at the steel surface. 

Heterocyclic compounds represent a potential class of corrosion inhibitors.  Moreover, 

high molecular weight organic compounds, for instance surfactants, have become an 

attraction in corrosion field.  Besides, surfactants also is expected to have a high 

efficiency as a corrosion inhibitor in acidic media due to its long hydrocarbon chain 

that can help the adsorption of surfactant inhibitor on the steel surface with high 

surface coverage.  Hence its efficiency will improve.  According to Rosen [19], mixed 

surfactants have been widely used in industrial applications.  However, very few 

studies have been devoted to mixed inhibitors of surfactant and organic compound.  

The aim of this work is to study the inhibition effect of three types of surfactant 

(Cetyl trimethylammonium bromide (CTAB), Sodium lauryl sulfate (SLS) and 

Polysorbate 80 (Tween 80)) in absence and presence of 2-methyl thiophene on mild 

steel in 2 M hydrochloric acid (HCl) in order to improve the protective action of the 

inhibitor, thus, enhance the inhibition efficiency as corrosion inhibitor.  This study will 

be extended to study the mechanism involved at metal interface by determined its 

potential of zero charge (Epzc) using electrochemical impedance spectroscopy (EIS) 

method. 
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1.8 Objectives of Study 

The aim of this work is:  

1) To investigate the inhibition action of surfactants (CTAB, SLS and Tween 80) 

in absence and presence of 2-methyl thiophene against corrosion of mild steel 

in 2 M HCl using weight loss method, potentiodynamic polarization technique 

and electrochemical impedance spectroscopy (EIS), 

2) To investigate the effect of various concentrations of surfactants (2 ×10-5 M - 

1×10-3 M of CTAB and 1×10-4 M - 5×10-3 M of SLS and Tween 80), immersion 

time (2-6 hours) and temperature (303 K – 363 K) in absence and presence of 

2×10-5 M methyl thiophene on inhibition efficiency using historical data of 

Response Surface Methodology (RSM), 

3) To postulate the mechanism of corrosion inhibition by the surfactants in 

absence and presence of 2-methyl thiophene by determined the potential of 

zero charge (Epzc) of mild steel using electrochemical impedance spectroscopy 

(EIS) method. 

1.9 Scope of Study 

In this research, the surfactants (CTAB, SLS and Tween 80) in absence and 

presence of 2 × 10-5 M methyl thiophene will be used as inhibitors on mild steel under 

various concentrations of surfactants (2 × 10-5 M – 5 × 10-3 M), immersion time (2-6 

hours) and temperature (303 K – 363 K).  The inhibitors will be tested on mild steel in 

2 M hydrochloric acid (HCL) solutions and its efficiency will be investigated under 

different experimental conditions using weight loss method, potentiodynamic 

polarization techniques and electrochemical impedance spectroscopy (EIS).  In 

addition, the synergistic effects will be discussed when the thiophene derivative was 

added to the corrosive solutions containing various concentrations of CTAB, SLS and 

Tween 80. Thiophene derivative was chosen because of its sulphur atom in 
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heterocyclic compounds has proved very good for inhibition of metal corrosion in 

acidic solutions.  The results obtained from weight loss method will be optimizing 

using Response Surface Methodology (RSM) in order to study the interactive effects 

of inhibitor concentration, time and temperature for maximum response of inhibition 

efficiency.  The surface morphologies of mild steel will be observed by Scanning 

electron microscopy (SEM).  Besides, the mechanism involved at the metal-solution 

interface will be elucidated by the potential of zero charge (PZC) data from EIS.   

1.10 Significance of Study 

This study is expected to elucidate the mechanism of inhibition by surfactants 

in absence and presence of thiophene derivative and explain the observed inhibition 

efficiency of inhibitors on mild steel in acid medium.  In the current study the 

efficiency of surfactants (CTAB, SLS and Tween 80) in addition of 2-methyl 

thiophene on mild steel is expected to enhance corrosion inhibition with increasing 

concentration of the surfactants. 
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