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ABSTRACT 

 

 

Lead Pb(II) is challenging environment to study because it has electron lone 

pair, coordination number would vary from 2 to 10. The current study chooses 

chlorine, oxygen and bromine as coordination atoms because it bonded with one type 

of element in single crystal. The present research work is focused, to study the 

impact of electron lone pair on coordination number (CN), bond length and bond 

valence sum(BVS). The coordination number is the number of atom attachment with 

cation, which represents the central atom. The sample of the study includes 388 sites 

of Pb(II). Analysis of those sites consist of three types of single crystals; 44 of 

single-crystal Pb-O, 24 of single crystal Pb(II)-Cl and 18 of single crystal Pb(II)-Br 

(Uses for that different programs like Origin, Excel, Avogadro and Crystal Maker). 

Deduced through the graph (coordination number-frequency) lead prefers to bond 

with two or eight atoms of oxygen. Also, it is noted that lead prefers to bond with 

two atoms of chlorine while prefer to bond with five or six atoms of bromine. The 

pattern that lead follows in (coordination number-frequency), (bond length-

frequency) and (bond valence sum-frequency) indicate that high value of bond length 

offset low bond valence sum and high coordination number while the low value of 

bond length offset high bond valence sum and low coordination number. This 

interpretation is according to distortion theory. Study correlations (LP magnitude –

coordination number), (LP magnitude – bond length R) and (LP magnitude – bond 

valence sum) lead to confirm that the presence electron lone pair spread the values of 

coordination number, bond length and bond valence sum. The graph of coordination 

number energy is confirm on the fact that the crystal prefers a specific coordination 

number to be stable(less energy). Lone pair divided in two types active lone pair and 

non-active lone pair. When LP magnitude = 0, lone pair will not be active and there 

are symmetric bonds while when LP magnitude > 0, LP will be active and non –

symmetric bonds.   
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ABSTRAK 

 

 

Plumbum Pb(II) adalah sukar untuk dikaji di alam sekitar kerana mempunyai 

elektron pasangan tersendiri, nombor koordinatan berubah antara 2 ke10. Kajian ini 

tertumpu dalam mengkaji impak elektron pasangan tersendiri terhadap nombor 

koordinatan (CN), panjang ikatan, dan ikatan valens (BVS). Sampel kajian terdiri 

daripada 388 tapak Pb(II). Analisa terhadap tapak tersebut mendapati 3 jenis hablur 

tunggal, yang terdiri daripada 44 hablur tunggal Pb-O, 24 hablur tunggal Pb(II)-Cl dan 

18 hablur tunggal Pb(II)-Br. Kajian ini telah menggunakan perisian seperti, Origin, 

Excel, Avogadro and Crystal Maker. Deduksi daripada graf (frekuensi nombor 

koordinatan), Plumbum gemar mengikat dengan dua atau lapan atom oksigen. Begitu 

juga, Plumbum juga gemar mengikat dengan 2 atom klorin disamping mengikat 

dengan 5 atau 6 atom Bromin. Corak yang dikuti Plumbum berdasarkan graf frekuensi 

nombor koordinatan, frekuensi panjang ikatan, dan jumlah ikatan valens, 

menunjukkan nilai yang tinggi bagi pajang ikatan menyebabkan ofset terhadap jumlah 

ikatan valens yang rendah dan nombor koordinatan yang tinggi. Di samping itu, nilai 

pajang ikatan yang rendah menyebabkan ofset pada jumlah ikatan valens yang tinggi 

dan nombor koordinatan yang rendah. Tafsiran ini adalah berdasarkan Distortion 

Theory (Teori penyelewangan). Seterusnya, kajian terhadap korelasi magnitud LP - 

nombor koordinatan (LP magnitude –coordination number), magnitude LP – panjang 

ikatan  R (LP magnitude – bond length R) dan magnitude LP – jumlah ikatan valens 

(LP magnitude – bond valence sum) mengesahkan kehadiran elektron pasangan 

tersendiri menyebabkan rebakan pada nilai-nilai nombor koordinatan, panjang ikatan, 

dan jumlah ikatan valens. Plot graf bagi nombor koordinatan dan tenaga mengesahkan 

bahawa hablur mengutamakan nombor koordinatan yang spesifik bagi pengstabilan 

(tenaga rendah). Pasangan bersendiri dibahagikan kepada dua jenis yang terdiri 

daripada pasangan bersendiri-aktif dan pasangan bersendiri-tidak aktif. Akhir sekali, 

apabila magnitud LP = 0, pasangan bersendiri menjadi tidak aktif dan ikatan yang 

simetri terjalin. Selain itu, sekiranya magnitude LP > 0, pasangan bersendiri menjadi 

aktif dan ikatan tidak simetri terjalin. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

In the second half of 19th-century scientists developed, a new concept in 

chemistry called the valency. The valency of an atom is defined as a degree of 

electron sharing when an atom is bonded with other atoms or group of atoms to form 

chemical bonds. 

 

The development of valency leads us to new theories of chemical bonding 

including Lewis structure (1916), valence bond theory (1927) and valence shell 

electron pair repulsion (VSEPR) theory (1958). All these theories have helped the 

scientists to determine the factors that affect the molecular shapes. 

 

Therefore, understanding these factors are important for predicting stable 

structures. Nowadays, all of these attempts unite lab experiments and computer 

simulation to obtain a stable crystal structure (Adams, 2014). 

 

What controls structure stability? Pauling in 1929 advises us to study the 

behavior of bond length to find the answer. In 1979, Glasser tried to find the answer 

why some compounds exist while others cannot? Questions like those push us deeper 

into the structural world (Gagne, 2015). In 1957, Gillespie and Nyholm explained the 

influence of lone pair in the dimensional shape of molecular which is known as 

valence shell electron pair repulsion (VSEPR) theory.   

 

In 1988, Brown used the Pauling radius ratio to find coordination numbers, 

which represents the number of anions that bonded with the central atom. 

Coordination number is equal to the cation radius divided by anion radius. He 

explained that energy reaches to the lowest possible energy at a specific distance 

between the two bonded atoms (Brown, 1988). The following year, endeavor Victor 
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and Wolfgang studied the effect of electron lone-pair on nuclear spin-spin coupling 

constants (Gil and Philipsborn, 1989).     

 

Research did not stop there but sought other relevant studies. In 1998 Liat 

Shimoni and others studied the influence of lone electron pair in  Pb2+ and as a result, 

the relationship between lead crystal geometry and the coordination number was 

found (Shimoni-Livny et al., 1998).  

 

 In 2005, Aron Walsh and Greame studied the effect of active lone pair on 

PbO and PbS. The researchers reached a conclusion that lone electron pair was not 

the reason for distortion of Pb(II) crystal but because of electron density (Walsh and 

Watson, 2005). Joseph and others studied compound Na3[Pb( 1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetate)]NO3.2H2O the shape of single crystal 

Pb(II)-O under influence of a stereochemically active lone pair (Nugent et al.,2015). 

Given this disparity on the effect of the electron lone pair, the current study attempt 

to remove uncertainty on this dimension. 

 

The current study is a continuation of research conducted on lead Pb(II). The 

main goal is to study the influence of lone electron pair on Pb(II) when lead forms a 

bond with Br, Cl, and O. Current thesis achieves object by analysis of the Inorganic 

Crystal Structure Database (ICSD) which, related to Pb(II)-Cl, Pb(II)-Br and Pb-O, 

this will be applied to analyze data using programs like Origen, Avogadro, and 

EXCEL.  

 

 

 

1.2 Problem Statement 

 

A previous study focused on the impact of electron lone pair on the geometry 

of a single crystal which includes Pb(II). Gagne and Hawthorne studied groups of ion 

bonded to oxygen, which has active lone pair (Gagne and Hawthorne, 2016). The 

study mentioned that there is a weak correlation between bond length and 

coordination number. Furthermore, Gagne and Hawthorne provided a statistical 
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study when they deal with coordination number, bond valence and bond length 

(Gagne and Hawthorne, 2016) 

 

Another study for the same researcher studied 84 configurations of the 

lanthanide ions bonded to oxygen (Gagne, 2018). In addition to these, there is no 

illustration of the electron lone pair role towards the distortion of bond-length and 

bond valence (Gagne, 2018). In addition to this, another study showed variation of 

the value of bond-length especially for ion that has stereoactive lone pair electron but 

they did not introduce convincing explanation about that (Gagne and Hawthorne, 

2018). Furthermore, Gagne and Hawthorne study confirms there is no relationship 

between lone pair stereoactivity and coordination number (Gagne and Hawthorne, 

2018). 

 

 Gagne and others(2018) also mentioned that there is no strong correlation 

between lone pair and coordination number (Gagne et al., 2018). In addition, the 

same situation happened between bond valence sums at the central cation and 

electron lone pair (Gagne and Hawthorne, 2018). Walsh and others deduced the 

distorted Pb(II) crystal geometry not for lone pair but for the reason of electron 

distribution surround lead atoms (Walsh et al., 2011).  

 

On the other hand, Orgel (1959) explained lone pair distortion through the 

mixing of non-bonding s and p orbitals. In this model, the distorted coordination 

around lone pair cations was explained by the hybridization (Orgel, 1959). 

Baranyi(1977) found that there is an influence of lone pair on spread of values of 

coordination number(Baranyi et al., 1977).  A linear correlation between mean bond 

length and coordination number was observed in the presence of lone pair (Fabini et 

al., 2016). Valadbeigi(2018) was studied the interaction of H2O, H2S, H2Se, NH3, 

PH3, and AsH3 with cations H+, CH3+, Cu+, Al3+, Li+, Na+, and K+ from the energetic 

and structural viewpoint. He was deduced that the lone pair change(H-M-H) 

angles(M=N, P, As, O, S and Se) (Valadbeigi et al., 2018). 

 

Studies agree that electron lone pair play an important role in crystal 

geometry. On the other hand, others did not explain the mechanism by which this 

effect occurs. In general, most of the research focuses on increasing the quantity of 
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data by use of statistics when dealing with these topics. Often the interpretation is 

done on a statistical basis, without reference to previous theories such as distortion 

theory or VSPER theory. Most previous studies did not study the effect of electron 

lone pair (ELP) on coordination number, bond valence sum and bond length in 

different parameters. The current study will show the effect of lone pair by using 

bond valence method to determine coordination number (CN) and bond valence sum 

in different bond valence parameters. 

   

 

 

1.3 Objective of the Study 

 

This study focuses on bonds of Pb(II)-O, Pb(II)-Cl and  Pb(II)-Br to reach the 

following primary objectives: 

i. Finding the distribution of the frequency of bond valence sum(BVS), 

coordination number(CN), and bond length(Rij)  

ii.  Studying  the relationship between lone pair(LP) magnitude and (CN, BVS, 

bond length) 

 

 

 

1.4 Scope of the Research    

 

The scope of the study is limited on Pb2+ bonded with O2-, Br- and Cl- only. 

Lead Pb(II) is challenging environment to calculate bond valence sum because of all 

bonds formed by Pb(II) not equal. The current study focuses on oxygen, bromine, 

and chlorine because it bonded with one type of atom (central atom) in a single 

crystal. This work use bond valence method to find bond valence sum and 

coordination number. The parameters (Ro, b) and observed bond length (Rij) will 

apply in bond valence method equations, which obtain from www.iucrj.com only. 

Programs Crystal Maker, Origen, and Avogadro analyse the data and plot 

correlations. 

 

 

http://www.iucrj.com/
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1.5 Research Significance 

 

This study is one of the studies that sought about the factors affecting the 

crystal form. The importance of this study is that it deals with the impacting electron 

lone pair on coordination number (CN), bond valence sum (BVS), bond distance (R). 
This work opens the door to clear understanding of the effect of electrons lone pair in 

the crystal.  
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