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ABSTRACT 

 

In this study, the influence of two types of metallic (bimetallic) nanoparticles 

(NPs) including the pure silver (Ag) and titania (TiO2) on the feasibility of improving 

the self-cleaning properties of some silicate zinc tellurite glasses were determined. To 

achieve this goal, the best from 3 series of glasses with the composition of (79.93-z) 

TeO2 + 20ZnO + 0.06 SiO2 + 0.01TiO2 + z Ag, where (0.01 ≤ z ≤ 0.05 mol%) were 

prepared via the standard melt-quenching method. As-quenched samples were 

characterized using diverse analytical measurements. The role of the varying Ag NPs 

and TiO2 NPs (fixed content) on the hydrophobic and hydrophilic properties of the 

proposed glasses was evaluated. Highly transparent samples were obtained. The 

physical properties of the glasses such as the density, molar volume, theoretical 

crystalline volume, ionic and oxygen packing density of the best sample (S13) 

corresponded to 6.632 gcm-3, 21.716 cm3 mol-1, 12.729 cm3 mol-1, 0.586 and 82.946 

molL-1, respectively. The surface plasmon resonance (SPR) absorption bands of these 

NPs were probed using the UV-Vis-NIR absorption spectroscopy. The X-ray 

diffraction (XRD) patterns verified the amorphous nature of the as-quenched samples. 

The energy dispersive X-ray (EDX) spectral analyses revealed the presence of the right 

elements in the composition. The scanning tunneling microscopy (STM) images and 

selected area electron diffraction (SAED) patterns confirmed the existence of the Ag 

and TiO2 NPs inside the glass matrix. The measured thermal parameters (the glass 

transition, crystallization, and melting temperatures) of the samples obtained using the 

differential thermal analyzer (DTA) exhibited their good thermal stability over a wide 

glass formation region. The recorded Fourier transform infrared (FTIR) spectra of the 

glasses were complemented via the Raman analysis. The mechanical properties of the 

studied glasses including the Vickers hardness, fracture toughness, and brittleness 

were calculated which showed optimum values of 3268.08 MPa, 4.794 MPa mm1/2, 

and 681.76 MPa mm1/2, respectively for the S13 sample. The surface structure, texture, 

and morphology of the samples were evaluated using the field-emission scanning 

electron microscopy (FESEM), atomic force microscopy (AFM) and water contact 

angle (WCA) measurements. The experimental results on the self-cleaning traits 

(WCA and surface tension) of the glasses were compared with the theoretical 

calculation using the Young, Young-Dupre, Wenzel and Cassie-Baxter models. The 

sample S3 disclosed hydrophobic nature (with Young WCA of 112.39°) and the 

sample S6 displayed hydrophilic nature (with Young WCA of 86.27°) when included 

with TiO2 NPs. It is affirmed that by manipulating the Ag NPs and TeO2 concentrations 

in the proposed glasses, an improved self–cleaning properties can be achieved. The 

S13 sample showed the optimum hydrophobic traits with normalized roughness of 

0.733 Nm; WCA of Young 97.47°, Wenzel 95.47°, Cassie-Baxter 130.13°. The 

optimal surface tension for the Young, Wenzel and surface energy of Young-Dupre 

for the S13 sample corresponded to 0.1727 Nm-1, 0.1761 Nm-1, and 0.0626 Nm-1, 

respectively.  The results were analyzed, interpreted, compared and discussed. The 

mechanism behind the nanoparticles inclusion in assisting the improvement of the self-

cleaning characteristics was understood. 



 

 

vi 

 

ABSTRAK 

 

Dalam kajian ini, pengaruh dua jenis nanozarah logam (dwilogam) termasuk 

perak tulen (Ag) dan titania (TiO2) ke atas kemungkinan untuk memperbaiki sifat 

pembersihan-diri bagi beberapa kaca silika zink tellurit telah ditentukan. Untuk 

mencapai matlamat ini, sampel terbaik dari tiga siri kaca dengan komposisi (79.93-z) 

TeO2 + 20ZnO + 0.06 SiO2 + 0.01TiO2 + z Ag, dimana (0.01 ≤ z ≤ 0.05 mol%) telah 

disediakan dengan menggunakan kaedah lindap-kejut leburan. Sampel yang dilindap-

kejut telah dicirikan menggunakan pelbagai pengukuran analitik. Peranan perubahan 

nanozarah Ag dan TiO2 (kandungan tetap) pada sifat hidrofobik dan hidrofilik kaca 

yang diusulkan telah dinilai. Sampel yang tersangat lutsinar telah diperolehi. Sifat 

fizikal kaca seperti ketumpatan, isipadu molar, isipadu teori hablur, ketumpatan 

pemadatan ion dan oksigen bagi sampel terbaik (S13) berpadanan dengan to 6.632 

gcm-3, 21.716 cm3 mol-1, 12.729 cm3 mol-1, 0.586 dan 82.946 molL-1 masing-masing. 

Jalur penyerapan resonans permukaan plasma bagi nanozarah ini disiasat 

menggunakan spektroskopi UV-Vis-NIR. Corak pembelauan sinar-X (XRD) 

mengesahkan keadaan amorfus sampel kaca terlindap-kejut. Analisis spektrum 

serakan tenaga sinar-X (EDX) mendedahkan kehadiran unsur yang betul dalam 

komposisi. Imej mikroskopi pengimbasan penerowongan (STM) dan corak 

pembelauan elektron kawasan terpilih mengesahkan kehadiran nanozarah perak dan 

titania di dalam matrik kaca. Parameter terma (suhu transisi kaca, suhu penghabluran 

dan suhu peleburan) bagi sampel yang diukur telah diperoleh menggunakan 

penganalisa terma pembeza (DTA) mempamerkan kestabilan terma yang baik bagi 

julat pembentukan kaca yang luas. Spektrum inframerah transformasi Fourier (FTIR) 

kaca yang direkodkan telah dilengkapkan oleh analisis Raman. Sifat-sifat mekanikal 

kaca yang dikaji termasuk kekerasan Vickers, keliatan patah and kerapuhan telah 

dikira yang mana menunjukkan nilai optimum masing-masing 3268.08 MPa, 4.794 

MPa mm1/2, dan 681.76 MPa mm1/2, bagi sampel S13. Struktur permukaan, tekstur dan 

morfologi sampel telah dinilai menggunakan mikroskopi elektron pengimbasan-

medan (FESEM), mikroskopi daya atomik (AFM) dan pengukuran sudut sentuh air 

(WCA). Keputusan eksperimen bagi ciri-ciri pembersihan-diri (WCA dan ketegangan 

permukaan) kaca dibandingkan dengan pengiraan teori dengan menggunakan model-

model Young, Young-Dupre, Wenzel dan Cassie-Baxter. Sampel S3 mendedahkan 

sifat hidrofobik (dengan Young WCA 112.39°) dan sampel S6 mempamerkan sifat 

hidrofilik (dengan Young WCA 86.27°) apabila ditambah dengan nanozarah TiO2. 

Adalah disahkan bahawa dengan memanipulasikan kandungan nanozarah Ag dan 

TeO2 dalam kaca yang diusulkan, peningkatan ciri-ciri pembersiha- diri dapat dicapai. 

Sampel S13 menunjukkan ciri-ciri hidrofobik optimum dengan kekasaran normal 

0.733 Nm, Young WCA 97.47°, Wenzel WCA 95.47°, Cassie-Baxter WCA 130.13°. 

Ketegangan permukaan optimal bagi Young, Wenzel dan tenaga permukaan Young-

Dupre bagi sampel S13 sepadan masing-masing dengan 0.1727 Nm-1, 0.1761 Nm-1, 

and 0.0626 Nm-1. Semua keputusan telah dianalisa, ditafsir, dibanding dan 

dibincangkan. Mekanisma di sebalik penyertaan nanozarah dalam membantu 

peningkatan ciri-ciri pembersihan-diri telah difahami. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

 

 

This chapter presents the background, problem statement, objectives, scope, 

significance of this research and thesis outline. 

 

 

 

 

1.2 Background of Research 

 

 

Currently, the tellurite–based glasses have gained attention from other 

researchers due to its interesting optical, electrical and magnetic properties (Rafaella 

et al., 2001; El–Mallawany et al., 2002; El–Mallawany et al.,2004; Aoxiang et al., 

2009; El–Mallawany et al.,2010; Bahadur et al., 2010; Chillcce et al., 2011; Goncalo 

et al., 2013; Asmahani et al., 2013; Asmahani et al., 2014; Asmahani et al., 2015; 

Yusoff et al., 2015; Ismail et al., 2016; Yusof et al., 2017; Nurhafizah et al., 2017; 

Azmi et al., 2017; Al–Hadeethi et al., 2020; Al–Buriahi et al., 2020; Sayyed et al., 

2020). Tellurite–based glasses are very noticeable because of their exclusive properties 

such as excellent transmission in visible as well as IR wavelength regions, good in 

mechanical strength and chemical durability also high in electrical conductivity (Jaba 

et al., 2000; Mohamad et al., 2006; Sidek et al., 2013). Moreover, these glasses also 

possess excellent physical properties such as higher refractive index (in the range 2.0–

2.5), low cut–off phonon energy (~700 cm–1) and low melting temperature (733 ºC) 



 

2 

 

where these properties contribute to high possibility of stable glass–forming using the 

conventional melt–quenching method.  

 

 

The presence of zinc oxide (ZnO) as a network modifier in the tellurite glass 

develops the opacity of the glass. The ZnO inlusion causes a decrease in the melting 

point and low rates of crystallization, chemical durability and the nonlinear refractive 

index of a medium. A binary zinc–tellurite system have a significant solubility of 

transition oxide elements and a wide range of glass–forming, as it is considered as one 

of great interest to glass technologies and applications (Al–Buriahi et al., 2020; 

Halimah et al., 2020). Previous researches revealed that the existence of zinc in 

tellurite glasses was stable and have established interest from different researchers 

widely (Burger et al., 1992; Rafaella et al., 2001; Dousti et al., 2013; Halimah et al., 

2020; Oliveira et al., 2020; Sayyed et al., 2020; Al–Buriahi et al., 2020; Al–Hadeethi 

et al., 2020). Previously, Tafida et al. (2020) studied the physical, morphology, thermal 

and structural properties of the different compositions of tellurite as a glass network 

former and zinc as the network modifier. It was reported that the ZnO encouraged the 

decrease in the melting point and also increased the ability of the glass formed during 

the glass production process (Rafaella et al., 2001; Tafida et al., 2020). 

 

 

At excitation and lasing wavelength, the silicate glasses are chemically durable, 

thermally stable and optically transparent. Such high viscosity glasses can be formed, 

cooled and annealed without crystallization.. Silicate glasses are the most widely used 

glasses for consumer. The ease of manufacture and excellent transparency of visible 

light, which makes them particularly useful in optical telecommunications, micro and 

optoelectronics, and in near–IR windows due to their low optical attenuation and good 

optical dispersion (Rafaella et al., 2001; Dousti et al., 2013; Luciana et al., 2011). It 

has been reported that the existence of the silica plays crucial factors which enhanced 

the hydrophobic self–cleaning properties. The hydrophobic properties of silica 

displayed a water–resistant properties because of its nanostructure and chemical 

properties. When silica is applied to a surface of a material, the silica particles adhere 

to the host material and preventing the liquids from permeating the rough texture. 
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Silica was used to treat other surfaces to become more hydrophobic, due to the 

morphology of the silica particles once they adhered to the host of the material.  

 

 

The silica particles alters the surface of its host material, as a result in possesses 

a hydrophobic surface (Parvatty et al., 2007; Bouzid et al., 2008; Satish et al., 2010; 

Pradip et al., 2011; Wael et al., 2017; Azmi et al., 2017). Azmi et al. (2017) reported 

that glasses with a nominal composition of (80–x)TeO2–xSiO2–20ZnO revealed the 

hydrophobic self–cleaning properties where x is in between 0 to 0.2 mol%. A thermally 

stable glass improved the surface roughness (SR) and water contact angle (WCA) as 

the SiO2 content increased. The enhancement was attributed to the reduction of active 

groups on the glass surface, where the SiO2 assisted the surface chemistry with low 

interfacial free energy favoured the formation of hydrogen–bonds in contact with the 

water. However, at higher SiO2 concentration (more than 0.10 mol%), a rapid 

reduction in the SR and WCA was due to the surface saturation effects (Azmi et al., 

2017). 

 

 

The fascinating properties of self–cleaning is inspired by a natural phenomenon 

such as the water striders, butterfly wings, mosquito eyes, and the most popular 

Nelumbo or known as the lotus leaf. The capability of the self–cleaning is significant 

for nature to defends itself from the dirt, and contaminants or pollutants. The 

wettability property and surface roughness are the crucial reasons for micro dirt 

particles to be picking up by the water droplets, reducing the droplet's adhesion to the 

surface. The hydrophobicity and self–cleaning properties are also presented in other 

plants, such as Tropaeolum (nasturtium), Opuntia (prickly pear), Alchemilla, cane and 

some insect wings (Mingqian et al., 2016). Interestingly, the rough surface discovered 

on the lotus leaf was the mastoid structure with the waxiness that holds up the droplets 

and slides easily while taking up all the dirt.  

 

 

Inspired by the nature of the self–cleaning, the self–cleaning technologies had 

been particularly interested among researchers in late 1980s. The self–cleaning 

properties were achieved by controlling the surface wettability. It is evaluated with the 



 

4 

 

value of WCA between water and the surface (Ganbavle et al., 2011; Linda et al., 2011; 

Mridul et al., 2014; Mohamed et al., 2015; Yusof et al., 2017). This hierarchical surface 

structure induced the durable water repellency and inspired the advancement of the 

self–cleaning technologies and applications, including the self–cleaning skyscraper 

windows as well as commercial products such as the tiles, textiles, paint for traffic 

marking and buildings. Thus, the customization of the surface wettability by 

controlling the WCA, surface roughness (SR), interfacial tension (IFT) and surface 

energy (SE) are fundamentals to determine the self–cleaning mechanisms known as 

the hydrophilic (wettable with low WCA) and hydrophobic (less wettable with high 

WCA) actions (Ismail et al., 2016; Nurhafizah et al., 2017; Yusof et al., 2017; Azmi 

et al., 2017).  

 

 

The water droplets appear flat on the hydrophilic surface. The water droplets 

become spherical on the hydrophobic surface with high WCA which allows it rolling 

off with dirt and impurities, thereby offer the cleaning (Toshiaki et al., 2004; Marco et 

al., 2010; Mahmoud et al., 2014; Cohen et al., 2015; Xiao et al., 2018). Previous 

research showed that the glasses containing photocatalytic titania (TiO2) either have 

hydrophilic or hydrophobic surfaces. However, most of the TiO2 materials showed the 

hydrophilic property. Hence, the hydrophilic self–cleaning was achieved when water 

at the glass surface formed a layer and utilized the sunlight to carry away the dust and 

other impurities on the surfaces (Yusof et al., 2015; Yusof et al., 2017; Nurhafizah et 

al., 2017). 

 

 

Meanwhile, the hydrophobic surfaces were attained by controlling the surface 

roughness or applying a low surface energy. The hydrophobic surface is self–cleaned 

when water forms a spherical droplet and rolls off while carried away dust and dirt. 

High water surface tension allows the droplets to take an almost spherical shape, as a 

sphere has a limit surface area, and this shape requires a less solid–liquid surface 

energy.  
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The adhesion forces resulting in complete or partial wetting is either depending 

on the structure of the surface or the fluid tension of the water droplets. The 

hydrophobic water–repellent surface structures enable the contact area and the 

adhesion force between the surface and droplet to reduce significantly, which resulting 

in a self–cleaning process. It is concluded that the wettability plays a significant role 

in determining the self–cleaning properties, either hydrophobic or hydrophilic. 

 

 

Generally, silicates are often referring as hydrophobic depending on whether 

the adsorption of liquid is higher or lower into the surface. To the extent which silicates 

act as a catalyst or dopant to achieve hydrophilic or hydrophobic. (Parvatty et al., 2007; 

Bouzid et al., 2008; Satish et al., 2010; Pradip et al., 2011; Wael et al., 2017). Deepa 

et al. (2016) reported that the degree of hydrophobicity to surface coating also reduced 

a bacterial attachment leading to antimicrobial nanoparticles (Deepa et al., 2016). 

Huang et al. (2020) reported the superhydrophobic coatings with satisfactory self–

cleaning capabilities, excellent thermal stabilities, and good mechanical properties 

were successfully fabricated with a mixed of silica nanoparticles and polyacrylate 

solutions (Huang et al., 2020). Liang et al. (2020) reported the superhydrophobic 

surface with high transmittance and excellent weather resistance superhydrophobic for 

the glass covers of solar cells are designed.  

 

 

Past researches revealed, most of the existed hydrophobic self–cleaning SiO2–

based materials were in the form of thin films with or without coating. Although the 

approaches to achieve the self–cleaning glass surfaces have seldom been reported 

(Azmi et al., 2017), it is known that self–cleaning surface was created by producing 

an extra roughness on the material or by modified roughening via the selection of 

appropriate functional materials with low free surface energy (Huang et al., 2020). In 

addition, it was reported that (Azmi et al., 2017) glass with nominal compositions of 

(80–x)TeO2–xSiO2–20ZnO revealed the hydrophobic self–cleaning property where x 

is between 0.00 to 0.20 mol%. The highest optimum WCA reported was 101.02°, with 

0.10 mol% of SiO2. Therefore, a series of new zinc tellurite glass compositions with 

SiO2 between 0.00 to 0.10 mol% are prepared to obtain the improve hydrophobic 

surfaces. 
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Bismarck et al. (2004) characterized the glass fibres obtained from silicate 

waste, and various commercial glass fibres revealed the hydrophobic where the WCA 

of the glass fibres against water and diiodomethane are closer to 90◦. It stated that the 

high–energy surface tends to absorb the moisture and other contaminants in a standard 

atmosphere. It is also reported that the surface tension of the fibres was somewhat 

similar to a polymer surfaces. Li et al. (2008) reported the cotton fabrics treated with 

silica sol and hexadecyltrimethoxysilane (HDTMS) prepared by sol–gel method 

showed an excellent hydrophobic properties. The surfaces were obtained by dip–

coating the silica hydrosols prepared via hydrolysis and condensation of water glass 

onto cotton substrates. The surface of the silica coating was modified with a non–

fluoro compound HDTMS, gain a thin film through self–assembly, 

superhydrophobicity with a WCA higher than 151.28◦ was achieved. Azmi et al. 

(2017) reported the hydrophobic traits self–cleaning glass without coating consisted 

variation of silica into the zinc tellurite host glasses. The addition of silica improved 

surface roughness thus increased the value of WCA. 

 

 

It is needless to say that the glass systems with the significant properties of 

extreme durability, thermal stability, and transparency have gained particular attention 

in the building and construction industries, especially in terms of self–cleaning 

materials. The use of this self–cleaning glass is somewhat uncommon. However, it 

would minimize both cleanliness maintenance time and cost, resulting in a more 

economical and environmentally friendly material (Ampornphan et al., 2014; Dorel et 

al., 2008). The self–cleaning glass systems were also seen as a revolutionary and the 

practical material for pollutant removal and energy production. The advanced research 

in self–cleaning discovery leads to many commercial applications including tiles, 

textiles, traffic marking paint and paint for buildings with self–cleaning properties 

(Haleh et al., 2016; Fei et al., 2017; Maryam et al., 2017). These coatings decrease the 

use of detergents, solvents, and water. It also saves large volumes of traditional paints, 

and more interestingly, the coatings protect the buildings from the UV degradation.  

 

 

Extensive studies were performed to develop highly efficient and robust self–

cleaning surfaces via coating which also improved the optical performance (Kazuhito 
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et al., 2005; Kazuya et al., 2012; Yelda et al., 2010). The optical qualities such as high 

refractive index and excellent transmittance of incident light are essential for self–

cleaning applications, especially in the optoelectronic device, microfluidic devices, 

biomedical science, ships, automotive, self–cleaning windows, buildings, self–

cleaning oven and solar panel. The transition metal (TM) doped oxide glasses have 

wide applications in the field of compact lenses and switching devices, cathode 

materials in batteries and optoelectronic devices. Among various transition metal 

oxides, titania had been widely studied due to its unique properties such as large band 

gap, transparent to visible light, high refractive index and excellent chemical stability. 

The titanium ions participated in the glass network as Ti3+ and Ti4+; hence the addition 

of TiO2 resulted in the modification of physical and structural properties (Adriana et 

al., 2008; Kazuhito et al., 2005).  

 

 

Various researchers showed that the glasses contained titania (TiO2) either had 

photocatalytic and hydrophilic, (Kazuhito et al., 2005; Adriana et al., 2008; Dorel et 

al., 2008; Yelda et al., 2010, Kazuya et al., 2012; Mridul et al., 2014; Kundu et al., 

2014; Berwal et al., 2015; Ismail et al., 2016) hydrophilic and oleophilic surfaces in 

the same time, (Wang et al., 1997) also reported hydrophobic (Alfa et al., 2019; 

Rosales et al., 2020). This changeability results concluded that the addition of TiO2 

into the system might make the surfaces behaves and hydrophilic or hydrophobic 

depends on the nature of the system itself. Furthermore, it was demonstrated that the 

hydrophilicity being a self–cleaning featured flat glass surfaces mitigated the harm 

caused by the dirt. The TiO2 thin films coated glass surface were used for self–

cleaning, anti–fog, anti–bacterial and anti–pollution applications. Yusof et al. (2017) 

reported that glass with the composition (69–x)TeO2–20ZnO–10Na2O–1Er2O3–xTiO2, 

where x = 0.0, 0.1, 0.2, 0.3 and 0.4 mol% revealed hydrophilic properties as the WCA 

decreased from 68° to 43° with increasing TiO2 NPs concentration.  

 

 

The inclusion of ZnO as a modifier improved the stability of the glass through 

the thermal characteristics. Ismail et al. (2016) reported the influence TiO2 NPs on the 

structural and self–cleaning properties of the glasses with a nominal composition of 

(42–x)P2O5–8MgO–50ZnO–xTiO2 with x = 0, 1, 2, 3 and 4 mol%. The WCA increased 
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from 63.1° to 70.0° with increasing of TiO2 NPs. The presence of ZnO in the glass 

system helps to stabilize the glass system by minimized the hygroscopic nature. The 

relationship between TiO2 NPs assisted spectral modification, and self−cleaning 

ability was also reported. Nurhafizah et al. (2017) reported the effect of the embedment 

of AgCl on the structural and self–cleaning properties of the glass with the nominal 

composition of (68−x)TeO2–15Li2CO3–15Nb2O5–1Er2O3–1Nd2O3–xAgCl with x = 

1.0, 2.0 and 3.0 mol%. The glasses revealed an increased value of WCA from 25.5° to 

47.4° with increasing concentration of Ag NPs. The interplay between Ag NPs and 

TeO2 leads to hydrophilic self–cleaning properties with photocatalytic action. Silver at 

the nanoscale is promising as an alternative water disinfectant because of its unique 

physicochemical properties and excellent antimicrobial action (Nurhafizah et al., 

2017). In this previous research, glasses containing bimetallic NPs such as TiO2 or Ag 

showed photocatalytic action. In fact, the dust and other impurities on the surface of 

the material are easily removed in the presence of sunlight, leading to hydrophilic self–

cleaning properties (Ismail et al., 2016; Yusof et al., 2017; Nurhafizah et al., 2017). 

 

 

Only a few successful researches reported the hydrophilic self–cleaning (Ismail 

et al., 2016; Yusof et al., 2017; Nurhafizah et al., 2017) and hydrophobic self–cleaning 

(Azmi et al., 2017) glasses without coating. Most of the previous research reported 

that hydrophobic self–cleaning was from thin films, glass fibres, biomaterials and 

mostly achieved via surface coating (Bismarck et al., 2004; Parvatty et al., 2007; 

Bouzid et al., 2008; Li et al., 2008; Satish et al., 2010; Pradip et al., 2011; Deepa et al., 

2016; Wael et al., 2017; Huang et al., 2020). Bouzid et al. (2008) reported that the 

silica–derived biomaterials self–cleaning were achieved by selecting the appropriate 

surface chemistry. The biocompatibility may depend on the proper balance of 

hydrophilic and hydrophobic groups. Satish et al. (2010) also reported the transparent 

superhydrophobic coating had excellent wetting behaviour properties with high optical 

transmission, thermal stability and imperviousness against strong acids by controlling 

the SR of resultant coatings. Deepa et al. (2016) reported by controlling the surface 

morphology and properties of the silica nanoparticles, the superhydrophobic were 

achieved for thin films of perylene diimide (PDI) via coating.  
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However, none of these reported the correlation between the wettability, SR 

and IFT, including the theoretical calculation related to Young Dupree, Wenzel, and 

Cassie–Baxter, especially for glass without coating. Consequently, this research 

resolves to provide the correlation between the morphology, physical, thermal, 

structural, mechanical and surface with the self–cleaning properties of wettability, SR 

via AFM, including the theoretical calculation of IFT and WCA related to Young, 

Young Dupree, Wenzel, and Cassie–Baxter models.  

 

 

 

 

1.3 Problem Statement 

 

 

Among the oxides glasses, high demand of tellurium oxide (TeO2) host glass 

gained significant attention from several researchers due to its attractive properties for 

many technologic purposes (Rafaella et al., 2001; Aoxiang et al., 2009; Bahadur et al., 

2010; Goncalo et al., 2013; El–Mallawany, 2002; El–Mallawany et al., 2004; El–

Mallawany et al., 2010; Al–Hadeethi et al., 2020; Al–Buriahi et al., 2020; Sayyed et 

al. 2020). Glasses with primary network former of TeO2 offer a continuous glass–

forming region, yielding attractive and stable. The glass can easily form by adding a 

suitable modifier such as zinc oxide (ZnO). 

 

 

The presence of ZnO as a network modifier in the tellurite glass develops the 

solubility of transition oxide elements and a wide range of glass–forming, which it is 

considered as one of great interest to glass technologies and applications. Earlier 

reports in the literature showed that the studies on the self–cleaning traits of the glasses 

had been deficient. A careful examination and basic understanding of the self–cleaning 

properties of the glass can lead to many technological advances. Based on these facts, 

this research intends to gain a deep insight into the self–cleaning properties of the zinc 

tellurite glass systems. 
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The photocatalytic activity was induced on the glass surface through the 

coating procedure promoted the self–cleaning action (Dorel et al., 2008; Kazuya et al., 

2012; Maryam et al., 2017). However, the leaching problem which associated with the 

coating materials that purged from the glass surface makes it impotent to maintain the 

elongated self–cleanliness of the glass system. Another successful self–cleaning glass 

without coating was prepared to achieve the hydrophilic (Yusof et al., 2015; Yusof et 

al., 2017; Nurhafizah et al., 2017) and hydrophobic properties (Azmi et al., 2017). It 

is reported that the influence of TiO2 NPs inclusion into the glass system (Yusof et al., 

2017; Ismail et al., .2016) displayed an opposite trend where Yusof et al. (2017) 

showed a decrease in the WCA values while Ismail et al. (2016) exhibited an increase 

in the WCA value with the rise in the concentration of TiO2 NPs. 

 

 

 However, both types of research revealed that the glass is in hydrophilic self–

cleaning state as the WCA reported is less than 90. Yusof et al. (2017) reported 0.00 

to 0.40 mol% and Ismail et al. (2016) reported 0 to 4 mol% of the TiO2 NPs to obtained 

the hydrophilic self–cleaning glass. This present research uses mol% of SiO2 in 

between 0.00 to 0.10 mol%; therefore, the mol% of NPs cannot be more significant 

than the SiO2. Therefore, the TiO2 NPs are varying in between 0.00 to 0.05 mol%. The 

combination material of hydrophobic (SiO2) and hydrophilic (TiO2 NPs) in this present 

research, and it is expected that the smallest values of TiO2 NPs transit the glass state 

from hydrophobic into hydrophilic based on previous research due to its stronger 

photocatalytic properties. 

 

 

In this research, the Ag NPs are varying in between 0.00 to 0.05 mol% same 

as TiO2 NPs. Despite all of these efforts, the correlation between the ST and WCA and 

the further understanding based on the Young, Young–Dupre, Wenzel and Cassie–

Baxter theories of the self–cleaning glasses have been deficient. Hence, it is essential 

to understand the basic mechanism of the self–cleaning (hydrophilic and hydrophobic) 

and calculate the relevant parameters relates to the Young, Young–Dupre, Wenzel, 

and Cassie–Baxter models for clarifying the self–cleaning attributes.  
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Considering the immense fundamental and applied significance of the self–

cleaning glasses, it is believed that a proper understanding of the self–cleaning 

mechanism in the glasses can improve the self–cleaning performance due to the co–

embedment of two types of NPs (bimetallic) which is essential for future applications. 

The role of the bimetallic NPs activation on the hydrophobic (lotus leaf effect) 

properties of zinc–silicate tellurite glass system remains unclear and less documented. 

Moreover, the correlation between WCA, wettability and roughness for glasses are 

lacking in documentation and knowledge. Furthermore, the basic mechanism behind 

the self–cleaning, including theoretical calculation of Young, Young Dupre, Wenzel 

and Cassie–Baxter is not yet to be discussed thoroughly. Therefore, the zinc–silicate 

tellurite glasses with bimetallic TiO2 and Ag NPs are prepared and characterize to 

resolve the self–cleaning drawback abilities of the transition from hydrophilic to 

hydrophobic. Previous research revealed that each metallic NPs showed high 

compatibility between Ag and TiO2 which is crucial for this research (Ismail et al., 

2016; Fei et al., 2017; Nurhafizah et al., 2017; Wael et al., 2017), however, none of 

the researches reported the embedment of bimetallic NPs in one glass system.  

 

 

To this date, the zinc–silicate tellurite glass system embedded with titania and 

silver nanoparticles has not been studied to determine their self–cleaning performance. 

Thus, the careful synthesis and details characterizations of these glasses are necessary 

to determine the improvement of the self–cleaning water repellent (hydrophobic) traits 

due to the activation of two types of nanoparticles. Therefore, the primary aim of this 

study is to investigate the impact of bimetallic titania (TiO2) and silver (Ag) NPs on 

self–cleanliness properties on zinc–silicate tellurite glass. The combination of TiO2 

and Ag NPs are expected to improve the hydrophobic self–cleanliness property of 

SiO2. These compositions are not yet reported in any research, thus making it the first 

hydrophobic self–cleaning glasses without coating with the embedment of bimetallic 

NPs. Additionally, the morphology, physical, thermal, structural, mechanical, and 

surface were carried out to determine the correlation with self–cleaning properties of 

the prepared samples. The physics behind the origin of self–cleaning property 

(hydrophobic and hydrophilic) will be fully understood by comparing the experimental 

data with the theoretical model of Young, Young Dupree, Wenzel, and Cassie–Baxter. 
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1.4 Objectives of Research 

 

 

i. To synthesis three series of bimetallic nanoparticles of titania and silver  

activated hydrophobic zinc–silicate tellurite glass system via melt–

quenching technique with nominal composition of (80–x)TeO2–

20ZnO–xSiO2, (79.94–y)TeO2–20ZnO–0.06SiO2–yTiO2 and (79.93–

z)TeO2–20ZnO–0.06SiO2–0.01TiO2–zAg respectively with Series 1, 2 

and 3.  

ii. To determine the influence of bimetallic nanoparticles activation on the 

physical, thermal, structural, mechanical and surface properties of zinc 

silicate tellurite glasses. 

iii. To evaluate the effects of silicon dioxide and metal nanoparticles 

concentration on the improvement of hydrophobic activity of the glass 

surface in terms of water contact angle and wettability. 

iv. To compare the experimental data with theoretical estimates from 

Young, Young–Dupre, Wenzel, and Cassie–Baxter model calculation 

for understanding the self–cleaning mechanism. 

 

 

 

 

1.5 Scope of the Research 

 

 

This research consists three series of zinc silicate tellurite glass embedded with 

the bimetallic NPs, TiO2 and Ag via melt–quenching technique. The first series of 

glass highlights the effect of dopant SiO2 on host glasses with nominal composition 

(80–x)TeO2–20ZnO–xSiO2 (where x are varied as 0.00, 0.03, 0.06, 0.09, and 0.12 

mol%) are prepared without any NPs embedment. By taking the optimum composition 

from the first series, the second series of glass highlights the embedment of metallic 

TiO2 NPs with nominal compositions (79.94–y)TeO2–20ZnO–0.06SiO2–yTiO2 NPs 

(where y are varied as 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05 mol%) are synthesize.  
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 By choosing the optimum sample from the second series, the third series 

glasses with embedment of Ag NPs are prepare with nominal compositions (79.93–

z)TeO2–20ZnO–0.06 SiO2–0.01TiO2–zAg NPs (where z is varied as 0.00, 0.01, 0.02, 

0.03, 0.04, and 0.05 mol%). The optimum glass from each series is evaluated and 

determine from the surface properties by WCA and AFM characterization. 

 

 

The analysis consists of morphology physical, thermal, structural, mechanical 

and surface properties towards self–cleaning performance. The morphology properties 

are determined by X–ray Diffraction Analysis (XRD) and Energy Dispersive X–ray 

Analysis (EDX). The physical properties observed are density, molar and theoretical 

crystalline volume, the ionic and oxygen packing density of glass. The energy transfers 

between bimetallic NPs are presented by Surface Plasmon Resonance (SPR). The 

existence of TiO2 and Ag NPs are confirmed by Scanning Tunneling Microscopy 

(STM), while the thermal properties, including glass stability, are determined by 

Differential Thermal Analysis (DTA). The structural properties of the glass are studied 

using Fourier Transform Infrared Spectroscopy (FTIR) and RAMAN Spectroscopy. 

The glass mechanical properties are also determined by using the Vickers Hardness 

with the theoretical calculation of fracture toughness and brittleness.  

 

 

The self–cleaning properties are investigated by Atomic Force Microscopy 

(AFM) and Water Contact Angle (WCA). The experimental approach was completed 

with the theoretical calculations of WCA parameters, using Young, Young's Dupree, 

Wenzel, and Cassie–Baxter models. All research experiments provided are highly 

relevant for the applied technology for efficient self–cleaning glasses.  
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1.6 Significance of the Research 

 

 

This research aims to prepare the glass with hydrophobic abilities and 

investigate its self–cleaning properties. The economically practicable, environmental 

amiable and maintenance–free glass surfaces with improving hydrophobic activity are 

exceedingly demanding for several industrial purposes. Pollutant and dirt depositions 

on the glass surface which cause the visual obscurity and damages of the cultural 

heritages need to be inhibited. This proposed that the glasses without coating can 

minimize the leaching problem associate with the coating materials that purge from 

the glass surface make it impotent to maintain the elongated self–cleanliness of the 

glass system.  

 

 

So far, none of the previous research reported the self–cleaning glass embedded 

with bimetallic nanoparticles; therefore, this research prepares the first self–cleaning 

tellurite zinc silicate glasses embedded with bimetallic Ag and TiO2 NPs via melt–

quenching technique that able to tailor the self–cleaning properties of the glass. It is 

established that by controlling the contents of Ag NPs and the existence of TiO2 NPs, 

the hydrophobic and hydrophilic traits can be tailor, thereby enabling the proposed 

glass compositions suitable for diverse self–cleaning applications. In this regard, the 

basic understanding of the mechanism of hydrophobic interactions assisted self–

cleaning traits of glass is essential. Therefore, the proposed glass in this research gives 

a significant contribution to improve the applications of self–cleaning glass in 

optoelectronic devices, microfluidic devices, biomedical science, ships, automotive, 

self–cleaning windows, buildings, self–cleaning oven and solar panel.  

 

 

The fundamental understanding of Young Dupre, Wenzel and Cassie–Baxter 

theories on the self–cleaning properties were proven by mathematical calculation 

through WCA and IFT. In conclusion, this research is vital to increase the 

understanding of self–cleaning mechanisms and enhance the country's fame through 

the discovery in the field of self–cleaning glass.  
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1.7  Thesis Outline 

 

 

This thesis describes the preparation and characterization of zinc silicate 

tellurite embedded with bimetallic TiO2 and Ag NPs glasses. This thesis is divided into 

five chapters. 

 

 

 Chapter 1 introduced the purpose of this research, including a background of 

research, problem statement, objectives of research, the scope of research, the 

significance of the research and thesis outline.  

 

 

Chapter 2 discusses the theories of the glass including the glass formation, 

telluride dioxide as glass network former, zinc oxide as glass network modifier, silicon 

dioxide as glass dopant, and titania and silver nanoparticles as bimetallic system. The 

X–ray Diffraction of glasses, the physical properties of tellurite glass, the thermal 

parameters of glasses, the structural properties, including the Fourier Transform 

Infrared Spectroscopy (FTIR) and Raman Spectroscopy, Energy Dispersive X–ray 

(EDX) spectroscopy of glasses are described in details. The mechanical properties of 

Vickers hardness measurements, including theoretical of fracture toughness and 

brittleness, are determined and calculated. The surface properties are done via Atomic 

Force Microscope (AFM) and discussed in detail with the correlation with self–

cleaning properties. The self–cleaning properties, including Water Contact Angle 

(WCA) and interfacial tension (IFT), are explained, including their correlation with 

the theoretical calculation of Young, Young Dupree, Wenzel, and Cassie–Baxter. 

 

 

Chapter 3 describes the details of melt–quenching technique for glass 

preparation, which including sample preparation, materials. In this chapter, the 

optimum glasses in each series are explained in the composition and the nominal 

composition of the glass sample.  The experimental procedures are explained; consist 

of the X–ray Diffractometer (XRD), Energy Dispersive X–ray (EDX), Differential 

Thermal Analyzer (DTA), Fourier Transform Infrared Spectrometer (FTIR), Raman 
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Spectrometer, Vickers Hardness, Atomic Force Microscopy (AFM) and Water Contact 

Angle (WCA) Measurement.  

 

 

Chapter 4 presents and discusses the results of this present research. The glass 

composition and formation for Series 1, 2 and 3 are discussed. The amorphous state of 

glass is proven by the X–ray Diffraction Analysis. The physical properties debated the 

correlation between the density, molar and theoretical crystalline volume, ionic and 

oxygen packing density. The thermal properties displayed the typical DTA curve with 

thermal parameters and the correlation with the physical properties. The analysis of 

the Fourier Transform Infrared (FTIR) and Raman are complemented each other to 

determine the structural properties. The elements of the material in this glass are 

displayed in the energy dispersive X–ray (EDX) spectrum. The existence of bimetallic 

NPs is evidenced by surface plasmon resonance. The mechanical properties discussed 

including Vickers hardness, Fracture Toughness and Brittleness. The surface analysis, 

including surface roughness and normalized surface roughness, are explained via 

Atomic Force Microscopy (AFM). The relation between Young WCA and normalized 

surface roughness are discussed. The theoretical calculation of interfacial tension (IFT) 

and WCA from Young, Wenzel and Young Dupree model are discussed and 

compared. 

 

 

Chapter 5 concludes the thesis by discussing the objectives of this research. 

This chapter consists of an introduction, conclusion and further outlook for further 

research. 
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