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ABSTRACT 

  Pyrolysis is a promising technology for the production of renewable fuels and 

chemicals from high-lignin biomass. With the growing interest in utilizing lignin, 

using cheap and naturally available catalyst such as alkali and alkaline earth metals 

(AAEM) has becoming more attractive. However, significant knowledge on how it 

influences the thermochemical reaction during the pyrolysis process is still lacking and 

questionable. Thus, this study aimed to investigate how the AAEM influences the 

pyrolysis of palm kernel shell (PKS), a biomass feedstock with high lignin content 

which is vastly available in Malaysia. The untreated, treated and salt impregnated PKS 

samples were used in this study. The treated PKS was prepared using mild acetic acid, 

soaked with solutions at 50°C. The impregnation of AAEM on treated PKS was 

achieved by using chloride salts of Na, K, Mg and Ca. The research starts with a 

physicochemical analysis of PKS focusing on the influence of particle size on AAEM 

concentrations (dpA: <0.3mm, dpB: 0.3-0.7mm, dpC: 0.7-1mm, dpD: 1-2mm). The 

results show that smaller particle size exhibited higher ash and AAEM content. The 

second objective is to analyse the thermal degradation of all investigated PKS samples 

via thermogravimetric analysis (TGA). TGA analysis showed that the char residue at 

900°C was the least for PKS sample size (dp) from treated PKS dpD* and untreated 

PKS dpA (11.3 mass%) while dpB, dpC and dpD had higher char residue (26.3 

mass%). Maximum degradation temperature of PKS impregnated with Ca in 

hemicellulose region reduced from 307 to 248°C while in the presence of K, the 

temperature reduced from 300 to 276°C. The third objective is to investigate the effect 

of AAEM on pyrolysis product yield and composition of pyrolysis oil from all types 

of PKS sample. The result showed that the treated PKS produced the highest oil yield 

at 500°C (52.4 wt.%) compared to untreated PKS (46.7 wt.%). From composition 

analysis of pyrolysis oil, the presence of alkali metals promoted the production of 

catechols and syringols while the presence of alkaline earth metals suppressed the 

production of catechols, syringols and guaiacols in pyrolysis oil. The fourth aim is to 

determine the most suitable kinetic method to predict the kinetic parameters for treated 

PKS samples. By using experimental data from TGA analyzer, three kinetic methods 

(Reaction rate constant, Doyle’s approximation and Murray and White’s 

approximation) were evaluated and the method with the least mean squared error value 

was selected to determine the kinetic parameters of the PKS impregnated with Ca. The 

results showed that Murray and White’s approximation is the most suitable kinetic 

method with the least mean squared error less than 0.5. The fifth objective is to 

correlate the pyrolysis reaction rate with different concentration of Ca in treated PKS. 

Using kinetic parameters calculated from Murray and White’s approximation and a 

modified Langmuir Hinshelwood relation, three models were developed based on 

hemicellulose, cellulose and lignin thermal degradation temperature range. The result 

showed that hemicellulose and cellulose models were successful in predicting the 

pyrolysis reaction rate of PKS impregnated with Ca up to 6% for thermal degradation 

that occurred between 290 and 365°C.  
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ABSTRAK 

 Pirolisis adalah teknologi yang berpotensi untuk penghasilan bahan api dan 

bahan kimia diperbaharui daripada biojisim jenis tinggi lignin. Dengan peningkatan 

minat dalam menggunakan lignin, penggunaan mangkin yang murah dan tersedia 

secara semula jadi seperti logam alkali dan alkali bumi (AAEM) menjadi lebih 

menarik. Namun masih ada jurang kefahaman yang besar dalam memahami 

bagaimana lignin mempengaruhi tindak balas termokimia semasa proses pirolisis. 

Oleh itu, kajian ini bertujuan untuk mengkaji bagaimana AAEM mempengaruhi 

pirolisis tempurung kelapa sawit (PKS), iaitu sejenis biojisim dengan kandungan 

lignin yang tinggi yang banyak terdapat di Malaysia. Sampel PKS tanpa dirawat, 

terawat dan diisi tepu dengan AAEM telah digunakan dalam kajian ini. Sampel PKS 

terawat disediakan dengan merendam sampel di dalam larutan asid asetik lemah pada 

50°C. Pengisian tepu AAEM pada PKS terawat dicapai dengan menggunakan garam 

klorida logam Na, K, Mg dan Ca. Kajian ini dimulai dengan analisis fizikokimia PKS 

dengan tumpuan terhadap kesan saiz partikel kepada kandungan kepekatan AAEM 

(dpA: <0.3mm, dpB: 0.3-0.7mm, dpC: 0.7-1mm, dpD: 1-2mm). Hasil kajian 

menunjukkan bahawa saiz partikel yang lebih kecil menunjukkan kandungan abu dan 

kepekatan AAEM yang lebih tinggi. Objektif kedua adalah untuk mengkaji penguraian 

terma sampel PKS melalui analisis termogravimetri (TGA). Analisis TGA 

menunjukkan kandungan abu pada 900°C adalah paling sedikit untuk PKS terawat 

dpD* dan PKS tanpa dirawat dpA (11.3% jisim) manakala PKS tanpa dirawat dpB, 

dpC dan dpD mempunyai sisa arang yang tinggi (26.3% jisim). Suhu maksimum 

penguraian terma bagi sampel PKS isian tepu dengan logam Ca bagi hemiselulosa 

menurun dari 307 ke 248°C sementara dengan kehadiran K, suhu berkurang dari 300 

ke 276°C. Objektif ketiga adalah untuk mengkaji kesan kehadiran AAEM pada hasil 

produk pirolisis dan komposisi minyak pirolisis dari semua sampel PKS. Keputusan 

menunjukkan sampel PKS terawat menghasilkan hasil minyak tertinggi pada suhu 

500°C (52.4% jisim) berbanding dengan PKS tanpa dirawat (46.7% jisim). Daripada 

analisis komposisi minyak pirolisis, kehadiran logam alkali meningkatkan penghasilan 

catechols dan syringols manakala kehadiran logam alkali bumi merencatkan 

penghasilan catechols, syringols dan guaiacols dalam minyak pirolisis. Objektif 

keempat adalah untuk menentukan kaedah kinetik yang paling sesuai untuk 

menjangkakan parameter kinetik sampel PKS terawat. Menggunakan data dari analisis 

TGA, tiga kaedah kinetik (pemalar kadar tindak balas, penghampiran Doyle dan 

penghampiran Murray dan White) telah dinilai dan kaedah dengan nilai ralat min kuasa 

dua terendah akan dipilih sebagai kaedah kinetik paling sesuai. Keputusan 

menunjukkan kaedah penghampiran Murray dan White adalah yang paling sesuai 

dengan nilai ralat min kuasa dua kurang daripada 0.5. Objektif kelima adalah untuk 

mencari korelasi antara kadar tindak balas pirolisis dengan kepekatan Ca yang berbeza 

pada sampel PKS terawat. Menggunakan parameter kinetik daripada kaedah 

penghampiran Murray dan White serta hubungan Langmuir Hinshelwood yang 

diubah, tiga model telah dibangunkan berdasarkan julat suhu perguraian terma 

hemiselulosa, selulosa dan lignin. Keputusan menunjukkan bahawa model 

hemiselulosa dan selulosa berjaya menjangkakan kadar tindak balas pirolisis yang 

paling hampir dengan nilai kadar tindak balas asal pada sampel PKS diisi tepu dengan 

Ca sehingga 6% untuk degradasi terma yang berlaku diantara 290 dan 365°C.   
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CHAPTER 1  

 

 

INTRODUCTION 

Renewable energy is the fastest-growing energy source globally where it 

makes up 26.2 percent of global electricity generation in 2018 (Renewables 2019 

Global Status Report, 2019). It is also estimated that, by 2025, over 15% of the three 

trillion dollar global chemical sales will be derived from bio-based sources 

(Vijayendran, 2011). Due to the abundance and carbon-neutral nature, biomass, 

therefore, is a promising resource of renewable energy (Dhyani and Bhaskar, 2018a). 

Consecutively, biomass conversion technology such as pyrolysis, gasification and 

combustion has been vastly studied to meet the growing demand for replacements for 

petroleum-based fuels and products.  

Concerning the production of chemicals from bio-based sources, the absence 

and presence of alkali and alkaline earth metal (AAEM) in the biomass ash have 

become a research topic for biomass-related research. Most of the research has been 

focusing on how the AAEM affects the pyrolysis product yield, kinetics and pyrolysis 

oil chemical compositions. Some of the high-value chemical components which can 

be found in pyrolysis oil from pyrolysis of biomass are acetic acid and furfurals from 

hemicellulose, levoglucosan and hydroxyacetaldehyde from cellulose and phenols and 

methanol from lignin degradation (Wild et al., 2011) 

In studying the effect of AAEM during pyrolysis of biomass, alkali metal 

presence such as sodium (Na), produces more furan, acids, ketones and phenols 

compared to its absence in the pyrolysis oil composition from rice straw and bamboo 

(Lou et al., 2013). The removal of alkali metals (Na, K) however increased the 

concentrations of levoglucosan, a high-value chemical component in pyrolysis oil 

(Fahmi et al., 2007). Previous research also has reported on the potassium (K) addition 

as a catalyst during pyrolysis which could restrain the formation of volatiles and lower 

the initial temperature pyrolysis and the weight loss rate (Eom et al., 2011). In the 
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kinetic analysis, its presence during pyrolysis also reported reducing the average 

apparent activation energy for willow coppice pyrolysis by up to 50 kJ/mol 

(Nowakowski et al., 2007).  

For alkaline earth metals, calcium oxide for example which presence in 

biomass ash is responsible for enhancing the production of high-value gases such as 

hydrogen, which makes it an attractive low-cost material to be used as a catalyst (Gan 

et al., 2018). Utilizing bio-char of seaweed on pyrolysis of green macroalgae has also 

reported promoting hydrogen-rich gas and phenolic-rich pyrolysis oil (Norouzi et al., 

2016). For biomass with high lignin content such as palm kernel shell (PKS), the main 

chemical component is phenol which is considered as one of the high-value chemical 

components in pyrolysis oil. Phenolic-rich pyrolysis oil has also been studied for the 

synthesis of phenolic resin (Choi et al., 2015; Sukhbaatar et al., 2009). 

Apart from the analysis on how concentrations of AAEM affect the thermal 

degradation and kinetic parameters during the pyrolysis of biomass, researchers have 

been focusing on finding the relations between the AAEM concentration with the 

concentrations of chemical components in the pyrolysis oil. For example, the effects 

of K, Mg and Ca presence at different concentrations towards glycoaldehydes, acetic 

acid, acetol, butanediol, levoglucosan, furans, pyrans and cyclopentenes (Eom et al., 

2012). Other than that, nickel and iron impregnated on cellulose, xylan and lignin at 

different concentrations showed that both metals promote the formation of char and 

inhibit the depolymerization of cellulose. However, in the lignin matrix, both metal 

presence decreases the concentration of aromatic compounds (Collard et al., 2012) 

In this research, the focus was on the catalytic effects of AAEM on the 

pyrolysis process using PKS due to its high-lignin component compared to wood based 

biomass and other agricultural residue such as corn stover, sugarcane bagasse and 

pineapple waste. Influence of AAEM on the pyrolysis kinetics parameters was studied 

to investigate how AAEM affect thermal degradation of biomass at different 

concentration. Finally, a correlation between the AAEM concentration and the 

pyrolysis reaction rate was done and the results were evaluated.  
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1.1 Problem statement 

Efficient utilization of biomass waste from agricultural sectors to biofuel and 

high-value chemical building blocks is one of the great measures to boost the country’s 

agricultural economy, waste management and reduce our dependency on non-

renewable fossil fuel and petrochemical derivatives. In Malaysia alone, a huge quantity 

of lignocellulose biomass is produced annually from the palm oil plantation. In 2015, 

the solid biomass waste (palm fronds, palm trunks, empty fruit bunches, mesocarp 

fibers and palm kernel shells) generated in Malaysia was rated about 75.61 million 

tonnes per annum (Dalton et al., 2017). Palm kernel shells (PKS) alone stand for 1.20 

tonnes per hectare in dry fresh fruit bunch (FFB) basis which represents 11.4% FFB 

(Abdullah and Sulaiman, 2013). 

PKS  is a suitable biomass feedstock for pyrolysis due to its moisture content 

was reported to be lower than 10-14% (Danish et al., 2015). Commercialization of 

pyrolysis oil as biofuel or chemical building blocks has been long-awaited since there 

is an increase in awareness to shift to cleaner fuel options. Such achievement would 

also allow us to produce our own sustainable and renewable chemicals and materials. 

With high lignin content (44.0-50.7%), the valorization of chemicals such as phenols 

and aromatic components from PKS is an interesting aspect to be considered 

(Nizamuddin et al., 2016).  

Using pyrolysis technology to convert PKS to pyrolysis products, AAEM 

which exists naturally in the biomass ash has the potential to act as a natural catalyst 

to enhance or inhibit certain chemical components in the pyrolysis oil (Eom et al., 

2012). Besides that, AAEM also influences the pyrolysis product yield, thermal 

degradation curve and kinetics during pyrolysis (Kim et al., 2019; Shi et al., 2012). In 

analyzing the influence of AAEM on biomass pyrolysis, previously published studies 

were mostly focused on the effect of alkali metals on cellulose pyrolysis (Patwardhan 

et al., 2010a). The increase in the influence of alkaline earth metals especially on lignin 

components would have made the studies more relevant as there is an increase in lignin 

valorization for chemical building blocks (Custodis et al., 2015; Ľudmila et al., 2015). 
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In kinetics analysis, research on this subject has been mostly restricted to 

analyze kinetic parameters and comparison of kinetic methods (Ma et al., 2016). The 

study would have been more interesting if the pyrolysis reaction rates can be analyzed 

using the kinetic parameters which would contribute to the design of a larger scale 

pyrolysis reactor. Apart from that, the influence of AAEM concentration was mostly 

carried out to predict the trend of chemical concentrations which has been producing 

contradictory results between researchers due to the complex pyrolysis oil composition 

and the variety of biomass feedstocks (Eom et al., 2012).  

Therefore, this research proposed to utilize the palm kernel shell to provide 

significant insights on how both alkali and alkaline earth metals influence the pyrolysis 

of high-lignin biomass waste based on physicochemical properties, thermal 

degradation, chemical composition and product yield. In the kinetic analysis, three 

kinetics methods (Reaction rate constant method, Doyle’s approximation, Murray and 

White approximations) were evaluated and compared to find the methods with the least 

error for PKS pyrolysis. The selected method was then used to calculate the kinetics 

parameters of metal impregnated PKS where a correlation between the chosen metal 

concentrations and the pyrolysis reaction rates were studied using a method that 

combines kinetics approach and a modified Langmuir-Hinshelwood relation. 

1.2 Research objectives 

The main objective of this research is to investigate the catalytic effects of 

alkali and alkaline earth metals (AAEM) in palm kernel shell (PKS) using pyrolysis. 

The following sub-objectives are identified to achieve this objective. 

1. To characterize the physicochemical properties of untreated PKS at various 

particle size and treated PKS at one selected particle size.  

2. To analyze the effect of AAEM on thermal degradation of untreated, treated 

and metal impregnated PKS at one particle size. 
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3. To investigate the effect of AAEM on pyrolysis product yield and composition 

of pyrolysis oil. 

4. To determine the most suitable kinetic method to predict the kinetic parameters 

of treated PKS. 

5. To correlate the pyrolysis reaction rates with the calcium concentrations 

through calcium impregnated PKS at various concentrations. 

 

1.3 Research scopes 

To achieve the objectives, the following scopes have been identified. 

1. Biomass characterization via CHNS analyzer (ultimate analysis), 

thermogravimetric analyzer (proximate analysis) and inductively coupled 

plasma optical emission spectrometry (ICP-OES) for metal analysis. The 

untreated PKS consists of four particle size ranges; 1-2 mm, 0.73-1 mm, 0.3-

0.7 mm and less than 0.3 mm.  

2. Biomass pretreatment to remove AAEM using the acetic acid washing method. 

Then, the characterization of treated PKS was performed for sample size 1-

2mm.  

3. Biomass impregnation using treated PKS impregnated with chloride salts of 

Na, K, Mg and Ca at 1 wt.% concentration for thermogravimetric analysis and 

pyrolysis experiment using sample size 1-2mm. Treated PKS impregnated with 

chloride salt of calcium for correlation analysis at 0.1, 0.3, 0.5, 1.0 and 3.0 % 

Ca. 

4. Thermogravimetric analysis of untreated PKS, treated PKS and K and Ca 

impregnated PKS. 
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5. Conduction of pyrolysis experiment using untreated, treated and AAEM 

impregnated PKS at various temperatures (400-600°C) for pyrolysis product 

yield and characterization of pyrolysis oil chemical composition. 

6. Kinetic parameters analysis (activation energy, Ea and pre-exponential factor, 

A) via reaction rate constant method (RCM), Doyle’s approximation and 

Murray and White’s temperature integral approximations using treated PKS. 

7. Correlation between pyrolysis reaction rate and calcium’s concentrations via 

Murray and White’s approximation and modified Langmuir-Hinshelwood 

relation. 

 

1.4 Significance of the study 

The findings of this study will redound to the benefit of the commercialization 

of biofuel and chemical building blocks from biomass at the industrial level. The 

research utilized the palm kernel shell as a biomass feedstock which contains a high 

level of lignin. The removal and addition of AAEM from the PKS would allow a better 

understanding of the influence of individual AAEM towards physicochemical 

properties, chemical compositions and pyrolysis product yield. The kinetic methods 

evaluation between reaction rate constant method (RCM) and two temperature integral 

of the Arrhenius namely Doyle’s and Murray and White’s approximation would allow 

identifying the kinetic method which produces the least mean squared error (MSE) for 

pyrolysis of PKS. MSE value is a measure of a model’s performance where a lower 

MSE value indicates a better model fit. Integrating the kinetic method and the modified 

Langmuir-Hinshelwood relation would then create an opportunity to analyze the 

pyrolysis reaction rate value at different AAEM concentrations. Moreover, using a 

high-lignin feedstock would benefit in terms of wider temperature range selection for 

kinetic analysis as the strong lignin bonding would result in a well-defined 

hollocellulose peaks during thermal degradation analysis. Hence, these would 

contribute to the body of knowledge on the influence of AAEM on biomass pyrolysis 

specifically in understanding the catalytic effect of AAEM for future pyrolysis reactor 

designs. It is desired that the biofuel and chemical building blocks commercialization 
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via biomass pyrolysis can gradually reduce the global dependency on the non-

renewable petroleum feedstocks as well as improving the country’s waste management 

system. 

1.5 Thesis organization 

Chapter 1 elucidates the introduction which includes the research background, 

research objective, research scope and significance of the study.  

Chapter 2 consists of a literature review which elaborates on the previous 

findings related to the influence of alkali and alkaline earth metals on biomass 

characterization, biomass thermal degradation, pyrolysis product yield, chemical 

compositions, kinetic and correlation analysis. 

Chapter 3 provides experimental procedures such as biomass preparation and 

characterization, thermal degradation analysis, pyrolysis of palm kernel shell, 

characterization of pyrolysis oil, kinetic procedures and correlation analysis involved 

to evaluate the influence of AAEM on pyrolysis of palm kernel shell.  

Chapter 4 discusses the results on the influence of AAEM based on the 

physicochemical properties, thermal degradation analysis, pyrolysis product yield 

chemical composition of pyrolysis oil, kinetic analysis and correlation study.  

Finally, Chapter 5 concludes the findings and highlights the significance of this 

research. Besides, recommendations for future works on this research are suggested in 

this chapter. 
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