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ABSTRACT 

 

 

 

Stem cell transplantation represents a relatively new approach of treating 

wounds, with several studies reporting positive results. Yet these studies used stem 

cells that are limited by the following: differential potency, ethical permissibility, or 

histocompatibility. To overcome these obstructions, induced pluripotent stem (iPS) 

cells, a type of stem cell that can be generated from cells of a patient, was used in this 

study instead. This study aims to culture and graft iPS cells into mice with the splinted 

wound mouse model and determine the effectiveness of the treatment. 18 clinically 

healthy female mice were immunosuppressed with a daily intramuscular injection of 

dexamethasone at 1 μg/g for three consecutive days. Under anaesthesia, two sterile 

wounds were incised on shaved backs of each mouse via biopsy punch. Subsequently, 

six intradermal injections were made around the two wounds before the wounds were 

adhered with splints and wound dressing. The mice were divided into two groups; a 

treatment group that was given 7 × 105 iPS cells in each injection, and a control group 

that was given 0.9 % sodium chloride. Wound closure rates were determined through 

timed scaled photography and subsequent analyses with GNU Image Manipulation 

Program. Three mice were euthanised from each group at every seven days post-

wounding, at which point wound beds and blood were harvested. Total leucocyte 

counts and differential leucocyte counts were conducted on the blood. Wound beds 

were fixed, processed, blocked, and sectioned. Sections were used in fluorescence in 

situ hybridization (FISH) to detect iPS cells of male origin in female hosts. Sections 

were also stained with H&E and Masson’s Trichrome, as well as immunolabeled for 

CD31 and KI67. The stained sections were then subjected to an evaluation under 

compound microscopy and subsequently scored for several variables. FISH revealed 

that the transplanted iPS cells were successfully grafted and may survive permanently. 

KI67-immunostained sections revealed no difference between groups; together with 

the fact that no tumours were found throughout the study, the risk of teratoma 

formation seems to be low. Total and differential leucocyte counts showed no 

difference between groups. The wound closure curve of the treatment group was stiffer, 

yet the difference was not significant, however individual results were significantly 

different for day 7 (p = 0.038). From the evaluation and scoring, the treatment group 

scored better in chronic inflammation, fibroblast proliferation, granulation tissue, and 

collagen deposition, albeit not statistically significant. However, the treatment group 

did score significantly better in angiogenesis (p = 0.006 for day 7) and hypodermis 

regeneration (p = 0.006 for day 21).  
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ABSTRAK 

 

 

 

Pemindahan sel induk merupakan pendekatan yang agak baharu bagi merawat 

luka, dengan beberapa kajian yang melaporkan keputusan positif. Namun, pengunaan 

sel induk di dalam kajian-kajian tersebut terhad oleh sebab-sebab berikut: potensi 

pembezaan terhad, masalah etika, dan, keserasian tisu. Untuk mengatasi masalah-

masalah tersebut, sel induk pluripotent teraruh (sel iPS), sejenis sel induk yang boleh 

dijana daripada sel-sel pesakit, telah digunakan dalam kajian ini. Kajian ini bertujuan 

untuk mengkultur sel iPS dan mencantumkannya ke atas tikus-tikus yang dilukakan 

berasaskan model luka bertuap serta menentukan keberkesanan rawatan tersebut. 18 

ekor tikus betina yang sihat secara klinikal telah disekat imuniti dengan diberikan 

suntikan harian 1 μg/g dexamethasone selama tiga hari berturutan. Dalam keadaan bius, 

dua luka steril dibuat pada bahagian belakang tikus yang telah dicukur menggunakan 

alat pembuat lubang. Selepas itu, enam suntikan dibuat di sekeliling dua luka tersebut 

sebelum luka tersebut dilekat dengan tuap dan pembalut luka. Tikus-tikus ini 

dibahagikan kepada dua kumpulan; kumpulan rawatan yang diberi 7 × 105 sel iPS 

dalam setiap suntikan, dan kumpulan kawalan yang diberi 0.9 % natrium klorida. 

Kadar penutupan luka ditentukan dengan fotografi berskala waktu dan dianalisa 

dengan program GNU Image Manipulation. Tiga ekor tikus daripada setiap kumpulan 

dimatikan pada setiap tujuh hari selepas dilukai, dan tisu luka dan darah diambil pada 

masa yang sama. Pengiraan leukosit keseluruhan dan pengiraan leukosit pembezaan 

dibuat ke atas darah tersebut. Tisu luka difiksasi, diproses, dibenam, dan dihiris. 

Hirisan-hirisan tersebut digunakan dalam proses hibridisasi pendarfluor in situ (FISH) 

untuk mengesan sel iPS yang berasal jantan di dalam perumah betina. Selain itu, 

hirisan-hirisan juga diwarnai H&E dan Masson’s Trichrome, dan diimun-label untuk 

CD31 dan KI67. Selepas itu, hirisan-hirisan tersebut dinilai di bawah mikroskop 

majmuk dan beberapa pemboleh ubah telah diberi markah. FISH mendedahkan 

bahawa sel iPS yang dipindahkan telah berjaya dicantumkan dan berkemungkinan 

boleh hidup secara kekal. Hirisan immun-label KI67 menunjukkan tiada sebarang 

perbezaan antara kumpulan; bersama dengan tiadanya pembentukan tumor sepanjang 

penyelidikan ini, oleh itu risiko pembentukan teratoma nampaknya rendah. 

Lengkungan penutupan luka kumpulan rawatan lebih kaku, namun perbezaan tersebut 

tidak ketara; tetapi, secara individu, perbezaan antara kumpulan dianggap signifikan 

pada hari ke-7 (p = 0.038). Berdasarkan penilaian dan pemberian markah, kumpulan 

rawatan mendapat markah yang lebih baik dalam keradangan kronik, percambahan 

fibroblast, tisu granulasi, dan pemendapan kolagen, walaupun perbezaan markah tidak 

signifikan secara statistik. Walaubagaimanapun, kumpulan rawatan mendapat markah 

yang lebih baik dan signifikan dalam pembentukan salur darah (p = 0.057 bagi hari 

ke-7) dan pembentukan semula hipodermis (p = 0.006 bagi hari ke-21). 
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CHAPTER 1 

 

 

RESEARCH BACKGROUND 

 

 

 

1.1 Introduction 

 

The skin covers the entire surface of our bodies and among other functions, act 

as a layer of protection to everything underneath. Understandably, a wound would 

compromise the integrity of the skin and expose the body to microbial infections.  

 

When it comes to wounds, perhaps the most important classification is whether 

a wound is acute or chronic. Put simply, acute wounds are wounds that heals in a 

timely and orderly fashion (as will be discussed in Section 2.1.2), whist chronic 

wounds do not (Lazarus et al., 1994). For practicality, chronic wounds can also be 

defined as wounds that take more than 3 weeks to heal (Hermans and Treadwell, 2010) 

 

Broadly speaking, chronic wounds can be caused by medical conditions, or 

certain infections and tropical diseases; venous leg ulcers, ischemic ulcers, diabetic 

foot ulcers, and pressure ulcers are amongst the predominant types of chronic wounds 

(Hermans and Treadwell, 2010). Acute wounds on the other hand, are wound that are 

a result of incisions such as surgical incisions, or of trauma such as burns or falls (Ather 

et al., 2019). Of course, acute wounds can become chronic wounds as well.  

 

There is no one single way of grading or classifying the severity of a wound, 

instead, an assessment of several parameters provides a better understanding to 

formulate the appropriate response. These parameters include wound size, wound edge 

characteristics, wound site properties, wound bed granulation tissue appearances, 

wound depth, surrounding skin characteristics, infection, haemostasis, presence of 

foreign matter, and the presence of necrotic tissue, slough, and eschar (DeBoard et al., 
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2007; Grey et al., 2006). Burns in particular are often characterised by depth; from 

first degree burns which is of a simple sunburn; to fourth degree burns which have the 

dermis and epidermis destroyed, and subcutaneous and deeper tissue substantially 

damaged (Hermans and Treadwell, 2010).  

 

Sadly, chronic wounds are staggeringly prevalent in the population. Diabetic 

foot ulcers, a type of chronic wound and a major complication of diabetes mellitus, is 

estimated to have a history prevalence of 5.1% and a lower-limb amputation 

prevalence of 1.2% in the United Kingdom (Abbott et al., 2005). In fact, their National 

Health Service is estimated to spend £ 5.3 billion on managing wounds annually (Guest 

et al., 2015). In the United States, it is estimated that 1.3 to 3.0 million of the population 

have pressure ulcers and that 10% to 15% of the 20 million diabetic patients are at risk 

of developing diabetic ulcers (Kuehn, 2007). Besides that, a study conducted in a rural 

village of Sweden established that the prevalence of healed or non-healed chronic leg 

ulcers is over 12.6% for the elderly over the age of 70 (Marklund et al., 2000). In 

Europe, approximately 1% of the population is affected by chronic wounds (Schreml 

et al., 2010). If the complication of delayed healing was not enough, it was found that 

68.9% of patients do not survive the 6 months after first detecting nosocomial pressure 

ulcer; by the end of the first year, the percentage of mortality increases to 78.4% and 

83.8% at the end of year 2 (Brown, 2003).  

 

Wounds may considerably disrupt the daily routine of a patient. Such is caused 

by the frequent dressing change, sleep deprivation-caused continued fatigue, mobility 

restriction, discomfort, pain, unpleasant wound odour, infection, polypharmacy’s 

effects on the body and mind, and reduced independency. Suffice to say, in many cases, 

the quality of life of wound patients is harshly compromised (Grey et al., 2006). That, 

however, assumes that the patient survives the trauma in one piece. It was found that 

foot ulcer patients have a 6-fold increased risk of low extremity amputation (Davis et 

al., 2006). On top of that, it is estimated that only approximately 30.7% diabetic 

amputation patients survive 5 years post amputation (Faglia et al., 2006). In a quality 

of life assessment consisting of 36 questions called the short form (36) health survey, 

the score of healed and unhealed leg ulcer patients were on par with patients with  
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chronic obstructive pulmonary disease, osteoarthritis, or angina (Kahn et al., 2004). 

Indeed, wound complications are a nightmare to the patients, but the nightmare may 

not end with the complete healing of the wound, that is if they heal at all. In the 

aftermath of a wound episode, wounds may leave behind scars.  

 

Scars, especially those situated at eye-catching positions can be quite 

disfiguring and harm the self-esteem of a patient. As a matter of fact, in our society 

that emphasizes on appearance, a scared face may frighten away possibilities of social 

connections with others.  

 

While humans have complications with the recovery of a simple wound, 

urodele amphibian can regenerate amputated limbs with ease while invertebrates like 

planarians and starfish can even regenerate bidirectionally (Brockes, 1997). However, 

to say that humans have completely lost, over the course of evolution, the ability to 

regenerate a body part as complicated as a limb would not be most accurate. For 

example, children are known to regrow fingertips should they be severed (Illingworth, 

1974).  As for the matter of scarring, the human foetus is capable of healing cutaneous 

wounds so flawlessly to the point of leaving no scars at all (Longaker et al., 1994).  

 

But how far could we theoretically go? Take a chicken for example, similarly 

with a long history of evolution, similarly not known to be capable of limb 

regeneration; in one study, partial regeneration of an amputated limb in a developing 

chick embryo was made possible by manipulation of the spatiotemporal of β-catenin 

expression (Kawakami et al., 2006). In African clawed frogs, an additional eye could 

be generated via manipulating the transmembrane voltage potential (Pai et al., 2012). 

Unrelated as it sounds, this suggests that given the right genetic manipulation and 

conditions, humans too could theoretically regenerate the lost limb or an extra eye, 

though the latter is probably not preferable in normal situations. Compared to that, 

wound regeneration should be relatively straight forward. Moreover, it was found in a 

recent study that a single clonogenic neoblast (a type of planarian pluripotent stem cell) 

is all it took to restore regeneration and completely replace all cells in a lethally  
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irradiated planarian host (Wagner et al., 2011). Although planarians are known to 

regenerate from tiny body fragments, the revelation that a single pluripotent stem cell 

alone is capable of such a task would make one wonder what pluripotent stem cells are 

capable in wound therapy.  

 

Induced pluripotent stem cells (iPS cells), are pluripotent stem cells generated 

from somatic cells by viral transfection of 4 transcription factors (Takahashi and 

Yamanaka, 2006). With the ability to generate pluripotent stem cells from simple 

somatic cells, not only does iPS cells offers a source of stem cells free of ethical 

implications associated with the use of embryonic stem cells (ES cells), but they may 

also be generated from cells derived from specific patients (who requires transplant) 

and avoid the roadblock of immune rejection. Also, iPS cells can be generated from 

virtually any somatic cell, such as from blood cells and hair, making them amongst the 

least invasive to procure (Aasen et al., 2008; Kim et al., 2016). That being said, there 

has yet been any research done to address the use of iPS cells in wound therapy.  

 

 

 

1.2 Statement of Problem 

 

As discussed earlier, wounds, especially chronic wounds, greatly lower the 

quality of life of a patient, and may graduate towards extremity amputation and even 

death; paired with the prevalence of the condition, the need for wound care and 

treatment represents large sums of spending, on top of the misery caused on a personal 

level. Of potential treatments, cell-based wound therapies represent an interesting 

relatively new method of wound treatment. Of the many types of cells, or more 

specifically, stem cells available, iPS cells are ethical, pluripotent, possibly patient 

homologous, and non-invasive to procure; thereby circumventing roadblocks that may 

limit other types of stem cells. In fact, iPS cell have been differentiated into different 

types of skin cells (Ohta et al., 2011; Hewitt et al., 2011; Bilousova et al., 2011; Itoh 

et al., 2011; Bilousova and Roop, 2013); and in some, skin structures (Kim et al., 2018; 

Itoh et al., 2013); despite their effectiveness in these studies, as of this writing, iPS 

cells have yet been evaluated in wound therapy in an in vivo setting. 
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1.3 Significance of Study 

 

Induced pluripotent stem cells are a type of potentially patient-homologous 

pluripotent stem cells that can be generated non-invasively and from an ethical source; 

due to their potency, their use in wound therapy should, in theory, result in wound 

recovery superior to other cell-based wound treatments, due to having a wider 

coverage of the types of cells they can differentiate into, without the risk of immune 

rejection.  

 

iPS cells promise a great many uses wound healing. As a fellow pluripotent 

cell line, iPS cells may be beneficial to diabetic wounds just as ES cells have (Lee et 

al., 2011). If the use of iPS cells is advantageous to diabetic wound healing, then 

perhaps such benefits extend to chronic wounds as well. On top of that, while it is 

naïve to believe that iPS cells alone could replicate scarless wound healing 

demonstrated by foeti (Larson et al., 2010), the ‘less differentiated’ iPS cells may be 

able to mitigate scarring, and in doing so promises some use in hypertrophic scaring 

mitigation, which is often seen in burn victims. 

 

However, a successful grafting of iPS cells must first be established before any 

of these potential applications can be explored. Additionally, an understanding how 

iPS cell transplantation affects the various aspect of wound healing will determine the 

types of wounds iPS cell transplantation therapy is suited for. 

 

 

 

1.4 Objectives 

 

The objectives of the study are: 

a. To culture and transplant iPS cells into mouse wounds. 

b. To assess the potential of iPS cell transplantation as a type of wound therapy 

with the following analyses:  

i. Quantitative analyses: Wound closure rate, total leucocyte count, and 

differential leucocyte count.  
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ii. Qualitative analyses: iPS cell grafting successfulness, transplanted iPS 

cell proliferation.  

iii. A score system to interpret qualitative data in a quantitative way: 

Inflammation, angiogenesis, fibroblast proliferation, granulation tissue 

formation, collagen deposition, reepithelialization, and hypodermis 

regeneration. 

 

 

 

1.5 Scope of Study 

 

The iPS cell line used was APS0004, an iPS cell line that was generated via 

introduction of 4 transcription factors via plasmids (Riken BioResource Center, 2014). 

The iPS cells used were not generated from cells acquired from the test mice for this 

study, and therefore, the mice were immunosuppressed to avoid immune rejection of 

the grafted cells. The wound model used was full-thickness incisional wounds on the 

back of immunosuppressed mice, with attached splints and wound dressing (Wang et 

al., 2013). 

 

Wound closure rate was approximated via scaled photography. A graft was 

considered successful if the transplanted cells or their descendants were detected in 

wound bed samples. Proliferation was deemed present as indicated by the expression 

of KI67 (Borue et al., 2004). Angiogenesis was deemed present from the presence of 

blood vessels in the wound beds (Sivan-Loukianova et al., 2003). Immune response 

was evaluated from blood leucocyte and from the presence of macrophages and 

monocytes in the wound beds (Stepanovic et al., 2003). The degree of which 

inflammation, angiogenesis, fibroblast proliferation, granulation tissue formation, 

collagen deposition, and hypodermis regeneration, are different between groups were 

assessed via a score system (Abramov et al., 2006; Loh et al., 2020). 
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