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ABSTRACT 

The demand for high data rate transmission for the future wireless 

communication technology is increasing rapidly. Due to the congestion in the current 

bands for cellular network, it may not be able to satisfy the user requirements. For 

the future cellular networks, the millimeter wave (mm-wave) bands are the 

promising candidate bands because of the large available bandwidth. The 28 GHz 

and 38 GHz bands are the strongest candidate for fifth generation (5G) cellular 

networks. The channel needs to be characterized based on large-scale 

characterization to know the channel behavior in mm-wave bands in indoor 

environment. The narrowband channel is characterized based on the path loss model. 

For the development of new 5G systems to operate in bands up to 100 GHz, there is 

a need for accurate radio propagation models, which are not addressed by existing 

channel models developed for bands below 6 GHz. This attempt was conducted 

through extensive measurement campaigns and by using Information and 

Communication Solutions (ICS) Telecom simulation tool. The measurement 

environments were a closed-plan scenario in two buildings that included a line-of-

sight (LOS) and non-line-of-sight (NLOS) corridor, a hallway, a cubicle room, and 

different adjacent-rooms communication links. The main limitation of the study was 

the limited distance range of LOS and NLOS environments because of the building 

structure design. Well-known single-frequency and multi-frequency directional and 

omnidirectional large-scale path loss models such as close-in free space reference 

(CI), floating intercept (FI) and alpha-beta-gamma (ABG) models and modified 

model are presented in this thesis. The modified model has a correction factor for 

different environments and it provides physically-based and efficient estimated path 

loss data points for the reference distance. Directional path loss model was done in 

co-polarized and cross-polarized antenna orientations, while omnidirectional path 

loss model was done in co-polarized antenna orientation only. The ICS Telecom 

simulation results show very high compatibility when compared with measurement 

campaign results. Also, it is found that the CI model is simpler, more convenient and 

more accurate for path loss prediction comparing with FI and ABG models. Also, the 

results show that the modified large-scale path loss model has the smallest path loss 

exponent (PLE), n and standard deviation, σ values compared to the CI model. The 

results suggest that the modified path loss model can provide a sound estimation of 

path loss prediction and act as a reference analysis for developing mm-wave for 

wireless communication planning in indoor environments. 
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ABSTRAK 

Permintaan untuk penghantaran data dengan kadar yang tinggi bagi teknologi 

komunikasi tanpa wayar masa depan sedang meningkat pesat. Kesesakan 

penggunaan jalur frekuensi yang digunakan pada waktu kini bagi kegunaan 

rangkaian selular mungkin mengakibatkan ketidakmampuan menampung keperluan 

pengguna pada masa akan datang. Untuk rangkaian selular masa depan, jalur 

gelombang milimeter (gelombang-mm) adalah jalur frekuensi terbaik kerana 

keluasan lebar jalurnya. Jalur 28 GHz dan 38 GHz merupakan calon jalur frekuensi 

paling sesuai untuk rangkaian selular generasi kelima (5G). Saluran pada jalur 

tersebut perlu dicirikan berdasarkan pencirian berskala besar bagi menentukan 

karakteristik gelombang mm di persekitaran dalam bangunan. Pencirian saluran 

adalah berpaksikan model kehilangan laluan. Bagi pembangunan sistem 5G baru 

yang beroperasi dalam jalur sehingga 100 GHz, model perambatan gelombang yang 

lebih tepat diperlukan kerana model sedia ada hanya sesuai untuk julat di bawah 6 

GHz. Pembentukan model ini telah dilakukan berdasarkan kempen pengukuran yang 

ekstensif dan menggunakan perisian simulasi Information and Communication 

Solutions (ICS) Telecom. Persekitaran pengukuran adalah senario pelan tertutup 

dalam dua bangunan termasuk untuk keadaan garis nampak (LOS), garis tak nampak 

(NLOS), laluan lorong luas, bilik berkubikel serta hubungan komunikasi bilik 

berhampiran. Kekangan utama kajian adalah julat jarak yang terhad dari persekitaran 

LOS dan NLOS disebabkan reka bentuk struktur bangunan. Model kehilangan laluan 

berskala besar satu dan berbilang frekuensi terarah dan semua arah yang diketahui 

seperti rujukan ruang bebas (CI), pemantauan terapung (FI) dan alpha-beta-gamma 

(ABG) serta model yang diubah suai telah dibentang dalam tesis ini. Model yang 

diubah suai mempunyai faktor pembetulan bagi persekitaran yang berbeza dan 

memberikan titik data kehilangan laluan secara fizikal dan cekap untuk jarak 

rujukan. Model kehilangan laluan terarah telah dilakukan bagi orientasi antena sama-

kutub dan silang-kutub, manakala model kehilangan laluan pemancaran antena 

pelbagai-arah dilakukan untuk orientasi antena sama-kutub sahaja. Hasil simulasi 

ICS Telecom menunjukkan keserasian yang sangat tinggi dibandingkan dengan hasil 

pengukuran. Juga, didapati bahawa model CI adalah lebih mudah, ringkas dan tepat 

untuk ramalan kehilangan laluan membandingkan dengan model FI dan ABG. Selain 

itu, keputusan menunjukkan bahawa model kehilangan laluan dikemukakan 

mempunyai eksponen kehilangan laluan (PLE), n dan sisihan piawai, σ lebih kecil 

berbanding dengan model CI. Dapatan kajian menunjukkan model yang diubah suai 

dapat meramal kehilangan laluan dengan tepat dan menjadi analisis rujukan untuk 

membangunkan aplikasi gelombang-mm bagi perancangan komunikasi tanpa wayar 

dalam persekitaran dalam bangunan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

The frequency spectrum is a valuable natural resource, which has been 

swiftly utilized for worldwide, regional and national telecommunication 

infrastructures [1], [2]. In light of this, the World Radio Conference (WRC-15) and 

the International Telecommunication Union for Radiocommunication (ITU-R) have 

been established as the main guidelines for the worldwide spectrum allocation for the 

next generation of cellular systems [3]. In addition, the International Mobile 

Telecommunications (IMT)-advanced requirements for the fourth generation (4G) 

terrestrial mobile telecommunication were affirmed by the ITU-R in January 2012. 

Simultaneously, the tremendous evolution of cellular data services supported by 

wireless internet and smart devices has prompted the research on the fifth generation 

(5G) designed for the next generation of terrestrial cellular telecommunications [4]. 

The field of wireless communications technology has advanced rapidly in 

recent years. The wider application of wireless communications technology is mainly 

due to its capability in fulfilling the specifications for the modern methods. 

Nevertheless, there has been increasing demand for the high data rate and fast 

communication nowadays [5]. In light of this, wireless data traffic is projected to rise 

by 1000 fold and 10,000 fold by the year 2020 and 2025, respectively [6]. In the case 
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of cellular communication, is it essential to enhance the cellular capacity to address 

the dynamic need of the traffic. Moreover, rising demand for usage of the smart 

devices (e.g., smart-phone, tablet, personal computer (PC), and etc.) and tremendous 

growth of applications urge huge data traffics. These factors have contributed 

exponentially towards increase of the support for wireless data traffic. 

In recent years, there has been an enormous advancement in cellular data 

traffic owing to the development of smartphones, tablets, and devices that deliver, 

oversee, convey, and save Zettabytes of data annually [7]-[9]. Moreover, the 

smartphone adoption rates are markedly rising as carriers and service providers are 

striving to engage more clients [10], [11]. Fundamentally, the arrival of smartphones 

and “wireless fidelity” (WiFi) supported devices have expedited the growth of 

wireless technologies and utilization. Nevertheless, it has formed the bottleneck in 

the sub-6 GHz spectrum, wherein most of these devices function [12]-[15]. 

From the beginning of 2000's, there has been an extensive utilization of 2.4 

GHz and 5 GHz WiFi bands for indoor wireless communications in common 

workplace settings, eateries, and lodging houses [16], [17]. Nonetheless, the heavy 

deployment of indoor hotspots and latest wireless multimedia devices have caused 

high bottleneck and traffic over indoor networks [18]. Moreover, the 60 GHz 

mmWave band is applied for wireless gigabit alliance (WiGig) along with the 2.4 

GHz and 5 GHz WiFi bands, to enable high-data-rate uses. As such, the broad 

bandwidth at 60 GHz has promoted widespread 60 GHz indoor propagation analysis 

to determine the essential attributes of the channel for inventing indoor wireless local 

area network (WLAN) systems. It should be noted that the WLAN systems that have 

potential for attaining multi-gigabits per- second throughputs [19], [20].  

In general, the wireless spectrum more than 6 GHz, particularly amongst 30 

GHz and 300 GHz, is known as the mmWave spectrum. The mmWave spectrum 

encompasses a substantial volume of fresh bandwidth that is rarely used. 

Nevertheless, it could be feasible for unlicensed or licensed utilization in the near 



3 

 

future [12], [13], [21]. Presently, the unlicensed 60 GHz band is the only millimeter 

wave band applied for extensive commercial utilization. In this case, oxygen 

absorption generates loss larger than free space in comparison with the alternative 

millimeter wave bands. Consequently, this lowers the signal strength across the 

extended array (up to a few hundreds of meters) of propagation distances [22]. 

The observation gained through existing mobile and wireless 

communications networks leads to unexpected growth of the data traffic. Resultantly, 

it contributes to a significant challenge towards further advancement of mobile and 

wireless communication networks. The future IMT systems are anticipated to support 

extremely high-throughput data networks to withstand the progress on the data traffic 

[23]. In light of this, many studies and development are in the pipeline to discover 

feasible mobile broadband systems with frequency bands more than 6 GHz. 

The band more than 6 GHz at millimeter wave band is proposed as a 

promising candidate for the latest cellular 5G communication system [4]. 

Accordingly, the system capability of the 5G cellular communication system will be 

enhanced. Consequently, the cellular devices functioned through base station could 

be provided with enhanced service environment with high-speed broadband 

transmission with low latency compared to the existing cellular communication 

systems. Hence, the utilization of millimeter wave band for 5G cellular 

communication system will lead to innovative multimedia facilities [24]. 

The imminent spectrum and capacity crunch intended for outdoor cellular 

may ultimately result in the 28 GHz and 38 GHz millimeter wave frequency bands. 

This is considered as an expansion of 5G outdoor and indoor communications, 

particularly owing to the nature of shrinking cell sizes. On the occasion of 28 GHz 

and 38 GHz bands turn out to be unlicensed like the 60 GHz band, the 

comprehensive utilization and occasions they could support would extremely decline 

the load on cellular and backhaul networks conforming to the phase of the internet of 

things (IoT) [25].  
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The 5G wireless networks are anticipated to be a combination of network 

tiers of diverse magnitudes, transmit powers, backhaul connections, and diverse radio 

access technologies (RATs) that are retrieved by remarkable quantities of smart and 

heterogeneous wireless devices. This architectural improvement in addition to the 

cutting-edge physical communications technology like high-order spatial 

multiplexing multiple-input multiple-output (MIMO) communications will offer 

sophisticated comprehensive capability for additional immediate customers, or 

greater spectral efficacy in comparison with the 4G networks [26]. 

The transceivers in 5G should warrant a protected communication with a 

steadfast connection speed of Gigabit per second at all ubiquitously. In the vicinity of 

the entire transceiver modules for millimeter wave (30GHz-300GHz) for 5G cellular 

communication, the antenna design needs major modifications. This is for the reason 

that the entire cellular communication criterions up to 4G have functioned in the 

series of the microwave spectrum 300MHz-3GHz [27]. 

1.2 Problem Statement  

The expansion of 5G cellular communication networks concentrates towards 

contributing sophisticated bandwidth and elongated array together with advanced 

capability. Therefore, the spectrum usable in the millimeter wave frequency bands 

offers multi-gigabit-per-second data rates. Nevertheless, the recognized 

communication scope is limited by a number of aspects, such as the setting (indoor 

or outdoor), the functioning frequency, antenna categories, and designs, etc. 

For the development of the new 5G systems to operate in bands above 6 GHz, 

there is a need for accurate radio propagation models for these bands which are not 

fully modelled by existing channel models below 6 GHz, because of the difference of 

signal propagation characteristics in different frequencies. Thus, it is important to 
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investigate the channel characterization and path loss modeling in frequency bands 

above 6 GHz (millimeter wave bands). 

 

 

The problem is to investigate the practical usefulness of IMT in different 

frequency bands and in millimeter wave bands specifically 28 GHz and 38 GHz and 

investigating the channel characteristics and path loss modeling in these bands under 

different propagation conditions and scenarios in indoor environment, e.g. LOS, 

NLOS, and different rooms, also for directional and omnidirectional path loss models 

for co- and cross-antenna polarizations. Also, for different antenna types like horn 

and omni antennas, to examine and evaluate the effect of changing the antenna type 

(horn or omni) and changing the antenna orientation (co- and cross-polarized) on the 

path loss. 

1.3 Research Objective 

In this research the main objective is aiming to investigate the channel 

characteristics and path loss modeling, and usefulness of IMT in bands more than 6 

GHz (28 GHz and 38 GHz). This aim was meant to support and further enrich 

literature on path loss modeling for 5G mobile networks in millimeter wave 

frequency bands. The other objectives to achieve the aim aforementioned are 

outlined below: 

• To measure received signal strength then conduct and modeling path loss for 

different path loss models (CI, FI and ABG) in different indoor environments 

at 4.5 GHz, 28 GHz and 38 GHz. 

• To perform path loss modeling by using ATDI-ICS Telecom simulation, to 

compare and verify the measurement and simulation results. Also, develop a 

modified path loss model in same environments at 28 GHz and 38 GHz. 
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• To evaluate and verify the developed model and to find most suitable and 

accurate path loss model in corresponding bands for various propagation 

settings based on different path loss coefficients and parameters, such as path 

loss exponent PLE. 

1.4 Scope of Work 

The study is aimed to examine and deliver data on the practical usefulness of 

IMT in the bands more than 6 GHz in millimeter wave bands (28 GHz and 38 GHz). 

In addition, the study purposed to form propagation models for the indoor settings. 

The practical usefulness to be measured are inclusive of details, the existing IMT 

systems, their development, and/or possibly innovative IMT radio technologies and 

system methodologies could be applicable for operation in the bands more than 6 

GHz. This is in view of the effect of the propagation features associated with the 

potential upcoming operation of IMT in those bands. All necessary formulas that 

should be applied for this study have to be analyzed and the required parameters 

are going to be determined. The scope of the research has been listed as follows: 

 

• Literature reviews have been carried out on radio propagation model, 

frequency bands, propagation losses, path loss models, millimeter wave 

frequency bands, 5G channel modeling and current literature related to this 

study. 

• Illustrating the specifications and parameters of the proposed system for TX 

and RX for different scenarios. 

• Identifying the path loss models’ formulas in order to find the relationship 

between path loss with distance and frequency for different scenarios and 

frequencies. 
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• Measure the received signal strength and characterize path loss for two 

different indoor environments inside Universiti Teknologi Malaysia (UTM), 

Johor campus. 

• Path loss measurements carried out at three frequency bands 4.5 GHz, 28 

GHz and 38 GHz. 

• ATDI-ICS Telecom simulation for planning and designing 

telecommunication network to do coverage calculation and path loss 

modeling for same environments and scenarios of measurement. 

1.5 Research Contribution 

A few measurements have been conducted, and few studies have been 

investigated on the millimeter wave propagation and path loss modeling at 28 GHz 

and 38 GHz for typical indoor settings. In light of this, the current research is 

emphasized on path loss modeling in diverse indoor settings and schemes. 

Appropriately, the findings of the current study would contribute towards model path 

loss and channel features. These contributions are as outlined below: 

• A significant study based on measurements and experimental setup, and 

coverage analysis in ATDI-ICS Telecom simulation have been performed for 

path loss modeling and channel characterization. 

• The study conducted in LOS, NLOS and in different rooms environments in 

the two buildings with different obstacles, to examine signal attenuation when 

penetrating different obstacles, in order to accurately characterize the channel 

and model path loss to design indoor systems at mmWave frequency band. 

• The study showed a comparison results in different path loss models between 

the frequency below 6 GHz (4.5 GHz) and frequencies above 6 GHz (28 GHz 

and 38 GHz). 
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• New path loss model has been modified and validated for different scenarios, 

in directional and omnidirectional path loss models for co- and cross-antenna 

polarization. Experimental works and analysis on path loss in indoor 

environment in this research study have produced path loss model that is 

more precise for the examined scenarios relative to standard indoor empirical 

models. 

1.6 Thesis Outlines 

This thesis comprises of six chapters to cover the whole research work that 

has been conducted. 

The second chapter provides a summary of literature review on radio 

propagation model, deterministic and empirical indoor propagation models, 

applications of millimeter wave communications. Also, topics on 5G channel 

modeling, challenges and requirements are then explained. It includes results of the 

most recent studies in indoor channel modeling for different frequencies. 

The third chapter proposes a methodology of path loss modeling in 

measurements and simulation software in different indoor environments and 

frequencies for directional and omnidirectional models. It includes the closed-form 

expression for formulas of single and multi-frequency path loss models that used in 

this research study. Also shows the measurement environments and experiment 

procedures. The modified model for 28 GHz and 38 GHz frequency bands has been 

presented. 

Chapter four describes the details and shows the results of an experimental 

setup for propagation and path loss modeling in Wireless Communication Center 
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(WCC P15a) new building and (WCC P15) old building in Universiti Teknologi 

Malaysia (UTM), Skudai, Johor. The experimental setup comprises of fixing the TX 

in a location and distribute the RX points in LOS, NLOS and six rooms in the 

building. Single frequency (CI and FI) models and multi frequency (ABG) model as 

well as modified model results are presented for directional and omnidirectional path 

loss models. Also, indoor plan designing and path loss modeling by using ATDI-ICS 

Telecom simulation software are presented. Moreover, the comparison results 

between measurements and simulation are presented also. 

Chapter five presents the overall conclusions of this research study and give 

the recommendations on future work and development related to channel 

characterization and path loss modeling for 5G communication networks. 
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