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ABSTRACT

The energy of a simple graph is defined as the summation of the absolute value

of the eigenvalues of the adjacency matrix of the graph. It was motivated by the

Hückel Molecular Orbital theory. The theory was used by chemists to estimate the

energy associated with π-electron orbitals of molecules which is called as conjugated

hydrocarbons. Meanwhile, the Seidel energy is defined as the summation of the

absolute value of the eigenvalues of the Seidel matrix of the graph. Besides, a Cayley

graph associated to a finite group is defined as a graph where its vertices are the

elements of a group and two vertices g and h are joined with an edge if and only

if h is equal to the product of x and g for some elements x in the subset X of the

group. This research combines the topics in graph theory with group theory, namely

on the energy and Seidel energy for Cayley graphs, with some finite groups, namely

dihedral groups, alternating groups, and symmetric groups. The results are obtained

by finding the isomorphism of the Cayley graphs with respect to the subsets of order

one and two, and the generating set associated to the groups. The respected Cayley

graphs are found and represented as the union of complete graphs, cycle graphs, and

complete bipartite graphs. The obtained graphs are then mapped onto their adjacency

matrix and Seidel matrix respectively to obtain the eigenvalues and Seidel eigenvalues

of the graphs. Some group theory concepts and properties of special graphs are also

used to find the generalizations of the eigenvalues of the Cayley graphs. Finally, the

energy and the Seidel energy for the Cayley graphs associated to the dihedral groups,

alternating groups, and symmetric groups are obtained by using the eigenvalues and

the Seidel eigenvalues of the graphs, respectively. The results show that the Seidel

energy of Cayley graphs with respect to subsets of order one associated to the groups

are equal to their energy. It is also found that the Seidel energy of Cayley graphs with

respect to some subsets of order two and the generating sets associated to the groups

are larger than their energy.
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ABSTRAK

Tenaga bagi suatu graf ringkas ditakrifkan sebagai hasil tambah nilai mutlak

bagi nilai eigen matriks bersebelahan bagi graf tersebut. Ia telah diinspirasikan

oleh teori orbital molekul Hückel. Teori ini telah digunakan oleh ahli kimia untuk

menganggarkan tenaga berkaitan dengan orbital molekul π-elektron yang dipanggil

sebagai hidrokarbon konjugasi. Sementara itu, tenaga Seidel ditakrifkan sebagai

hasil tambah nilai mutlak bagi nilai eigen matriks Seidel bagi suatu graf. Selain

itu, graf Cayley yang dikaitkan dengan kumpulan terhingga ditakrifkan sebagai

graf dengan bucunya adalah unsur-unsur kumpulan tersebut dan dua bucu g dan h
adalah terkait jika dan hanya jika h adalah sama dengan hasil darab x dan g untuk

beberapa unsur x dalam subset X bagi kumpulan tersebut. Kajian ini menggabungkan

topik dalam teori graf dengan teori kumpulan, iaitu pada tenaga dan tenaga Seidel

bagi graf Cayley, dengan beberapa kumpulan terhingga iaitu kumpulan dihedral,

kumpulan berselang-seli, dan kumpulan simetri. Keputusan diperolehi dengan mencari

isomorfisma bagi graf Cayley berkaitan dengan subset berperingkat satu dan dua,

dan subset penjana bagi kumpulan tersebut. Graf Cayley berkenaan diperolehi dan

diwakili sebagai gabungan graf lengkap, graf kitar, dan graf bipartit lengkap. Graf-

graf tersebut kemudiannya dipetakan ke matriks bersebelahan dan matriks Seidel,

masing-masing untuk mendapatkan nilai eigen dan nilai eigen Seidel bagi setiap graf

tersebut. Beberapa konsep teori kumpulan dan sifat bagi graf khusus juga telah

digunakan untuk mencari generalisasi bagi nilai eigen dan nilai eigen Seidel bagi graf

Cayley tersebut. Akhirnya, tenaga dan tenaga Seidel bagi graf Cayley bagi kumpulan

dihedral, kumpulan berselang-seli, dan kumpulan simetri telah diperolehi, masing-

masing dengan menggunakan nilai eigen dan nilai eigen Seidel bagi graf tersebut.

Keputusan menunjukkan bahawa tenaga Seidel bagi graf Cayley berkaitan subset

berperingkat satu bagi kumpulan tersebut adalah sama dengan tenaga mereka. Ia juga

didapati bahawa tenaga Seidel bagi graf Cayley bagi beberapa subset berperingkat dua

dan set penjana bagi kumpulan tersebut adalah lebih besar daripada tenaga mereka.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Cayley graphs have a wide real life application in many areas, especially in the

field of biology and computer science. For instance, in the field of biology, Cayley

graphs on symmetric groups appeared in molecular biology when permutations are

used to represent the sequences of genes in chromosomes and genomes while some

operations on the permutations represent evolutionary events. In the field of computer

science, Cayley graphs are used in the representation of interconnection and networks.

The vertices in the Cayley graphs represent the processing elements and the memory

modules while the edges represent the communication lines.

In addition, the theory of Cayley graphs has developed into a branch in

algebraic graph theory. This research is focused in constructing the Cayley graphs

associated to some finite groups in group theory. The Cayley graph of a group is first

defined by Arthur Cayley in 1878 as a graph with the elements of a group G as the

vertices and there is an edge joining the vertices g1 and g2 in G if and only if there is

x ∈ X, where X is a subset of G, such that the product of x and g1 is equal to g2.

The subset X of G does not include the identity element of G and it holds the inverse-

closed property where every element of the subset has an inverse under the operation

that is also an element of the subset. The Cayley graph of G with respect to the subset

X is often denoted as Cay(G, X) [1].

Meanwhile, the energy of a graph Γ is defined as the summation of all positive

values of the eigenvalues of the adjacency matrix of the graph. The set of all
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eigenvalues of the graph is referred to as the spectrum of the graph. Let Γ be a finite

and undirected simple graph, with vertex set V (Γ) and edge set E(Γ). The number of

vertices of Γ is n, and its vertices are labelled by v1, v2, . . . , vn. The adjacency matrix,

A(Γ), of the graph Γ is a square matrix of size n × n, whose ij-entry is equal to 1 if

the vertices vi and vj are adjacent and is equal to zero otherwise. The characteristic

polynomial of the adjacency matrix, which is det(λIn − A(Γ)), where In is the unit

matrix of order n is said to be the characteristic polynomial of the graph Γ and often

denoted by f(Γ, x). Since the eigenvalues of a graph Γ are defined as the eigenvalues

of its adjacency matrix A(Γ), so they are just the roots of the equation f(Γ, x) = 0,

denoted by λ1, λ2, . . . , λn.

According to Woods in [2], the study on the energy of general simple graphs

was first defined by Gutman [3] inspired from the Hückel Molecular Orbital (HMO)

Theory proposed in 1930s by Hückel. The HMO Theory has been used by chemists in

approximating the energies related with π-electron orbitals in conjugated hydrocarbon

molecules.

In 2009, Li et al. [4] explained that in the early days, when computers were

not widely accessible, the calculation of the HMO total π-electron energy was a

huge problem. In order to overcome the difficulty, various approaches have been

offered to calculate the approximate calculation of the π-electron energy. Within the

approximation, the total energy of the π-electrons, denoted by ε, is then obtained,

which is by summing up the individual electron energies. In conjugated hydrocarbons,

the total number of π-electrons is equal to the number of vertices of the associated

molecular graph. After a few considerations, they finalized the definition of the

energy of the graph by the summation of the absolute values of the eigenvalues of

the molecular graph.

This research aims to determine the Cayley graphs associated to some finite

groups, and further to compute the energy of the Cayley graphs associated to the

groups. The procedures are consisted of generating the elements, vertices and edges
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for the Cayley graphs of the groups being studied, finding the isomorphisms and

generalizations of the Cayley graphs, building the adjacency matrix for each Cayley

graph, calculating the eigenvalues of the adjacency matrices and finally computing the

energy of the Cayley graphs. Besides the ordinary energy of graph, this research is

also interested in finding the Seidel energy of the Cayley graphs. The general form of

the results are determined and presented at the end of the study.

1.2 Research Background

The study on Cayley graphs was initiated by Arthur Cayley in 1878 and since

then, they have been many researchers presenting their interest on the topics. The

theory has been advanced into a significant branch in algebraic graph theory. There are

many problems regarding Cayley graphs that have been studied by many researchers.

For instance, Babai and Seress [5], Lakshmivarahan et al. [6], Friedman [7], Adiga

and Ariamanesh [8] and many more have specifically studied on the Cayley graphs

related to permutations groups. In addition, Konstantinova in [9] has presented the

historical changes of the problems related to families of Cayley graphs and included

various applications of Cayley graphs in solving combinatorial, graph-theoretical, and

applied problems.

Meanwhile, studies on the spectrum of the Cayley graphs by using algebraic

graph theory was first considered by Babai in [10]. In the following years, many

researchers (see [11] - [14]) have extended or applied the concept to find the

eigenvalues of Cayley graphs. There are also researchers that use other method

besides using Babai’s. For instance, Diaconis and Shahshahani [15] and Ghorbani

and Nowroozi-Larki [16] have used a different method which is via the character table

of the related groups to arrive to the spectrum.

Furthermore, there are also a few researchers who studied specifically on the
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eigenvalues and the energy of unitary Cayley graphs. For instance, Balakrishnan [17]

has determined the energy of unitary Cayley graphs where his works was later extended

by Ramaswamy and Veena in [18]. In [19], Foster-Greenwood and Kriloff and in [20],

Liu and Li have also applied the concept to study on the unitary Cayley graphs and

their energy.

Over the years, there has been considerable attention in the literature associated

to the studies on Cayley graphs related to groups especially on the properties of the

graphs. Although the literatures are growing, the topic related to Cayley graphs can

be explored more. Therefore in this research, the Cayley graphs associated to some

finite groups, namely the dihedral groups, alternating groups and symmetric groups

are constructed and the applications of the findings are extended to the computations

of the spectrum of the said graphs and further the ordinary energy and Seidel energy

of the graphs.

1.3 Problem Statements

The study on Cayley graphs was initiated a long time ago by Arthur Cayley

in 1878 while the study on the energy of graphs have just started in 1978 motivated

by Hückel Molecular Orbital Theory in 1930s. Although many previous studies have

been done on Cayley graphs associated to groups, there are lack of studies describing

the structure of the Cayley graphs of finite groups specifically for the dihedral groups,

alternating groups and symmetric groups in general. Therefore, part of the aim of

this study is to construct and determine the general formula of the Cayley graphs of

some finite groups. The studies combining a few fields in mathematics such as group

theory, graph theory and linear algebra are very interesting to be explored yet not many

researchers focused on the energy of graphs related to groups. Therefore, this research

intended to study the energy of the Cayley graphs associated to some finite groups

by applying the knowledge from linear algebra. Besides there are lack of studies on

the other types of energy of graphs associated to groups. Thus, this research extends
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the studies to compute the Seidel energy of Cayley graphs associated to some finite

groups.

1.4 Research Objectives

The objectives of this study are:

1. To determine the Cayley graphs with respect to subsets of order one and two

associated to the dihedral groups, alternating groups, and symmetric groups.

2. To establish the energy of the Cayley graphs with respect to subsets of

order one and two associated to the dihedral groups, alternating groups, and

symmetric groups.

3. To develop the Seidel energy of the Cayley graphs with respect to subsets of

order one and two associated to the dihedral groups, alternating groups, and

symmetric groups and their general form.

1.5 Scope of the Study

This research combines three area of studies, namely group theory, graph

theory and some knowledge in linear algebra. The first part of the research focused

on the construction of the Cayley graphs associated to the dihedral groups, alternating

groups and symmetric groups. The Cayley graphs are with respect to subsets of order

one and two of the groups, including some generating set of the groups.

Meanwhile, the second part of this research focused on computing the ordinary

energy and the Seidel energy of the Cayley graphs associated to the dihedral groups,

alternating groups and symmetric groups.
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1.6 Significance of Findings

This research is meant to add up as new findings on the topics of the energy

of graphs related to finite groups. The major contributions of this work which are the

computation of the energy of the graphs can actually be corresponded to the molecular

structures in chemical graph theory where the bonding of atoms are presented as simple

graphs in mathematics. Therefore, this research is keen to increase the works on the

energy of graphs and would also help chemists all around the world to calculate the

energy of molecular structures in much simpler way in future, plus it is more time and

costs saving.

Besides, the procedure can also be applied to other field of sciences. For

instances in medical, the methodology of the energy of graph was used in the search

for the genetic causes of Alzheimer Disease (AD) and for modeling of the spread

of epidemics. The application of the energy helped explains the understanding of

network breakdown in AD using advanced mathematical descriptors. The concept of

spectral graph theory were applied to provide novel metrics of structural connectivity

based on 3-Tesla diffusion weighted images in AD patients and healthy controls.

The connectivity networks were reconstructed using whole-brain tractography and

the cortical disconnection were examined based on the energy of the graph and its

spectrum. It has been found that the number of disconnected cortical regions rised

with the number of copies of the risk gene in AD patients. Each additional copy of

the risk gene have lead to more dysfunctional networks with weakened or abnormal

connections, providing evidence for the disconnection syndrome.

Based on the examples given, it is no doubt that the study of energy of graph is

of great significance. Many practical problems in real life can be represented in graphs

or networks and the concept of the energy of graph can be applied. Interestingly, the

analysis of the graphs can be made accordingly, to the increment or decrement of the

energy values.
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1.7 Research Methodology

The research started by constructing the Cayley graphs associated to the

dihedral groups, alternating groups, and symmetric groups. The adjacency of the

vertices of the Cayley graphs are computed by using the definition of Cayley graph.

Groups, Algorithms and Programming (GAP) software is used to assist in some

computations that involve large groups in which the manual computations is almost

impossible. By using the software, the connectivities of the vertices of the Cayley

graphs associated to some finite groups are computed using the for-loop function

provided. The procedure includes the generation of the vertices of the Cayley

graph which consists of the elements of the related groups. Since the Cayley graph

considered are with respect to a certain subset, then the Cayley graphs are constructed

according to certain cases of subset of order starting from order one, followed by subset

of order two.

The second part of this thesis is the computations of the spectrum of the Cayley

graphs followed by the computations of the energy and Seidel energy of the Cayley

graphs. By using the definition of the energy of graph, which is to sum all the positive

values of the eigenvalues of the graph, the first step to calculate the energy is to build

the adjacency matrix for each Cayley graphs and find their eigenvalues respectively.

Maple software is then used to assist in the formation of large adjacency matrices

especially for the groups of higher order. The pattern of the adjacency matrices are

observed and the general form of the spectrum are determined. Finally, the energy

of the Cayley graphs are computed by applying the definition and the general form is

found. The procedure for the computations of Seidel energy is similar to the ordinary

energy except that the eigenvalues for the Seidel energy are obtained from the Seidel

matrix of the Cayley graphs. Figure 1.1 illustrates the research methodology for this

research.
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Figure 1.1 Research methodology flowchart

1.8 Thesis Organization

This thesis is organized into six chapters. First, Chapter 1 gives a brief

overview and introduction to the thesis. The statement of the problem is stated and

the research questions are pointed out. The objectives, the scope, the significance and

the methodology of the study are also specified in this chapter.

In the next chapter which is Chapter 2, firstly some basic concepts and

properties from group theory and graph theory are introduced followed by some

knowledge from linear algebra. Some properties, definitions and theorems found by

other researchers are also included and explained. The chapter is followed by the

elaborations of previous works done by other researchers which relate to the scope of

the research.

Next, Chapter 3 presents the constructions of the Cayley graphs associated to

the dihedral groups, D2n, the alternating groups, An, and the symmetric groups, Sn.

The Cayley graphs presented are with respect to a subset of the groups where the

subsets are of order one and two. The general form of the Cayley graphs associated

to the groups are presented in the form of theorems followed by some examples to
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illustrate the results.

In Chapter 4, the energy of the Cayley graphs associated to D2n, An, and Sn

with respect to subsets of order one and two are presented. The computations of the

energy of the Cayley graphs are conducted by summing up the positive values of the

eigenvalues of the graphs which were obtained from their adjacency matrices. The

results are then presented in the form of lemmas and theorems.

In Chapter 5, another type of energy of the Cayley graphs is presented, namely

the Seidel energy. The computations of the Seidel energy of the Cayley graphs are

conducted by summing up the positive values of the Seidel eigenvalues of the graphs

which are obtained by first determining the Seidel matrices. The results are also

presented in the form of lemmas and theorems.

Lastly, Chapter 6 provides the summary and conclusion of the overall findings

in this thesis. This chapter also encloses the suggestions for future research on the

energy of graphs associated to groups. Figure 1.2 illustrates the content of the whole

thesis.
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Figure 1.2 Thesis organization chart
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