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ABSTRACT

Polymer flooding is one of the most promising EOR methods and has 

frequently been applied in EOR operations. In this process, water-soluble polymers 

increase the viscosity o f the flood water and thus improve the water / oil mobility 

ratio. The incremental oil production is a result of improved vertical and areal sweep 

efficiency. The effect salinity on polymer solution viscosity determination and 

selection o f suitable and optimum polymer type and concentration for different brine 

concentration present in the reservoir is important for polymer flooding success. In 

this work, cores were designed ai^d developed and considered as pores medium. 

These cores were saturated with light and low-viscosity oil samples from Malaysian 

crude oil and then flooded by 0.4 PV polymer slug in low-pressure and low- 

temperature conditions. In this study the effect o f two polymer types, polyacrylamide 

and xanthan, were utilized to inspect the effects o f polymer type, concentration and 

salinity on polymer solution viscosity. The result of the optimum polymer type and 

concentration was used to make the polymer flooding using core saturated with four 

different brine concentration of CaCh (5000, 15000, 25000, and 45000 ppm).The 

results o f experiments illustrated that the salinity effects on polyacrylamide viscosity 

is more comparing to xanthan gum and concentration of 1500 ppm xanthan gum is 

most suitable for good polymer flooding with favourable mobility ratio. The study 

shows that polymer flooding with low salinity brine is more beneficial compare to 

high saline. Finally, compared with waterflooding, polymer flooding resulted in a 

considerable growth in ultimate oil recovery.



ABSTRAK

Kaedah pembanjiran polimer adalah satu kaedah yang berkesan dan sering 

digunakan dalam operasi EOR. Dalam operasi EOR, polimer larut air dapat 

meningkatkan kelikatan air dan menambah-baik mobiliti nisbah air/minyak. 

Peningkatan Pengeluaran minyak ialah hasil daripada pembaikan tegak dan 

kecekapan areal sapu. kesan Kemasinan pada penentuan kelikatan larutan polimer 

dan pemilihan jenis polimer yang sesuai dan optimum dan penumpuan untuk air 

masin yang berbeza kepekatan di dalam takungan penting untuk kejaygan polimer 

kebanjiran. Dalam tugas ini, teras - teras telah direka bentuk dan dibangunkan dan 

dianggap sebagai media yang berliang. Teras -  teras ini ditepukan dengan cahaya 

dan sampel minyak kelikatan rendah dari minyak mentah Malaysia dan kemudian 

dibanjiri oleh 0.4 PV polimer pata keadaan tekanan dan suhu rendah. Dalam kajian 

ini kesan dua jenis polimer, poliakrilamida dan xantan, digunakan untuk memeriksa 

kesan jenis polimer, tumpuan dan kemasinan pada kelikatan larutan polimer. 

Keputusan jenis dan tumpuan polimer yang optimum digunakan untuk membuat 

pembanjiran polimer menggunakan teras tepu dengan empat air masin berbeza 

kepekatan CaCb (5000, 15000, 25000 , dan 45000 ppm).Keputusan eksperimen 

menjelaskan bahawa kesan kemasinan pada kelikatan poliakrilamida adalah lebih 

banyak berbanding dengan gam xantan dan kepekatan 1500 ppm gam xantan paling 

sesuai untuk pembanjiran polimer dengan nisbah mobiliti yans baik. Kajian 

menunjukkan pembanjiran polimer dengan kemasinan rendah air masin lebih 

bermanfaat berbanding dengan masin yang tinggi. Akhimya, dibandingkan dengan 

pembanjiran, pembanjiran polimer menghgaikan satu pertumbuhan yang besar 

pemulihan minyak muktamad.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Enhanced oil recovery is generally considered as the third, or last phase of

useful oil production, sometimes called tertiary production. The first, or primary,

phase of oil production begins with the discovery of an oilfield using the natural

stored energy to move the oil to the wells by expansion of volatile components

and/or pumping of individual wells to assist the natural drive. When this energy is

depleted, production declines and a secondary phase of oil production begin when

supplemental energy is added to the reservoir by injection of water. As the water to

oil production ratio of the field approaches an economic limit of operation, when the

net profit diminishes because the difference between the value or the produced oil

and the cost of water treatment and injection becomes too narrow, the tertiary period

of production begins.

Up to 80 % of the original oil in place is typically left behind in the reservoir

after primary oil recovery. Primary oil recovery uses the energy of the reservoir to

produce oil. Examples of primary oil recovery include natural flow and artificial lift.

Secondary oil recovery strives to recover more of what’s left behind of primary oil

recovery. Secondary oil recovery involves pressure maintenance of the reservoir for
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addition oil recovery. Water flood and gas injection are examples of secondary oil

recovery. Primary and secondary recovery methods are considered conventional oil

recovery.

Enhanced oil recovery is a process that recovers oil not produced by

conventional primary and secondary methods. The goal of enhanced oil recovery is

to improve sweep efficiency in the reservoir by the injection of artificial materials in

order to reduce the remaining oil saturation. Enhanced oil recovery processes target

trapped oil in the flooded areas by capillary forces, also known as, residual oil. Oil in

areas not flooded by the injected fluid, or bypassed oil, is also targeted by enhanced

oil recovery processes.

One of the big challenges that engineers face with water flooding is related to

water’s tendency to travel very quickly through the reservoir. Because water has such

a high mobility, it tends to by-pass large volumes of oil, and “break-through,” to the

producing well before adequately sweeping the reservoir (Green and Willhite 1998).

This problematic characteristic of water flooding ultimately results in only part of the

reservoir being contacted for a realistic time frame and injection scheme.

Additionally, reservoir heterogeneities will exacerbate the injected water’s tendency

to only mobilize the oil that resides in high permeability conduits rather than

contacting the whole reservoir (Green and Willhite 1998).

When designing a successful pressure maintenance operation, it is not just the

mobility of the displacing phase that is important, the relationship between the

behaviours of the displacing and displaced phases are also important. The ratio of the

oil mobility and water mobility can be used to gain a general understanding about the

efficiency of an injection operation. With regards to the phase mobility values, the

optimal sweep efficiency occurs when the mobility of the displacing phase is less

than or equal to the mobility of the displaced phase. The required reduction in the

mobility of the injected phase can be achieved by increasing the viscosity of the

injected phase. Undesirable behaviours such as fluid fingering and frontal
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instabilities can be dampened by adding polymer molecules to the injected phase

which cause a decrease in the fluid mobility. Thus far, polymer flooding has been

described as an effective pressure maintenance and mobility control process when

used on its own, but it also has been found to be successful in conjunction with other

processes that require mobility control such as CO2 injection (Green and Willhite

1998).

Polymer is an enhanced oil recovery process that recovers the mobile oil that

has been bypassed by earlier water-flooding or an aquifer intrusion, due to reservoir

heterogeneity. And due to reservoir heterogeneity, the injected fluids will most likely

take the path of the highest permeability, also known as a thief zone. Polymer works

to combat reservoir heterogeneity, or thief zones, by filling the higher permeability

zones with viscous polymer. This way, the injected fluids can achieve a more

uniform sweep. This more uniform sweep will help prevent fast break-through that is

detrimental to oil recovery.

Polymer flooding is one of the most promising EOR processes in many

reservoirs because of its lower cost. In order to ensure favorable flood, polymer are

used to reduce mobility ratio between water and oil. The polymer basically increases

the viscosity of the injected water and reduces the porous media permeability,

allowing for an increase in the vertical and areal sweep efficiency of the injected

water and consequently, increases the oil recovery. Generally, there are two

commonly used polymers in EOR applications which are the synthetic material,

polyacrylamide in its partially hydrolyzed form (HPAM) and the biopolymer,

xanthan.

Injection of a polymer solution to increase fluid viscosity, to aid in

displacement of the chemicals through the reservoir and to minimize loss due to

dilution and channelling. Finally, the salinity of the injected water following

injection of the polymer is gradually increased to the normal concentration of the

oilfield fluids.
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The objective of polymer flooding is to control water mobility inside the

reservoir to favour higher oil recovery. Several design parameters are critical for the

success or failure of polymer flooding applications. The salinity of formation water is

one of the parameters which impose a limitation on polymer flood applicability.

Even though the cost of operating a polymer flood is relatively inexpensive

compared to other forms of enhanced and improved oil recovery, it is still an

expensive endeavour and has therefore warranted attention from researchers. The

purpose of studying these fluids is to develop an understanding of their intricate

behaviours which can then be used for practical field applications.

1.2 Polymer Flooding

On average, primary recovery leaves behind most of the oil in the reservoirs.

The recovery for heavy oil reservoirs is usually less than 10%. Heavy oil is oil with

high density (10 – 20 °API) and high viscosity (greater than 100 cP). There are

estimated 3,396 billion barrels of heavy oil resources worldwide (Chang et al., 2011).

High demand for oil and the scarcity of light oil has increased the incentive to

recover more heavy oil. One way to retrieve more oil out of the reservoir is to

improve the mobility ratio. Mobility ratio describes the mobility relationship between

the displacing phase and the displaced phase. When mobility ratio is greater than 1,

the displacing phase is likely to cause unstable displacement and fingering. When

mobility ratio is less than 1, the displacement is likely to be stable. If polymer is

added to the displacing phase to increase its viscosity, mobility ratio decreases. M, k,

and μ represent the mobility ratio, permeability, and viscosity respectively.

M		 = 			 ( / ) 	( / ) 	 ) (1.1)

Where k is the effective permeability and μ is the viscosity.
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1.3 Polymers

The chemicals improve the mobility ratio of the process by changing the

properties of the water (polymers).

Polymers are used in water flooding to reduce the mobility of the water and thus

improve its displacement efficiency. The reduction in mobility is caused by both an

increase in the water viscosity and a decrease in the permeability to water. Reduced

driving phase mobility results in improvements in the areal and vertical sweep

efficiencies.

With the advent of the less expensive synthetic organic polymers, polymer

flooding became a reality. Polyacrylamides and xanthan gum are the most common

of polymers being used. The polyacrylamides are sometimes partially hydrolyzed;

which further increases their molecular weight. Polymer flooding is best suited for

reservoirs in which water sweep efficiency is very low owing to an unfavourable

mobility ratio (e.g., because of low crude oil gravity) or wide permeability variations.

1.4 Polymer Products and Theory of use

Polymer is a chemical that is compound of a number of individual molecules

that are attached in some manner. These units are usually associated in a pattern that

repeats itself throughout the length of each polymer. The repeating units are called

monomers and the polymer can be homopolymer (One monomer), a dimer (two

monomer), etc. Another common term used in polymer chemistry to represent the

joining of two different monomer is copolymer(Donaldson et al. 1989).

One published definition to differentiate a large molecule from a polymer is that a

polymer should have a molecular weight greater than 200 and at least 8 or more

repeating units (Clark and Hoffman 1984).
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Polymer flooding operations use high molecular-weight organic chemicals to

alter the flow of water in the formation. Molecular weights of flooding polymer may

be as high as several millions. These large molecules are soluble in water because of

hydrogen bonding between water molecules and the polymer’s polar side chains.

1.5 Problem Statement

The increase in recovery is mainly the result of increasing the volume of the

reservoir swept. The best method to plan and calculate fluid flow within the reservoir

is experiments and numerical simulation.

The brine that saturates the pores of a reservoir besides the oil itself is one of the

most important parameters for the selection of a suitable polymer. If the reservoir

water is of high salinity the polymer should be salt stable or the reservoir must be

reconditioned by a preflush of fresh water.

1.6 Objectives

The study aims to revise the benefits of using polymer for enhancing the

recovery. Main specific objectives can be summarized as:

1. Select a suitable polymer solution that can help in control water mobility inside

the reservoir to favour higher oil recovery in conditions of particular brine

salinity with respect to salinity tolerance.

2. To use the selected polymer type solution and with specific concentration in

coreflood experiments with different brine salinities to study the recovery factor
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of polymer flooding and to see the effect of different brine salinity (CaCl2

solutions) on polymer flooding efficiency, to evaluate the role of polymer for

improving the sweep efficiency over waterflooding in an environment of high

salinity CaCl2 brine.

1.7 Scope of Work

In this study the effect of salinity on the viscosity of two polymer types,

polyacrylamide and xanthan, were utilized to inspect the effects of polymer type,

concentration on polymer solution viscosity.

In order to select to a polymer solution 70 samples has been prepared and

tested for seven brine salinity (2500, 5000, 10000, 15000, 2000, 25000, and 35000

ppm) of CaCl2 brine solution which prepared and test for two types of polymer

together with five different concentration of the two polymers (500, 1000, 1500,

2000 and 2500 ppm). The material used is polyacrylamide and xanthan gum as

polymers. The result of the optimum polymer type and concentration was used to

make the polymer flooding using core saturated with four different brine

concentration of Cacl2 (5000, 15000, 25000, and 45000 ppm). Polymer solutions

were mixed with brine solution using magnetic stirrer. Viscosities measured using

Brookfield viscometer. Cores were designed and developed and considered as pores

medium. Sand pack size between 250 -355 μm used as porous media to represent the

reservoir, the sand pack made of glass pipe with dimensions length 30.5 cm diameter

4.7 cm. These cores were saturated with light and low-viscosity oil samples from

Malaysian crude and then flooded by 0.4 pore volume polymer slug in low-pressure

and room temperature conditions.
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1.8 Assumptions

The laboratory investigations for polymer solutions were sufficient to

determine their compatibility for field application. Core experiments can reasonably

simulate the behaviour of xanthan gum solution under field conditions.
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