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ABSTRACT

A conjugacy class is a set of elements in the group under the conjugation

action. Meanwhile, a graph consists of points called vertices, and links which are

called edges, is indicated by line segments or curves joining certain pairs of vertices.

In the first part of this research, the conjugacy class of each type of groups in the

classification is computed based on the definition of conjugacy class itself. Previous

researchers have found the lower and upper bound of conjugacy classes. Compared

to those researches, this research move a step further where the exact number of

conjugacy classes of groups are computed. These results are then applied into finding

its conjugacy class graph. In the second part of this research, the conjugacy classes of

the groups satisfying the set omega is determined. A set omega is defined as the set

of all ordered pairs of commuting elements in the classification. In this research, the

classification of 3-generator p-groups of certain order is used. The conjugacy classes is

computed by using several steps. Firstly, the elements of order p is identified, followed

by the determination of the number of elements of ordered pairs in the set omega. The

number of conjugacy classes is then obtained and expressed in a general form. The

obtained results are later associated to two types of graph, namely the orbit graph and

the generalized conjugacy class graph. For the orbit graph, two vertices are adjacent

if they are conjugated to each other. Meanwhile, for the generalized conjugacy class

graph, two vertices are adjacent to each other if their cardinalities are not coprime.

The graphs turned out to be a complete graph or a union of complete graphs with p
vertices. In the last part of this research, two new graphs of 3-generator 3-groups called

the generalized commuting conjugacy class graph and the generalized non-commuting

conjugacy class graph are introduced. The generalized commuting conjugacy class

graph is a graph whose the vertices are the elements of the conjugacy classes in the

form of ordered pairs. Two vertices are adjacent if they are commuted. Since the

generalized non-commuting conjugacy class graph is a complement of the generalized

commuting conjugacy class graph, thus, the edges are connected if their vertices are

not commuted.
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ABSTRAK

Kelas kekonjugatan adalah suatu set unsur di dalam suatu kumpulan di

bawah tindakan kekonjugatan. Sementara itu, graf adalah terdiri daripada titik-

titik yang dipanggil bucu-bucu, dan sambungan-sambungan yang dipanggil sisi-sisi,

diwakilkan oleh segmen garis atau lengkung yang menyambungkan pasangan bucu-

bucu tertentu. Pada bahagian pertama kajian ini, kelas kekonjugatan bagi setiap

jenis kumpulan dalam klasifikasi dikira berdasarkan definisi kelas kekonjugatan itu

sendiri. Penyelidik-penyelidik sebelum ini telah mencari batas bawah dan atas bagi

kelas kekonjugatan. Berbanding kajian-kajian tersebut, kajian ini melangkah lebih

jauh yang mana bilangan kelas kekonjugatan yang tepat telah dikira. Hasil ini

kemudiannya digunakan untuk mencari graf kelas kekonjugatannya. Pada bahagian

kedua kajian ini, kelas kekonjugatan bagi setiap kumpulan yang menepati ciri-ciri

dalam set omega ditentukan. Suatu set omega ditakrifkan sebagai set pasangan

tertib yang saling tukar tertib dalam klasifikasi tersebut. Kelas kekonjugatan

dikira dengan menggunakan beberapa langkah. Pertama, unsur-unsur peringkat p
dikenalpasti, diikuti oleh penentuan set pasangan tertib dalam set omega. Bilangan

kelas kekonjugatan kemudiannya diperoleh dan dinyatakan dalam bentuk umum. Hasil

yang didapati kemudiannya dikaitkan dengan dua jenis graf, iaitu graf orbit dan

graf kelas kekonjugatan teritlak. Bagi graf orbit, dua bucu adalah bersebelahan jika

mereka saling berkonjugat di antara satu sama lain. Sementara itu, bagi graf kelas

kekonjugatan teritlak, dua bucu adalah bersebelahan jika kardinaliti bucu-bucu tersebut

bukan perdana relatif. Graf tersebut ternyata adalah graf lengkap atau kesatuan graf

lengkap dengan bilangan bucu p. Pada bahagian terakhir kajian ini, dua graf baharu

kumpulan-3 berpenjana-3 dikenali sebagai graf kelas kekonjugatan teritlak kalis tukar

tertib dan graf kelas kekonjugatan teritlak bukan kalis tukar tertib diperkenalkan. Graf

kelas kekonjugatan teritlak kalis tukar tertib adalah suatu graf di mana bucunya terdiri

daripada unsur-unsur dalam kelas kekonjugatan dalam bentuk pasangan tertib. Dua

bucu adalah bersebelahan jika bucu-bucu tersebut kalis tukar tertib. Memandangkan

graf kelas kekonjugatan teritlak bukan kalis tukar tertib adalah pelengkap kepada graf

kelas kekonjugatan teritlak kalis tukar tertib, maka, sisinya terbentuk jika bucu-bucu

tersebut tidak kalis tukar tertib.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Conjugation is one of the actions on sets besides many other group actions,

such as transitive, faithful, free, regular, n-transitive, sharply n-transitive, primitive

and locally free. Let G be a group and X is a set in G. The group action of G on

X is one of the ways how the elements in group G are moved around on elements

in X. When a group G acts on X, each element x ∈ X has an orbit. The orbit

is defined as Orb(x) = {gx|g ∈ G,x ∈ X}. Note that the action focused in this

research is conjugation action. Hence, the orbit now is defined as gx = gxg−1 for the

conjugation action of G on X where g ∈ G and x ∈ X. The orbit of the elements of

this conjugation action is known as conjugacy class. Some researchers have studied on

conjugation in order to compute the conjugacy class and related it to graph theory.

A conjugacy class is a set of elements in the group under the conjugation action.

Besides, a conjugacy class is an equivalence class under the equivalence relation of

being conjugate. The operation of conjugacy is defined as follows; Let a, b be the

elements in a group G. Then a and b are conjugate if for some g ∈ G, gag−1 = b. The

conjugacy class of a is written as cl(a) = {x−1ax|x ∈ G}, while the conjugacy class

of a group G is denoted by cl(G).

In graph theory, a graph consists of points which are called vertices, and

connections which are called edges, which are indicated by line segments or curves

joining certain pairs of vertices. In this research, the results on conjugacy classes of 3-

generator groups of order p4 will be applied into graph theory to obtain the conjugacy
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class graph, generalized conjugacy class graph, orbit graph, generalized commuting

conjugacy class graph and generalized non-commuting conjugacy class graph.

1.2 Background of the Research

The study on conjugacy class has started many years ago by Erdos and Turan

[1] who worked on some problems of a statistical investigation of Sn, the symmetric

group of n letters. In their paper, one of the problems considered is the number of

conjugacy classes of Sn. Over the next years, the study on conjugacy classes has been

grown widely specifically on the lower bound of the conjugacy classes. In 2014, Liu

and Song [2] made an improvement on the lower bound found by He and Shi [3] for

the largest conjugacy class length of a finite group. In their paper, they investigated the

largest conjugacy class length of almost simple groups.

The findings of the number of conjugacy classes have attracted many

researchers to work on, involving different types of group. In 2015, Naphtali et

al. [4] have showed the counting of the conjugacy classes of finite groups by using

the centralizer. In their paper, they used the concept of class equation as a tool to count

the conjugacy classes for finite non-abelian groups of prime power order. In class

equation, the order of the group is the summation of the elements from each conjugacy

classes and the center. Besides, they also rely on the fact that the number of conjugacy

classes for the non-abelian case is less than the order of the group. Additionally, they

defined the conjugacy class as an equivalence relation where the equivalence classes

are the conjugacy classes. From their finding, they proved that the upper bound of

the conjugacy classes of finite non-abelian group of order pw is 1
4
(2pw + pr) where

3 ≤ w ≤ 6 and pr is the order of the centralizer of an element x, and w and r are

considered as positive integers such that r is less that w. It can be seen that, some

study on the number of conjugacy classes from previous research have restricted to the

lower bound and upper bound of conjugacy classes.
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In 2012, Ahmad et al. [5] found the formula for the number of the conjugacy

classes for 2-generator p-groups of nilpotency class 2 with order pn and has derived

subgroup of order pγ in term of n and γ i.e K(G) = pn−γ(1 + p−1 − p−(γ+1)). The

group representation which is used in this paper is given in the following theorem.

Theorem 1.1 Let p be a prime and n > 2 a positive integer. Every 2-generated p-

group of class 2 exactly correspond to an ordered 5-tuple of integer (α,β, γ, ρ,σ) such

that

1. α ≥ β ≥ γ ≥ 1,

2. α + β + γ = n,

3. 0 ≤ ρ ≤ γ and 0 ≤ σ ≤ γ

where (α,β, γ : ρ,σ) corresponds to the group presented by

G : �a, b|[a, b]p
γ

= [a, b, a] = [a, b, b] = 1, a pα

= [a, b]p
ρ

, b
pβ

= [a, b]p
α�.

Based on this group representation, they find the number of conjugacy classes

by applying the Euler’s Totient function. The number of conjugacy classes of this

2-generator p-group is written as follows.

Theorem 1.2 Let G be a 2-generator p-group of nilpotency class 2. If G has order pn

and has derived subgroup of order pγ , then G has pn−γ(1 + p−1 − p−(γ+1)) conjugacy

classes.

By using the Euler’s Totient Function, they started the proof with the number

of conjugacy classes of G is pα+β−γ +
γ

�

δ=1

Cδ(G) where 1 ≤ δ ≤ γ. The pα+β−γ is

actually the center of the group. Meanwhile,
γ
�

δ=1

Cδ(G) is the summation of the number

of the non-central conjugacy classes with each possible order. Hence, they proved that

the total number of conjugacy classes is the summation of the number of conjugacy

3



classes of each order i.e pn−γ (1 + p−1 − p−(γ+1)). The truth is the concept of class

equation is also applied in this proving.

Besides, the number of conjugacy classes has been found for symmetric group

and dihedral group in [6] and alternating group in [7]. Various number of researches

on conjugacy classes have been studied such as in [9 - 13].

In this research, the methods in the computation of conjugacy classes are

connected with the previous researchers from [4] and [5] where the formula of the

class equation and the basic concepts of Euler phi function are applied. In addition,

some basic knowledges on the order of the elements in a group are also referred

especially in the computation of conjugacy classes in Chapter 4. However, instead of

using generator a, b with parameters (α,β, γ, ρ,σ) by Ahmad, the variables x, y and

z without parameter are used as generators suitable with the group presentation given

by [15] since it is involved 3-generator groups. In addition, the value of n considered

by [5] from the group of order pn is n > 2 where in this research, we focused on the

group of order p4.

A growing body of literature has arises on the potential of the conjugacy class

of a group and its application into graph theory. In 2009, Herzog et al. [13] linked

the commuting graph with the conjugacy classes of groups. The commuting graph

is a graph whose vertices are the non-central elements and the edges are connected

if their vertices are conjugate to each other. In their paper, the vertices of the graph

considered are the non-trivial conjugacy classes of the group. Later, in 2013, Ilangovan

et al. [14] applied the results of conjugacy classes of the groups of nilpotency class

2 into undirected graph. For the undirected graph, the vertices are the non-central

conjugacy classes of a group and their vertices are adjacent if and only if their orders

are not relatively prime.

In this research, the classification of 3-generator p-groups, where p are odd

primes are considered. The classifications are obtained from Burnside [15] in 1897

4



who studied the theory of groups of finite order. However, the presentation of the

groups have been revised by Ok in [16] and is used in this research.

Throughout this research, by finding the conjugacy classes of 3-generator

groups of order p4, the number of conjugacy classes is derived in general. The

conjugacy classes are computed based on the definition of the conjugacy class itself.

The results are then connected to some graphs related to conjugacy class.

1.3 Problem Statement

Research on conjugacy classes has become more extensive from year to year.

For many years, some of the researchers studied on lower bound and upper bound

of conjugacy classes. Interestingly, some of researchers are started to find the exact

number of conjugacy classes instead of the upper bound and lower bound. For

example, the formula of the exact number of conjugacy classes have been found

for dihedral group, alternating group and symmetric group. Not only that, the exact

number of conjugacy classes of 2-generator p-group is also studied.

From the previous research, it can be seen that the exact number of conjugacy

classes are only restricted to certain groups and order. Hence, this research is an

extended version for the case 2-generator p-groups by increasing the number of

generators and the orders. In this research, the exact number of conjugacy classes

of 3-generator groups of order p4 is studied. However, the group presentation used for

this group is difference from the 2-generator group since the number of generators is

different. Still, the exact number of conjugacy classes is limited to 3-generator of order

p4. But, at least the exact number of conjugacy classes for the higher order have been

generalized.
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In this research, the exact number of conjugacy class is important in order to see

the connections between the group theory and graph theory. From the exact number of

conjugacy classes, the vertices and the edges of some of the graphs especially in this

research can be found. That is the reason why the exact number of conjugacy classes

need to compute first in the first part of the results. Then, the results in the computation

will be applied into some type of graphs discussed in this work.

1.4 Objectives of the Research

Let G be a 3-generator group of order p4 and the set Ω is defined as Ω =

{(a, b) ∈ G × G : lcm(|a|, |b|) = p, ab = ba, a �= b}\{(b, a)}. The objectives of this

research are:

1. To compute the number of conjugacy classes and find the conjugacy class graph

for H1, H2 and H3.

2. To generalize the exact number of conjugacy classes of H2 and H3.

3. To determine the generalized conjugacy class graph and the orbit graph for H1,

H2 and H3.

4. To introduce two new graphs related to conjugacy classes, namely the

generalized commuting conjugacy class graph and the generalized non-

commuting conjugacy class graph, for the case p = 3.

1.5 Scope of the Research

This research consists of two parts. The first part is in determining the

conjugacy classes of 3-generator groups of order p4 where p are odd primes.

The computation of the conjugacy classes is divided into two sections. Firstly,

6



the conjugacy classes are found by using the definition of conjugacy class which

considered single element i.e cl(x) = {gxg−1 : g ∈ G}. In the second section, the

conjugacy classes are computed by defining the set omega. The set omega is defined

as Ω = {(a, b) ∈ G × G : lcm(|a|, |b|) = p, ab = ba, a �= b}\{(b, a)} motivated

on the work done by [17] but which only cover the elements of (a, b) excluding (b, a),

(a, a) and (b, b). From the definition, the elements considered in the computation of the

conjugacy classes for this section are in the form of ordered pairs. Thus, the conjugacy

classes are found by using the formula, cl(ω) = cl(a, b) = {g(a, b)g −1 : g ∈ G}.

The second part of the research is related to graph theory. The computation

of conjugacy classes in the first section is applied in forming the conjugacy class

graph. Meanwhile, the general form of the number of elements of ordered pairs and

the number of conjugacy classes which are derived in the second section are applied

into the orbit graph and generalized conjugacy class graph, respectively. Besides that,

two new type of graphs namely the generalized commuting conjugacy class graph and

the generalized non-commuting conjugacy class graph are introduced.

1.6 Significance of the Research

Recently, there are many researchers who are interested in studying the

relationship between group theory and graph theory. The conjugacy class is one of

the properties of group theory that can be studied. The vertices of a graph can be

formed from the elements in the conjugacy classes and the edges connect the vertices

according to specific rules. The vertices and edges are the most important thing in

order to form a graph.

The major contribution in this research is in the group theory itself. Since

the exact number of the conjugacy classes of 3-generator groups of order p4 is found

in general in Chapter 4, hence, it can be used directly without manual calculation.
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Furthermore, the research also contributes in the findings of the four types of graphs

discussed in this research.

1.7 Research Methodology

This research explored the exact number of conjugacy classes of some finite

groups. It began by choosing 3-generator groups of order p4 as the scope. The

presentation was given by Burnside [8] and had been revised by Ok [9]. Since this

research is focused on 3-generator groups of order p4, three types of classification are

chosen.

This thesis is divided into two parts which are the conjugacy classes of 3-

generator groups of order p4 and their applications on some type of graphs. The first

part, on finding the conjugacy classes, is also divided into two phases. In the first phase,

the elements of the group are first determined. The conjugacy classes of the group are

calculated by using the formula, {g(x)g−1 ∈ G for all g in G}. The definition of

conjugacy class graph is used in which the number of conjugacy class and the center

of the group are needed to form the graph.

In the second phase, the set Ω is defined as Ω = {(a, b) ∈ G × G :

lcm(|a|, |b|) = p, ab = ba, a �= b}\{(b, a)}. The conjugation action of the group

on the set Ω is involved in the computation. The computation began with determining

the elements with order p in each group. Next, the elements that satisfied the condition

in the set Ω are identified in order to find the number of elements of ordered pairs

in the set Ω. Afterwards, the number of conjugacy class in the set Ω was obtained

by applying the definition of the conjugacy classes in the computation i.e {cl(ω) =

cl(a, b) = g(a, b)g−1 : g ∈ Ω}. Acknowledge that, some basic concepts of arithmetic

sequence and arithmetic series are also used to simplify the number of elements of

ordered pairs and the number of conjugacy class in general form.
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The second part of this thesis is also divided into two subparts. In the first

subpart, the results of the computation of the conjugacy class are applied into graphs

namely the orbit graph and the generalized conjugacy class graph. The vertices are

determined from the elements in the set Ω while the edges are obtained based on the

rules stated in the definition of the graphs.

Two new graphs are defined in the second subpart of this thesis namely the

generalized commuting conjugacy class graph and the generalized non-commuting

conjugacy graph considering only a special case of p = 3. Using similar manner, the

results of the computation, specifically on the number of ordered pairs and the number

of conjugacy class are applied into these new graphs. The research methodology is

shown in Figure 1.1.
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Figure 1.1 Research Methodology
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1.8 Thesis Organization

This thesis consists of seven chapters. In the first chapter the introduction to

the research has been provided, which include background of the research, problem

statements, objectives of the research, scope of the research, significance of the

research, research methodology and thesis organization.

In Chapter 2, the literature review of this research is provided. Some basic

definitions on group theory and graph theory are included. The classification of 3-

generator groups of order p4 is also presented. In addition, some previous researches

on general formula of conjugacy classes of finite group are discussed.

In Chapter 3, the computation of the conjugacy class of 3-generator groups of

order p4 based on definition where p is an odd prime is presented. After the conjugacy

classes has been computed, the center of the group is identified in order to fulfill the

condition in the definition of the conjugacy class graph. The conjugacy class graphs

for each graph are presented in the form of theorems.

In Chapter 4, the results of conjugacy classes on the set Ω are shown. The

computation began by finding the elements of the groups with order p. Then, the

number of elements of ordered pairs and the number of conjugacy classes found in the

set Ω are determined. The steps taken are demonstrated in few lemmas and theorems.

Next, the graphs associated to the conjugacy classes in Chapter 4 are illustrated

in Chapter 5. The graphs considered are the orbit graph and the generalized conjugacy

class graph. The number of elements of ordered pairs and the number of conjugacy

class found in the set Ω are applied into these two graphs, respectively. The vertices of

the graphs are identified from the elements in the set Ω and the edges are formed when

the rules in the definition of each graph are followed. Several theorems are presented

to explain the graphs.
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In Chapter 6, two new graphs are introduced based on the computation of the

conjugacy classes as well as the determination of some related graphs in the previous

chapter. The graphs are called the generalized commuting conjugacy class graph and

the generalized non-commuting conjugacy class graph. The value of the odd prime

considered for this graph is p = 3.

The last chapter concludes the overall contents of this thesis. Other than that,

some suggestions are given for future research. The thesis organization is illustrated in

Figure 1.2.
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Figure 1.2 Thesis Organization
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