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ABSTRACT 

Photocatalytic hydrogen (H2) production via water splitting is one of the 

favourable technologies to overcome concerns of exploitation of fossil fuels and issues 

of global warming. Thus, it is recognized as clean solar to energy conversion for 

replacing non-renewable fossil fuels. However, available semiconductors and 

photoreactors are less efficient for splitting water into renewable H2 under solar 

energy. The objective of this study is to design and develop structured photocatalysts 

and photoreactors for stimulating photocatalytic H2 production. Specifically, 

cocatalyst including titanium aluminium carbide (Ti3AlC2) and titanium carbide 

(Ti3C2) MXene multilayers heterojunctions with TiO2 and graphitic carbon nitride 

nanosheets (PCN) were fabricated to promote conductive properties. Further 

modification of TiO2 and PCN was carried out to form ternary nanocomposites 

involving lanthanum cobaltite (LaCoO3) perovskite and nickel phosphide (Ni2P) to 

maximize photoactivity under visible light irradiations. Initially, the hydrofluoric acid 

etching process was employed to get Ti3C2 multilayers, whereas, LaCoO3 nanotextures 

were obtained through hydrothermal method. Good morphology, improved light 

absorption, and superior charge separation were observed in the Ti3AlC2/TiO2/Ni2P, 

and LaCoO3/g-C3N4/TiO2@Ti3C2 nanocomposites. The performance of 

nanocomposites was determined in a liquid phase slurry photoreactor under visible 

irradiation. The TiO2 grown Ti3C2 modified LaCoO3/g-C3N4 composite generated 125 

μmol of H2, significantly higher than pure components, attributing to the visible light 

activity, efficient mobility and charge separation, good interfacial contact and 

conductivity of Ti3C2. Comparatively, Ti3AlC2 modified TiO2/Ni2P generated 1300 

µmol of H2 based on the inhibited charge recombination, improved visible light 

response and good redox potential of TiO2. The comparative performance of slurry, 

fixed bed, and monolith photoreactors over Ti3AlC2/TiO2/Ni2P was conducted. The 

monolith photoreactor generated 2050 µmol of H2 under ultraviolet light which was 

136 times higher than H2 generated from monolith photoreactor under visible light. 

This is attributed to the improved light penetration of ultraviolet light into monolith 

channels for maximum interaction with catalysts. The highest H2 generating 

Ti3AlC2/TiO2/Ni2P nanocomposite was involved in testing of operating parameters 

using response surface methodology for optimization with the amount of H2 as the 

response. Optimization revealed 10.5 methanol concentration, 0.11 g catalyst loading 

and 3.59 h reaction time as optimum conditions for maximum H2 generation. Finally, 

a modified Langmuir-Hinshelwood (L-H) mechanism-based kinetic model was 

developed for TiO2 and PCN based nanocomposites and calculation of adsorption and 

rate constants were also carried out for investigating the adsorption behaviours. In 

conclusion, this study will contribute to the development of an efficient photo-

technology for H2 production towards sustainable solar fuels. 
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ABSTRAK 

Penghasilan hidrogen (H2) fotomangkin melalui pemisahan air ialah salah satu 

teknologi yang baik untuk mengatasi masalah eksploitasi bahan-bahan api fosil dan 

isu pemanasan global. Oleh itu, ia dikenali sebagai penukaran tenaga suria kepada 

tenaga yang bersih untuk menggantikan bahan api fosil yang tidak boleh diperbaharui. 

Walau bagaimanapun, semikonduktor dan fotoreaktor yang ada kurang cekap untuk 

menukar air menjadi H2 yang boleh diperbaharui di bawah tenaga suria. Objektif 

kajian ini adalah untuk merekabentuk dan membangunkan fotomangkin berstruktur 

dan fotoreaktor untuk merangsang pengeluaran H2 fotomangkin. Secara khusus, 

titanium aluminium karbida (Ti3AlC2) dan titanium karbida (Ti3C2) MXene berbilang 

lapisan digunakan sebagai sokongan membentuk heterosimpang dengan TiO2 dan 

lembaran nano karbon nitrida bergrafit (PCN) telah difabrikasi untuk meningkatkan 

sifat konduktif. Modifikasi selanjutnya ke atas TiO2 dan PCN telah dijalankan untuk 

membentuk nanokomposit ternari melibatkan lantanum kobaltit (LaCoO3) perovskites 

dan nikel fosfida (Ni2P) untuk memaksimumkan fotoaktiviti di bawah cahaya nampak. 

Pada awalnya, proses punaran asid hidrofluorik digunakan untuk mendapatkan 

berbilang lapisanTi3C2 berbilang lapisan, sementara, nanotekstur LaCoO3 diperoleh 

melalui kaedah hidroterma. Morfologi yang baik, penyerapan cahaya yang lebih 

tinggi, dan pemisahan cas yang unggul diperhatikan dalam nanokomposit 

Ti3AlC2/TiO2/Ni2P, dan LaCoO3/g-C3N4/TiO2@Ti3C2. Prestasi nanokomposit 

ditentukan dalam fotoreaktor buburan fasa cecair di bawah pancaran radiasi tampak. 

Komposit LaCoO3/g-C3N4 terubah suai TiO2 cambahan Ti3C2 menghasilkan 125 μmol 

H2, jauh lebih tinggi daripada komponen tulen, disebabkan oleh aktiviti cahaya 

nampak, mobiliti dan pemisahan cas yang cekap, hubungan antara muka dan 

kekonduksian Ti3C2 yang baik. Secara perbandingan, TiO2/Ni2P terubah suai Ti3AlC2 

menghasilkan 1300 µmol H2 berdasarkan penggabungan semula cas yang direncatkan 

dan tindak balas cahaya nampak yang lebih baik dengan potensi redoks TiO2 yang 

baik. Perbandingan prestasi fotoreaktor buburan, lapisan tetap, dan monolit ke atas 

Ti3AlC2/TiO2/Ni2P dijalankan. Reaktor monolit menghasilkan H2 tertinggi 2050 µmol 

di bawah cahaya ultraungu, iaitu 136 kali ganda lebih tinggi daripada H2 dihasilkan 

daripada fotoreaktor monolit di bawah cahaya nampak. Ini disebabkan peningkatan 

penembusan cahaya ultraungu ke dalam saluran monolit untuk interaksi maksimum 

dengan mangkin. Penjanaan H2 tertinggi Ti3AlC2/TiO2/Ni2P nanokomposit telah 

digunakan dalam mengkaji parameter operasi menggunakan kaedah sambutan 

permukaan untuk pengoptimuman penghasilan H2 sebagai gerak balas. 

Pengoptimuman menunjukkan kepekatan metanol 10.5, pemuatan mangkin 0.11 g dan 

masa tindak balas 3.59 jam sebagai keadaan optimum untuk penjanaan H2 maksimum. 

Akhirnya, model kinetik berasaskan mekanisme Langmuir-Hinshelwood (L-H) 

dibangunkan untuk komposit TiO2 dan PCN, di mana pengiraan pemalar penjerapan 

dan pemalar kadar dijalankan untuk menyiasat tingkah laku penjerapan. 

Kesimpulannya, kajian ini akan menyumbang kepada pembangunan teknologi foto 

yang cekap untuk pengeluaran H2 ke arah bahan api solar yang lestari.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Currently, most of the global energy consumption is achieved by utilization of 

non-renewable resources including fossil fuels [1]. However, excessive burning of 

these fuels produces greenhouse gases particularly carbon dioxide (CO2) which causes 

global warming [2]. Therefore, the utmost challenge of the time is to develop 

environment-friendly and carbon-free renewable energy resources. In recent years, the 

hydrogen (H2) economy is a prominent research area in which H2 can replace fossil 

fuels and overcome environment associated problems. Moreover, H2 energy is 

considered as a sustainable, long-lasting, clean and renewable energy with easy storage 

[3, 4]. 

Generally, solar energy is converted into electrical energy using photovoltaic 

cells. It is a commercialised technique, and its efficiency has risen dramatically in 

recent years, surpassing a considerable value of 20%. Despite significant 

advancements in smart grids and new batteries, large-scale energy storage remains a 

significant barrier. Converting solar energy into chemical energy, which produces 

renewable fuels known as "solar fuels," on the other hand, has obvious practical 

benefits [5]. Likewise, the use of wind energy as well as hydropower are green energy 

power sources of interest however, they face drawbacks related to their intrinsically 

dependence on day-night intervals, seasons and fluctuating environmental conditions 

that result in periods of deficit and surplus of energy output [6]. Thus, keeping in view 

the solar fuels, several methods have been used to produce H2 such as steam reforming 

[7, 8] where H2 is produced at industrial scale using hydrocarbon particularly methane, 

and renewable liquids like ethanol (C2H5OH) and methanol (CH3OH) [9]. The steam 

reforming for hydrogen production is an endothermic, reversible, and high-

temperature reaction. Also, it faces limited availability of fossil fuels and the 
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production of CO2, a major GHG that contributes to the global warming [10]. 

Similarly, the gasification of coal or biomass to produce H2 requires input energy, 

leading to emission of CO2 and is an expensive process [11].  Furthermore, electrolysis 

of water (H2O) needs electric current through H2O while, redox reactions occur at 

electrodes. Thus, an alternative, eco-friendly, and carbon-free renewable energy 

system is necessary for sustainable development [12]. Therefore, the conversion of 

solar energy into chemical energy such as H2 from H2O is an interesting strategy to 

effectively utilize solar light irradiations [13, 14]. This method is a standalone process 

for harvesting and storing solar energy as chemical energy. Photo-reforming is a 

technique that uses oxygenated organic substrates and solar radiation as an alternative 

to pure water splitting. When bio-available oxygenates are used as sacrificial agents, 

the approach comes near to being carbon-neutral, because the CO2 produced can be 

transformed back into biomass by plant photosynthesis. The origin of the organic 

substrate, i.e., non-sustainable first-generation biomasses or appealing second/next 

generation biomasses, has a significant impact on overall sustainability [15]. 

Photogenerated H2 can easily be stored and used as a green fuel. Green technology like 

photocatalytic H2 production from H2O is a promising approach to fulfil the energy 

demands and is safe for the environment.  

1.2 Photocatalytic H2 Production 

Green technology like photocatalytic H2 production from H2O is a promising 

approach to fulfil the energy demands and is safe for the environment [16, 17]. 

Motivation for photocatalysis comes from the natural photosynthesis process, where 

plants absorb solar light and produce chemical energy in the form of glucose with the 

help of chlorophyll. In addition, it is the most simple and proven technology to produce 

H2 using renewable solar light irradiations [18]. In photocatalytic process, solar light 

irradiation directly provides energy to split H2O, whereas utilization of this H2 fuel 

produces only H2O, which becomes part of the H2 cycle [19, 20].  

Several semiconductor materials as photocatalyst have been studied for H2O 

splitting to achieve high efficiency [21]. Presently, there are limited suitable materials 
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with appropriate band gap positions for overall H2O splitting and also lack high 

efficiency as well as require stability for photocatalytic processes [22, 23]. 

Semiconductor photocatalysts face limitations of lower efficiency, wide band gap,  

lower surface area, and faster charge recombination [24]. Among photocatalytic 

semiconductors, titanium dioxide (TiO2) is an excellent metal oxide semiconductor 

photocatalyst having low cost, high photochemical stability, and non-toxic nature. 

However, it has a wide band gap (3.2 eV) and also faces charge recombination. 

Moreover, metal-free semiconductors like graphitic carbon nitride (g-C3N4) are also 

under consideration. It has a narrow band gap (2.7 eV), low cost and gives off less 

pollution [21], but it shows faster charges recombination [25]. To overcome these 

limitations, several approaches such as doping with metals, coupling with cocatalysts, 

and modification with other semiconductor materials have been employed [26-29]. 

Although various studies have been carried out on photocatalytic H2 generation 

by utilizing photocatalyst material, however, still the efficiency of the photocatalytic 

system is low based on various limitations discussed above, leading to a need for 

photocatalyst with higher efficiency, narrow band gap, excellent morphology, efficient 

charge transfer and separation, good visible light absorption and a lower rate of 

recombination. In this context, the fabrication of semiconductors including TiO2 and 

g-C3N4 by the formation of heterojunctions or Z-scheme is recognized to be an 

efficient approach for efficient H2 generation photoactivity. Recently, perovskite 

oxides have been explored for the formation of efficient composites with TiO2, g-C3N4 

as well as reduced graphene oxide (RGO) as a promising approach for minimizing 

charge carrier’s recombination and band gap tuning for improved photoactivity 

towards H2 generation [30]. Incorporation of cocatalyst like nickel phosphide (Ni2P) is 

been explored for visible light responsive photocatalyst composites and can be coupled 

with various wider band gap catalysts for their activation, thus leading to improved 

photocatalytic activity under solar energy [31]. Moreover, the utilization of 2D 

materials from MAX phase (M stands for the front metal element of the transition 

group; A represents the elements of the main group, mainly the elements of the third 

group and the fourth group; X is for carbon or nitrogen) including titanium aluminium 

carbide (Ti3AlC2) and MXene- titanium carbide (Ti3C2) are currently under 

exploration for their extraordinary electrical conductivity, metal like properties, and 

attractive morphology [32].  



 

4 

Efficient photocatalysis requires an appropriate photoreactor in which 

photocatalytic reaction takes place after contact between photocatalyst, sacrificial 

agent, and photons. The most commonly used photoreactor is the slurry reactor, 

involving three phase system in which the catalyst bed is in fluidized form and mass 

transfer between catalyst and reactants is increased by agitation which provides an 

increased surface area to be illuminated [33]. In a fixed bed photoreactor, photocatalyst 

is immobilized (fixed) on the bed of reactor while, in monolith the catalyst is dispersed 

onto a supporting material i.e., monolith, and placed inside the photoreactor [34, 35]. 

However, these photoreactors lack overall higher efficiency based on the inappropriate 

selection of operating parameters such as light to form an effective photocatalytic 

scheme for the enhancement of photoactivity. This can be addressed by considering 

the necessary engineering approach elements including proper distribution of photons 

in the reactor, efficient mass transfer, and effective interaction of catalyst with 

reactants.  

The operating parameters have a significant effect on the efficiency of the 

photosystem towards photocatalytic H2 generation. However, the common method of 

varying different operating parameters in a way that the parameter to be studied is 

varied and others are taken as constant lacks the identification of the relation between 

the parameters and also does not identify the optimum range of parameters for high 

efficiency. Response Surface Methodology (RSM) is a combination of mathematical 

and statistical analysis for the effect of parameters in the complex study of 

photoactivity, leading to a cost-effective and time-saving approach for improved 

efficiency [36]. Moreover, the reaction kinetics of reactants into products can be 

investigated by developing a rate equation. Generally, Langmuir– Hinshelwood (L-H) 

mechanism determines the rate of reaction.  

Overall, work aims at exploring and studying an entire photocatalytic system 

involving the investigation for an efficient nanocomposite for photocatalytic H2 

generation along with the exploration for effect of the four components of 

photocatalytic process including light, sacrificial agent, photocatalyst, photoreactor for 

efficiency improvement. Specifically, the study focuses on the efficiency improvement 

of two widely researched and industrially applied semiconductor photocatalysts 
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including TiO2 and g-C3N4 for photocatalytic H2 generation by formation of 

heterojunctions and in cooperation of cocatalysts. The study also includes the study of 

the role of photoreactor and their parameters for maximizing the interaction of 

irradiation, photocatalyst and reactants for boosted H2 generation. Else, the work also 

goals to carry out optimization study to identify the optimized conditions of various 

parameters including catalyst loading, sacrificial agent and irradiation time along with 

developing of kinetic model for studying the rate of reaction for studying the effect of 

reactant concentration governing the rate of H2 producing reaction.  

1.3 Problem Statement and Research Hypothesis 

Currently, among the several alternatives for energy requirements and global 

warming, production of H2 is the best strategy to replace fossil fuels and to mitigate 

global effects [37]. While, photocatalysis is a rapidly growing H2 production method 

as well as is cost-effective and shows high efficiency with zero pollution [38, 39].  

Among binary semiconductor photocatalyst, TiO2 and g-C3N4 are the most 

widely employed photocatalysts as compared to all existing semiconductors. g-C3N4 

has attracted great attention in photocatalytic applications of hydrogen production and 

pollutant degradation especially due to metal free nature and low price of raw 

materials. TiO2 is also been researched widely for its environmental and energy 

applications due to the maximum quantum efficiency achieved from low cost TiO2. 

However, both of these materials offer limitations of less efficiency towards 

photocatalytic processes. TiO2 lacks the photocatalytic efficiency due to the charge 

recombination and wide band gap. Likewise, g-C3N4 in spite of visible light activity 

show low visible light activity, charge recombination, and fewer reaction sites for 

photoreaction make it less efficient [21].  Various modification approaches have been 

applied for the efficiency improvement of TiO2 and g-C3N4 however, the efficiency 

still need to be improved under sunlight mimicking visible irradiation.  

Moreover, perovskites are also considered good materials employed for 

photoactivity and in heterojunction formation for activity improvement, but the 
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photocatalytic efficiency of perovskites is been explored under UV light, making it 

less desirable for photocatalytic H2 generation. Also, pristine perovskites show charge 

recombination and less surface area.  

Apart from this, most of the studies focus on utilizing noble metals cocatalysts 

for activity enhancement however, their low abundance, availability, toxicity and cost 

factor makes them undesirable. Thus, there is a need for alternate cost-effective and 

efficient photocatalytic materials to replace utilization of noble metal.  

Furthermore, the effective catalyst development for photocatalytic 

H2 production, the design of a photocatalytic scheme effective for enhancement of 

photoactivity by proper distribution of photons in the reactor, efficient mass transfer, 

and effective interaction of catalyst with reactants are considered necessary 

engineering approaches. There is insignificant work been carried out for addressing 

the limitations and the parameter study of various photoreactors to address and 

enhance the efficiency towards photocatalytic H2 generation. Currently, structured 

photocatalytic frameworks including monolith photoreactors are getting considerable 

attention for photocatalytic H2 production with photocatalyst immobilized on the walls 

of the monolith. Monoliths have attained much consideration as compared to the slurry 

and fixed bed because of their flexible geometry and design of catalyst as well as more 

exposed catalyst surface [40]. However, the drawbacks of limited photon penetration 

to the surface of catalyst and reaction sites causing less interaction of light photons 

with catalyst and reactants are not considerably studied [41]. In this regard, based on 

the discussed problems following hypothesis is formulated: 

(a) The photoactivity of binary semiconductors including TiO2 and g-C3N4 

nanosheets (PCN) can be effectively improved through the formation of binary 

or ternary nanocomposites with other semiconductors and by the introduction 

of cocatalysts. Perovskite can form heterojunction with binary semiconductors 

to improve charge separation and also provide band gap tunability. In terms of 

visible light driven photocatalysts, LaCoO3 as a visible light active 

photocatalyst has been explored for photocatalytic H2 generation. The 

cocatalyst activity of LaCoO3 based on the narrow band gap for visible light 
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activity, charge trapping stability and efficiency enhancement has been 

explored.  

(b) MAX/MXene 2D layered materials show electronic conductivity for electron 

trapping. Improvement in activity can be achieved by enhanced reaction area 

of MAX phase 2D Ti3AlC2 which will provide significant enhancement 

towards redox reaction. Also, 2D Ti3C2 MXene will contribute towards 

improved efficiency by building a strong interfacial connection with binary 

semiconductors for improved charge transportation and electron connectivity 

to promote charge separation. Ni2P is visible light active with high 

conductivity.  

(c) The efficiency of photoreactors can be enhanced towards photocatalytic H2 

generation activity through engineering approaches based on the type of light 

irradiations, the operational mode of reactors, the geometry of monolith for 

maximum photon utilization, and interaction of photons with catalyst and 

reactants. Also, the photocatalytic H2 producing system involving study on 

nanocomposite as well as for all the four components of photocatalytic process 

towards efficiency enhancement; light, sacrificial agent, photocatalyst, 

photoreactor will improve the overall efficiency of system.  

(d) The optimization of parameters like catalyst loading, reactant concentration, 

and reaction time along with their interactive relationship will be helpful in 

further maximizing the H2 production. Moreover, the kinetic modelling will 

help to develop a reaction rate equation for determining the rate of H2 

generation.  

 

 

1.4 Research Objectives 

Following are the objective of this study: 
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(a) To fabricate and characterize MAX-Ti3AlC2/Ni2P modified TiO2 and MXene-

Ti3C2/LaCoO3 modified g-C3N4 based ternary nanocomposites for higher light 

utilization;  

(b) To investigate the performance of synthesized nanocomposites and to calculate 

the photocatalytic H2 generation under UV and visible light irradiations; 

(c) To explore the performance of slurry, fixed bed, and monolith photoreactors 

towards photocatalytic H2 generation over different ternary composites; 

(d) To optimize reaction parameters and to identify the interactive relationship 

between parameters using RSM; 

(e) To develop a kinetic model for determining reaction rate for photocatalytic H2 

generation and to propose reaction mechanism.  

 

 

1.5 Scope of Study 

The study focuses on maximizing the low efficiency of TiO2 and PCN binary 

semiconductor photocatalysts towards visible light induced photocatalytic H2 

production. The modification by semiconductor incorporation and cocatalyst loading 

for the development of ternary nanocomposite is investigated. In this outlook, the 

nanocomposites were synthesized, characterized and tested for determining the 

efficiency towards H2 generation. Comparative analysis of slurry, fixed bed, and 

monolith have been studied in detail for effective enhancement of H2 production. Also, 

the optimization of reaction parameters was carried out. The study includes an in-depth 

discussion of the reaction mechanism for the nanocomposite catalysts with the 

deliberation of kinetic study. The detailed scope of the study is as under which aims at 

maximizing the amount of H2 production: 

(a) The synthesis of Ti3AlC2 modified TiO2/Ni2P and Ti3C2 modified 

LaCoO3/PCN is carried out for photoactivity enhancement. The modification 

of TiO2 is carried out by single sol-gel method. The Ni2P loading onto TiO2 is 
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varied as 1, 3, and 5 wt.% for the synthesis. A coprecipitation followed by 

hydrothermal method is used to synthesize LaCoO3 while, for the synthesis 

Ti3C2, HF exfoliation of Ti3AlC2 is carried out and the calcination temperature 

is varied as 300ᵒC and 500ᵒC for growth of TiO2 on Ti3C2. Modification of 

PCN is carried out by wet impregnation method. The loading of LaCoO3 onto 

PCN is also varied as 10, 15 and 20 wt.% while, the loading of TiO2 grown 

300ᵒC, 500ᵒC calcined Ti3C2 and 300ᵒC calcined TiO2@Ti3C2 loading onto 

LaCoO3/PCN was varied as 5, 10, 15 and 20 wt.%. The crystallinity, internal 

surface, and surface morphology, elemental distribution, elemental valance, 

extend of charge recombination, optical property, vibrational mode of 

components, and extend of charge recombination is analyzed by 

characterization of catalysts including XRD, HR-TEM, FE-SEM, EDX, XPS, 

Raman, PL, and UV-Visible spectroscopy. 

(b) The performance test of pure catalyst, binary and ternary nanocomposites for 

testing the performance efficiency is conducted by photocatalytic experiments 

using liquid phase slurry photoreactor. The catalyst is in form of powder mixed 

with distilled H2O and CH3OH as sacrificial agent for reduction reaction under 

continuous stirring.  A continuous flow of nitrogen (N2) is supplied as well as 

a Xenon lamp of 35 W with 20 mWcm−2 light intensity is used as a visible light 

source. The photocatalytic H2 generated is analysed by an intelligent H2 

analyser in ppm and calculation were carried out for conversion into µmol. 

(c) The comparative study of photocatalytic H2 producing ability from slurry, 

fixed bed, and monolith photoreactors is carried out to maximize the efficiency 

of photosystem. Photocatalyst is dispersed in the H2O/CH3OH mixture under 

continuous stirring in slurry photoreactor whereas, the photocatalyst is 

immobilized on the bottom of the fixed bed photoreactor, and photocatalyst is 

coated onto the monolith in monolith photoreactor. For a comparative analysis 

to study the parameter of light source, slurry photoreactor is operated in 

continuous mode under visible light from 35 W Xenon lamp while, fixed bed 

and monolith is operated in continuous and batch mode under visible light as 

well as UV light from 35 W Xenon lamp and 200 W Hg lamp, respectively. 

The efficiency of 5 mm and 10 mm thick monolith for light utilization is also 
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explored under visible and UV irradiation along with the study of their 

efficiencies at 25 and 80ᵒC temperatures from H2O-CH3OH mixture. 

(d) Optimization by RSM with central composite design (CCD) is carried out for 

TiO2 and PCN based ternary nanocomposites to optimize reaction parameters 

including catalyst loading, CH3OH concentration, and reaction time having 

DoE with minimum and maximum range of 0.05-0.15 g, 5-15 %, and to 1-4 h, 

respectively. The interactive relationship between parameters is also identified.  

(e) The kinetic models for both TiO2 and PCN based ternary nanocomposites are 

developed using a modified L-H mechanism-based equation to determine the 

rate constant (k), adsorption constant (K), and reaction rate (r) using Polymath 

software.  

 

1.6  Significance of Study 

The study addresses the concerns of excessive fossil fuel usage and related 

environmental issues by providing an alternate clean energy source in the form of H2. 

The photocatalytic H2 generation photosystem comprising of efficient photocatalytic 

nanocomposites and photoreactors for solar to energy conversion offers a vital and 

significant contribution towards sustainable development. Moreover, the study also 

opens up more effective approaches for boosting the efficiency of widely used binary 

semiconductors i.e., TiO2 and g-C3N4. Following is the significance of the study: 

(a) The Ti3AlC2 modified TiO2/Ni2P and Ti3C2 modified LaCoO3/PCN lead to the 

development of highly efficient nanocomposites workable under visible light.  

(b) Development of narrow band gap LaCoO3 perovskite and ternary 

nanocomposites with effective charge separation heterojunction and Z-scheme 

for efficient photoactivity.  

(c) Investigation of photoreactors under varying parameters to get more insight 

into overcoming the inefficiencies for large-scale production.  
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(d) Exploration for efficient nanocomposite as well as for all the four components 

of photocatalytic process towards efficiency enhancement.  

(e) A major contribution towards sustainable, and environmentally friendly energy 

production, applicable on an industrial scale.  

 

 

1.7 Outline of Thesis 

The thesis is dissected into six individual chapters eliminating the table of 

content, list of figures, list of tables, list of abbreviation, symbols, and abstract. Chapter 

1 includes the background of the study, problem statement, and hypothesis, research 

objectives, the scope of study, significance, and outline of this study. Chapter 2 covers 

the literature review for the research conducted, including fundamentals of 

photocatalytic, study of previous work carried for various photocatalysts and 

photoreactor setups, characterization techniques, and development of kinetic models. 

The details for the methodology adopted for the work is been elaborated in Chapter 3 

including synthesis technique for photocatalysts and nanocomposites, photoreactor 

setups, photoactivity test, regression model, and DoE for RSM as well as kinetic model 

development. Chapter 4 includes the results and discussion of all conduced 

characterizations while, Chapter 5 discusses the experimental results for photoactivity 

and reactors, reaction mechanism, statistical analysis using RSM, and kinetic model 

development with model fitting. Chapter 6 summarizes the conclusion of the entire 

research work along with the detailed recommendations.  
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