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ABSTRACT 

Applications of fibre metal laminates (FML) in aircraft structures involve in-

service temperatures higher than 30°C up to well above 100°C. Such high temperatures 

could affect the FML performance. Hence, there is a need to investigate temperature 

effect towards the low-velocity impact response of FMLs. The purpose of this study 

was to evaluate the influence of increased temperature from 30 to 110°C towards the 

impact response of FMLs. Experimental trials were conducted at 30, 70 and 110°C to 

extract temperature-dependent properties of glass fibre reinforced polymer (GFRP) 

composite and interlaminar delamination of GFRP laminated aluminium. The 

experimental results obtained from the quasi-static tests at 30, 70 and 110°C and low-

velocity impact tests at various impact energies were used to validate the numerical 

models. Explicit nonlinear code LS-DYNA was subsequently employed to develop the 

finite element (FE) model of the FMLs. Johnson-Cook model, Chang-Chang failure 

criteria and cohesive zone models were applied to simulate aluminium, GFRP and 

delamination, respectively. The Mode-I and Mode-II delamination and quasi-static 

perforation of FMLs at elevated temperatures were modelled and validated. After 

which, combined analysis of impact energy levels and temperatures were carried out 

by employing the FE quarter model. A modified property degradation model was also 

utilised to obtain properties at 50 and 70°C effectively with a single fitting parameter. 

Using the validated FE model, parametric studies were carried out to investigate the 

effects of varying geometrical parameters at elevated temperature. The results 

indicated that an increase in temperature significantly affects the low-velocity impact 

response and impact resistance of FMLs. Increase in temperature degrades the GFRP 

and GFRP/aluminium interface by a larger degree as compared to aluminium. The 

degradation of FMLs is progressive such that it is less significant from 30 to 70°C and 

more severe from 70 to 110°C. Hence, the FE modelling methodology proposed herein 

provides the means to simulate, predict and analyse the impact of FMLs with 

consideration of temperature effects. This research contributes towards the 

advancement of FMLs and composites for applications under high temperatures. The 

FE method provides a coherent and reliable way to simulate and analyse FML impact 

performance under different temperature conditions.  
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ABSTRAK 

Penggunaan lapisan logam gentian (FML) dalam struktur pesawat melibatkan 

suhu dalam perkhidmatan yang lebih tinggi daripada 30°C sehingga melebihi 100°C. 

Suhu yang tinggi boleh menjejaskan prestasi FML. Oleh itu, terdapat keperluan untuk 

menyelidik kesan suhu terhadap tindakan hentaman halaju rendah FML. Tujuan kajian 

ini adalah untuk menilai pengaruh peningkatan suhu dari 30 hingga 110°C terhadap 

tindakan hentaman FML. Ujikaji dijalankan pada suhu 30, 70 dan 110°C untuk ekstrak 

sifat bersandar suhu rencam polimer bertetulang gentian kaca (GFRP) dan pelekangan 

antara lapisan aluminium GFRP. Keputusan ujikaji yang diperolehi daripada ujian 

kuasi-statik pada suhu 30, 70 dan 110°C dan ujian hentaman halaju rendah pada 

pelbagai tenaga hentaman digunakan untuk pengesahan model berangka. Kod tidak 

lelurus LS-DYNA kemudiannya digunakan untuk membangunkan model unsur 

terhingga (FE) FML. Model Johnson-Cook, kriteria kegagalan Chang-Chang dan 

model zon jeleket digunakan untuk mensimulasi masing-masing aluminium, GFRP 

dan lekangan. Lekangan Mod-I dan Mod-II, dan penebukan kuasi-statik FML pada 

suhu menaik dimodelkan dan ditentusahkan. Selepas itu, gabungan analisis aras tenaga 

hentaman dan suhu telah dilaksanakan menggunakan model sukuan FE. Model 

penurunan sifat terubahsuai juga digunakan untuk memperoleh sifat pada suhu 50 dan 

70°C secara berkesan dengan parameter penentuan tunggal. Dengan menggunakan 

model FE yang disahkan, kajian berparameter telah dijalankan untuk mengkaji kesan 

perubahan parameter geometri pada suhu menaik. Keputusan menunjukkan bahawa 

peningkatan suhu mempengaruhi tindakan hentaman halaju rendah dan rintangan 

hentaman FML. Peningkatan suhu menjejaskan GFRP dan permukaan 

GFRP/aluminium dengan lebih ketara berbanding dengan aluminium. Penurunan 

prestasi FML adalah berterusan yang mana ia dilihat kurang ketara pada suhu 30 

hingga 70°C, namun, didapati ketara pada suhu 70 hingga 110°C. Oleh itu, kaedah 

pemodelan FE yang dicadangkan menyediakan kaedah untuk simulasi, meramalkan 

dan menganalisis hentaman FML dengan pertimbangan kesan suhu. Penyelidikan ini 

menyumbang kepada pemajuan FML dan komposit untuk penggunaan pada suhu 

tinggi. Kaedah FE menyediakan cara yang jelas dan bolehharap untuk mensimulasi 

dan menganalisiskan prestasi hentaman FML pada keadaan suhu yang berbeza. 



 

vii 

TABLE OF CONTENTS 

 TITLE PAGE 

DECLARATION  ii 

DEDICATION  iii 

ACKNOWLEDGEMENT iv 

ABSTRACT  v 

ABSTRAK  vi 

TABLE OF CONTENTS vii 

LIST OF TABLES xiv 

LIST OF FIGURES xvi 

LIST OF ABBREVIATIONS xxvi 

LIST OF SYMBOLS xxvii 

CHAPTER 1  INTRODUCTION 1 

1.1  Research Background 1 

1.2  Problem Statement 3 

1.3  Objective 3 

1.4  Scopes of Study 4 

1.5  Significance of Research 5 

1.6  Thesis Chapter Summary 6 

CHAPTER 2  LITERATURE REVIEW 9 

2.1  Origin of Fibre Metal Laminates (FMLs) 9 

2.1.1  Development of Composite Laminates 9 

2.1.2  Development of FMLs 10 

2.2  Advantages of FML 12 

2.3  Factors that Influence the Performance of FMLs 13 

2.3.1  Metal Composition 14 

2.3.2  Fibre Material Types 15 

2.3.3  Fibre and Layup Orientation 16 



 

viii 

2.3.4  Resin Types 18 

2.3.5  Thickness Distribution 19 

2.3.6  Metal Volume Fraction 20 

2.3.7  Fibre Volume Fraction 21 

2.3.8  Laminate Bonding Strength 21 

2.4  Fabrication of FMLs 22 

2.4.1  Surface Preparations 22 

2.4.2  Fabrication Methods 23 

2.4.2.1  Hand Layup 23 

2.4.2.2  Vacuum Bagging 24 

2.4.2.3  Hot and Cold Press 24 

2.4.2.4  Vacuum Infusion Process 24 

2.4.2.5  Autoclave 25 

2.5  Mechanical Characterisation of FMLs 25 

2.5.1  Quasi-Static Perforation 26 

2.5.2  Low-Velocity Impact 27 

2.5.3  Strain Rate Dependency 28 

2.5.4  Fatigue Crack Propagation 30 

2.5.5  Interfacial Delamination 30 

2.6  Thermal Characterisation 31 

2.6.1  Temperature Effect on Aluminium 32 

2.6.2  Temperature Effect on Glass Fibre Reinforced 

Polymer (GFRP) 32 

2.6.3  Temperature Effect on Delamination 37 

2.6.4  Temperature Effect on FMLs 38 

2.6.5  Thermal Fatigue/Shock 41 

2.7  Failure Characterisation 42 

2.8  Impact Characteristics Evaluation 45 

2.8.1  Load Response 45 

2.8.2  Velocity Response 46 

2.8.3  Energy Response 47 

2.8.4  Deformation 48 

2.9  FML Study Design Methods 48 

2.9.1  Analytical Method 48 



 

ix 

2.9.2  Experimental Method 51 

2.9.3  Numerical Method 52 

2.9.3.1  Element Formulation 53 

2.9.3.2  Material Models and Failure Criterion 55 

2.9.3.3  Delamination Modelling 57 

2.9.3.4  Perforation and Impact Modelling of FML 60 

2.10  Summary of findings 61 

2.11  Research Gap 62 

CHAPTER 3  RESEARCH METHODOLOGY 63 

3.1  Introduction 63 

3.2  Material Selection and Acquisition 65 

3.3  Experimental Investigation of GFRP Composite 66 

3.3.1  GFRP Specimen Preparation 68 

3.3.2 GFRP Laminated Aluminium Specimen 

Preparation 71 

3.3.3  Experimental Setup 74 

3.4  Experimental Tests on FMLs 77 

3.4.1  FML Panel Fabrication 77 

3.4.2  Experimental Setup 80 

3.4.2.1  Quasi-Static Tests 80 

3.4.2.2  Low-Velocity Impact Tests 82 

3.5  Finite Element Method 85 

3.5.1  Model Assumption 86 

3.5.2  Modelling Approach and Validation 87 

3.5.3  Software Implemented 88 

3.5.4  Material Modelling Constitutive Equations 89 

3.5.4.1  Aluminium Material Modelling 89 

3.5.4.2  GFRP Material Modelling 90 

3.5.4.3  Cohesive Zone Modelling 92 

3.5.5  Mesh Convergence 94 

3.5.6  Main study approach on impact energy levels 

and temperature 94 

3.5.7  Parametric Study Approach 96 



 

x 

CHAPTER 4  TEMPERATURE CHARACTERISATION ON 

MECHANICAL AND DELAMINATION PROPERTIES OF 

FMLS 99 

4.1  Introduction 99 

4.2  Data Analysis Methodology 100 

4.3  Mechanical Properties of GFRP 100 

4.3.1  Tensile Tests 101 

4.3.2  Compression Tests 110 

4.3.3  Shear Tests 116 

4.3.4  Summary 119 

4.4  Delamination Properties of GFRP Laminated 

Aluminium 121 

4.4.1  Double Cantilevered Beam Tests 121 

4.4.2  End Notched Flexural Tests 123 

4.4.3  Data Reduction 125 

4.4.4  Summary 127 

4.5  Empirical Modelling 128 

4.5.1  Comparison of Models 131 

4.5.2  Literature Data Fitting 140 

4.6  Summary 144 

CHAPTER 5  TEMPERATURE CHARACTERISATION ON QUASI-

STATIC AND LOW-VELOCITY IMPACT RESPONSE OF 

FML PANELS 147 

5.1  Introduction 147 

5.2  Quasi-Static Indentation Tests on FMLs 147 

5.2.1  Temperature Effect on Loading and Energy 

Absorption Response of FMLs 148 

5.2.2  Quasi-static Damage Response of FMLs at 

Different Temperatures 151 

5.2.3  Empirical Curve Fitting 154 

5.3  Low-velocity Impact Tests on FMLs 156 

5.3.1  Load-Displacement and Energy Absorption 

Response of FMLs 157 



 

xi 

5.3.2  Damage Response of FMLs 162 

5.4  Summary 169 

CHAPTER 6  FINITE ELEMENT ANALYSES AND VALIDATION OF 

TEMPERATURE EFFECT ON FMLS 173 

6.1  Introduction 173 

6.2  Material Modelling Details 173 

6.2.1  Johnson-Cook Model 173 

6.2.2  Chang-Chang Failure Model 175 

6.2.3  Cohesive Zone Model 176 

6.3  FE Analyses of Interlaminar Delamination 179 

6.3.1  Model Setup 179 

6.3.2  Mesh Convergence Study 182 

6.3.3  Numerical Validation and Analyses 184 

6.3.4  Crack Initiation and Stress Distribution 188 

6.3.5  Summary 193 

6.4  FE Analyses of Quasi-Static Perforation 195 

6.4.1  Model Setup 195 

6.4.2 Numerical Validation and Analyses of 

Temperature Effect 198 

6.4.3  Damage Morphologies Evaluation 208 

6.4.4  Summary 211 

6.5  FE Analyses of Low-Velocity Impact 213 

6.5.1  Model Setup 213 

6.5.2  Quarter and Half Model Validation with Impact 

Energy Level 215 

6.5.2.1  Load-Displacement Plot Analysis and Validation

 215 

6.5.2.2  Impact Characteristics Analysis and Validation

 218 

6.5.2.3  Post Impact Damage Analysis 221 

6.5.2.4  FML Deflection Analysis 230 

6.5.3  Combined Effect of Impact Energy Levels and 

Temperature 233 



 

xii 

6.5.3.1  Load-Displacement Responses 234 

6.5.3.2  Velocity-Displacement Responses 238 

6.5.3.3  Energy-Time Responses 242 

6.5.3.4  Final Deflection of FMLs Across the Symmetry

 245 

6.5.3.5  Impact Characteristics Analyses 249 

6.5.4  Summary 256 

CHAPTER 7  PARAMETRIC STUDIES OF FMLS 259 

7.1  Introduction 259 

7.2  Effects of Impactor Diameter and Clamped Opening 

Diameter on FML Damage 260 

7.2.1  History Plot Analysis 260 

7.2.1.1  Load-Displacement Responses 260 

7.2.1.2  Velocity-Displacement Responses 265 

7.2.1.3  Energy-Time Responses 268 

7.2.1.4  Final Deflection of FMLs Across the Symmetry

 271 

7.2.2  Impact Characteristics Analyses 274 

7.3  Effects of Aluminium and GFRP Thickness on FML 

Damage 279 

7.3.1  History Plot Analysis 279 

7.3.1.1  Load-Displacement Responses 280 

7.3.1.2  Velocity-Displacement Responses 281 

7.3.1.3  Energy-Time Responses 282 

7.3.1.4  Final Deflection of FMLs Across the Symmetry

 283 

7.3.2  Impact Characteristics Analyses 283 

7.4  Summary 286 

CHAPTER 8  CONCLUSIONS AND RECOMMENDATIONS 289 

8.1  Research Outcomes 289 

8.2  Contributions to Knowledge 291 

8.3  Future Works 292 



 

xiii 

REFERENCES  294 

Appendix A Curve fitting for Chang-Chang properties 308 

Appendix B Curve fitting for cohesive zone model 309 

LIST OF PUBLICATIONS 310 

 

  



 

xiv 

LIST OF TABLES 

TABLE NO.                                        TITLE PAGE 

Table 3.1 Specification details of experimental test specimens 

based on ASTM. 73 

Table 3.2 Details of low-velocity impact test parameters. 85 

Table 3.3 FE study on combinations of impact energy level and 

temperature. 95 

Table 3.4 Parametric study on combinations of impactor diameter 

and clamped opening diameter. 97 

Table 3.5 Details of FML mass with different combinations of 

aluminium and GFRP thickness. 98 

Table 4.1 Results of properties at each temperature from 

mechanical tests (with standard deviation and coefficient 

of variance). 120 

Table 4.2 Results of properties at each temperature from 

delamination tests (with standard deviation and 

coefficient of variance). 128 

Table 4.3 Fitted parameters of the empirical models for each 

property. 139 

Table 4.4 Fitted parameters of the empirical models for literature 

data. 143 

Table 5.1 Results of peak load and total energy absorbed at each 

temperature of quasi-static perforation tests (with 

standard deviation and coefficient of variance). 151 

Table 5.2 Fitted parameters of the empirical models for each 

property. 156 

Table 5.3 Recovery distance at each impact energy. 160 

Table 5.4 Results of peak load and total energy absorbed at each 

impact energy of low-velocity impact tests (with 

standard deviation). 161 



 

xv 

Table 6.1 Material properties of aluminium 2024-T3 for Johnson-

Cook material model. 174 

Table 6.2 Material properties of aluminium in the references. 174 

Table 6.3 Material properties of GFRP for Chang-Chang failure 

criterion. 175 

Table 6.4 Mode-I and Mode-II delamination properties at each 

temperature. 176 

Table 6.5 Material properties of the cohesive model. 178 

Table 6.6 Mode-I slope and peak load data comparison between 

experimental and simulation results. 186 

Table 6.7 Mode-II slope and peak load data comparison between 

experimental and simulation results. 188 

Table 6.8 Peak load values of FML panels at each impact energy 

from experiment, FE quarter and half models. 219 

Table 6.9 Total energy absorption of FML panels at each energy 

from experiment, FE quarter, and half models. 220 

Table 6.10 Total energy absorption values of FML panels under 

different impact energy and temperature. 250 

Table 6.11 ERC values of FML panels under different impact 

energy and temperature. 252 

Table 6.12 Peak load values of FML panels under different impact 

energy and temperature. 254 

Table 6.13 Percentage rebound values of FML panels under 

different impact energy and temperature. 256 

Table 7.1 FML impact characteristics under different impactor 

diameter and clamped opening diameter. 278 

Table 7.2 FML impact characteristics across varying thickness 

ratio, φ. 286 

  



 

xvi 

LIST OF FIGURES 

FIGURE NO.                                        TITLE PAGE 

Figure 1.1 Cross-section of a typical FML. 1 

Figure 1.2 Large commercial aircraft - Airbus A3XX. 2 

Figure 2.1 Comparison of perforation energy between aluminium 

2024-T3, GLARE, ARALL, and CFRP. 11 

Figure 2.2 Comparison of perforation energy between FML of 

2024-T3, 2024-O aluminium, and plain composite with 

increasing composite thickness. 14 

Figure 2.3 Effect of thickness and number of layup on perforation 

energy. 19 

Figure 2.4 Tensile strength vs strain rate of ARALL 1, GLARE 3, 

and Aluminum 7075-T6. 29 

Figure 2.5 Strength vs strain rate for tensile and compressive tests 

on UD GFRP. 29 

Figure 2.6 Effects of temperature on the threshold impact energy of 

GFRP with different surface treatments of silane 

coupling agents: , 0.01wt% γ-MPS; , 0.4wt% γ-

MPS; , 1.0wt% γ-MPS; , methanol washed 0.4wt% 

γ-MPS; , 0.4 wt.% γ-GPS. 36 

Figure 2.7 Tensile strength and interlaminar shear strength vs 

temperature of PEEK FML. 39 

Figure 2.8 Comparison between ultimate shear strength of FML 

specimens that are not exposed, exposed to 1000 cycles 

and 2000 cycles of -50 to 80°C. 42 

Figure 2.9 Fibre bridging mechanism by fibre epoxy layer in FMLs.

 43 

Figure 2.10 Low-velocity impact failure process: (a) Indentation, (b) 

Partial Perforation, (c) Full Perforation, and (d) 

Penetration. 44 



 

xvii 

Figure 2.11 Typical load-displacement response of FML under low-

velocity impact. 46 

Figure 2.12 Comparisons between solid element and shell element 

FE models with respect to impact tests at predicting load 

and energy curves. 54 

Figure 3.1 Methodology process flowchart. 64 

Figure 3.2 Schematic of (a) T-0, (b) T-90, (c) C-0, (d) C-90, and (e) 

S specimens with their respective fibre orientations and 

dimensions. 68 

Figure 3.3 Specimens with tabs (black) and strain gauges installed. 

(From top to bottom: tensile 0°, tensile 90°, and shear 

specimens.) 69 

Figure 3.4 Schematic diagram of combined loading compression 

fixture. 71 

Figure 3.5 Shimadzu AG-X plus universal testing machine. 74 

Figure 3.6 Compression jig setup. 75 

Figure 3.7 Setup of GFRP laminated aluminium for DCB test: (a) 

schematic diagram, (b) actual setup 76 

Figure 3.8 Setup of GFRP laminated aluminium for ENF test: (a) 

schematic diagram, (b) actual setup 76 

Figure 3.9 FML layup specifications 78 

Figure 3.10 FML fabrication process 79 

Figure 3.11 Quasi-static test setup with Shimadzu testing machine. 81 

Figure 3.12 CEAST 9350 drop impact testing machine for low-

velocity impact test. 83 

Figure 3.13 Low-velocity impact test specifications. 84 

Figure 3.14 Bilinear traction separation law. 92 

Figure 4.1 Tensile stress versus axial tensile strain curves of T-0 

specimens at (a) 30, (b) 70, and (c) 110°C. 102 

Figure 4.2 Tensile stress versus lateral tensile strain curves of T-0 

specimens at (a) 30, (b) 70, and (c) 110°C. 104 

Figure 4.3 Failure mode of T-0 specimen. 104 



 

xviii 

Figure 4.4 Average longitudinal tensile modulus, EA and strength, 

XT versus temperature (with standard deviation) of T-0 

specimens. 105 

Figure 4.5 Averaged longitudinal Poisson’s ratio, νAB versus 

temperature (with standard deviation) of T-0 specimens.

 106 

Figure 4.6 Tensile stress versus strain curves of T-90 specimens at 

(a) 30, (b) 70, and (c) 110°C. 107 

Figure 4.7 Average transverse tensile modulus, EB and strength, YT 

versus temperature (with standard deviation) of T-90 

specimens. 108 

Figure 4.8 Failure mode of T-90 specimens tested at (a) 30, (b) 70, 

and (c) 110°C. 109 

Figure 4.9 Compressive stress versus strain curves of C-0 

specimens at (a) 30, (b) 70, and (c) 110°C. 111 

Figure 4.10 Average longitudinal compressive modulus, EA
C and 

strength, XC versus temperature (with standard deviation) 

of C-0 specimens. 112 

Figure 4.11 Failure mode of C-0 specimens tested at (a) 30, (b) 70, 

and (c) 110°C. 113 

Figure 4.12 Compressive stress versus strain curves of C-90 

specimens at (a) 30, (b) 70, and (c) 110°C. 114 

Figure 4.13 Averaged transverse compressive modulus, EB
C and 

strength, YC versus temperature (with standard deviation) 

of C-90 specimens. 115 

Figure 4.14 Failure mode of C-90 specimen. 116 

Figure 4.15 Shear stress versus strain curves of S specimens at (a) 30, 

(b) 70, and (c) 110°C. 117 

Figure 4.16 Average in-plane shear modulus, GAB and strength, SC 

versus temperature (with standard deviation) of S 

specimens. 118 

Figure 4.17 Load versus displacement curves of DCB specimens at 

(a) 30, (b) 70, and (c) 110°C. 122 



 

xix 

Figure 4.18 Load versus displacement curves of ENF specimens at 

(a) 30, (b) 70, and (c) 110°C. 124 

Figure 4.19 Average Mode-I modulus and fracture toughness versus 

temperature (with standard deviation) of DCB 

specimens. 126 

Figure 4.20 Average Mode-II modulus and fracture toughness versus 

temperature (with standard deviation) of ENF specimens.

 127 

Figure 4.21 Wong’s model parameter indicating the temperature 

sensitivity of the property. 130 

Figure 4.22 Normalised (a) EA and (b) XT versus temperature with 

experimental test data and empirical curves. 132 

Figure 4.23 Normalised (a) EB and (b) YT versus temperature with 

experimental test data and empirical curves. 132 

Figure 4.24 Normalised (a) EA
C and (b) XC versus temperature with 

experimental test data and empirical curves. 133 

Figure 4.25 Normalised (a) EB
C and (b) YC versus temperature with 

experimental test data and empirical curves. 134 

Figure 4.26 Normalised (a) GAB and (b) SC versus temperature with 

experimental test data and empirical curves. 134 

Figure 4.27 Normalised (a) EIC and (b) GIC versus temperature with 

experimental test data and empirical curves. 135 

Figure 4.28 Normalised (a) EIIC and (b) GIIC versus temperature with 

experimental test data and empirical curves. 136 

Figure 4.29 Normalised tensile strength versus temperature results 

by Correia et al. with fitted model. 141 

Figure 4.30 Normalised shear strength versus temperature results by 

Rosa et al. with fitted model. 141 

Figure 4.31 Normalised tensile strength versus temperature results 

by Lu et al. with fitted model. 141 

Figure 4.32 Normalised tensile strength versus temperature results 

by Gibson et al. with fitted model. 142 

Figure 5.1 Load versus displacement curves of FML quasi-static 

perforation specimens at (a) 30, (b) 70, and (c) 110°C. 149 



 

xx 

Figure 5.2 Averaged peak load and total energy absorbed versus 

temperature (with standard deviation) of quasi-static 

perforation specimens. 151 

Figure 5.3 Top (left) and rear (right) side of FML panels after quasi-

static indentation tests at (a) 30, (b) 70, and (c) 110°C. 152 

Figure 5.4 Cross-section of FML panel after test (110°C). 154 

Figure 5.5 Normalised quasi-static FML (a) peak load and (b) total 

energy absorbed versus temperature with experimental 

test data and empirical curves. 155 

Figure 5.6 Load versus displacement curves of FML low-velocity 

impact specimens at (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, 

and (f) 15 J. 159 

Figure 5.7 Averaged peak load and total energy absorbed versus 

temperature (with standard deviation) of low-velocity 

impact specimens. 161 

Figure 5.8 Damage morphologies of FML panels at 5 J on (a) Top 

surface, (b) rear surface, and (c) cross-section. 

(continued) 163 

Figure 5.9 Damage morphologies of FML panels at 8 J on (a) Top 

surface, (b) rear surface, and (c) cross-section. 164 

Figure 5.10 Damage morphologies of FML panels at 10 J on (a) Top 

surface, (b) rear surface, and (c) cross-section. 165 

Figure 5.11 Damage morphologies of FML panels at 12 J on (a) Top 

surface, (b) rear surface, and (c) cross-section. 167 

Figure 5.12 Damage morphologies of FML panels at 13.5 J on (a) 

Top surface, (b) rear surface, and (c) cross-section. 168 

Figure 5.13 Damage morphologies of FML panels at 15 J on (a) Top 

surface, (b) rear surface, and (c) cross-section. 169 

Figure 6.1 FE model discretisation of (a) Mode-I and (b) Mode-II 

delamination, (c) elements close-up arrangement 

between aluminium, cohesive, and GFRP. 180 

Figure 6.2 Effect of the Mesh size on Mode-I load-displacement 

curves. 183 

Figure 6.3 Slope values of load-displacement versus mesh sizes. 183 



 

xxi 

Figure 6.4 Mode-I load-displacement curves validation between 

experiment and simulation at (a) 30, (b) 70, and (c) 

110°C. 185 

Figure 6.5 Mode-II load-displacement curves validation between 

experiment and simulation at (a) 30, (b) 70, and (c) 

110°C. 187 

Figure 6.6 Mode-I crack front stress distributions at (a) 30, (b) 70, 

and (c) 110°C. (c.t. refers to location of crack tip) 189 

Figure 6.7 Normalised Mode-I stress distributions along the crack 

front at (a) 30, (b) 70, and (c) 110°C. 190 

Figure 6.8 Mode-II crack front stress distributions at (a) 30, (b) 70, 

and (c) 110°C. (c.t. refers to location of crack tip) 192 

Figure 6.9 Normalised Mode-II stress distributions along crack tip 

at (a) 30, (b) 70, and (c) 110°C. 193 

Figure 6.10 FE model discretisation of FML layup. 196 

Figure 6.11 Half model FE discretisation of FML panel for quasi-

static perforation. 197 

Figure 6.12 Load-displacement curves of FML panels under quasi-

static loading at (a) 30, (b) 70, and (c) 110°C. 200 

Figure 6.13 Damage sequence of FE panels at 30°C through load-

displacement curve. 202 

Figure 6.14 Energy-displacement curves of FML panels under quasi-

static loading at (a) 30, (b) 70, and (c) 110°C. 203 

Figure 6.15 Total energy absorption of FML panels under quasi-

static loading at 30, 70, and 110°C. 204 

Figure 6.16 Dissipated energy versus displacement curves of 

aluminium, GFRP, and cohesive interfaces at (a) 30, (b) 

70, and (c) 110°C. 206 

Figure 6.17 Total dissipated energy ratio between aluminium, GFRP, 

and cohesive interface at each temperature. 207 

Figure 6.18 Comparison of damage morphologies for FML panels at 

30°C - (a) Top view, (b) Bottom and reverse isometric 

view, and (c) Cross-sectional view. 209 



 

xxii 

Figure 6.19 Comparison of damage morphologies for FML panels at 

70°C - (a) Top view, (b) Bottom and reverse isometric 

view, and (c) Cross-sectional view. 210 

Figure 6.20 Comparison of damage morphologies for FML panels at 

110°C - (a) Top view, (b) Bottom and reverse isometric 

view, and (c) Cross-sectional view. 210 

Figure 6.21 Quarter model FE discretisation of FML panel for low-

velocity impact test. 215 

Figure 6.22 Load-displacement curves of FML panels under low-

velocity impacts of (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, 

and (f) 15 J. 217 

Figure 6.23 Peak load of FML panels under low-velocity impacts of 

(a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, and (f) 15 J. 219 

Figure 6.24 Total energy absorption of FML panels under low-

velocity impacts of (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, 

and (f) 15 J. 220 

Figure 6.25 Experimental versus FE post impact damage analysis 

under 5 J impact energy. 222 

Figure 6.26 Experimental versus FE post impact damage analysis 

under 8 J impact energy. 224 

Figure 6.27 Experimental versus FE post impact damage analysis 

under 10 J impact energy. 225 

Figure 6.28 Experimental versus FE post impact damage analysis 

under 12 J impact energy. 226 

Figure 6.29 Experimental versus FE post impact damage analysis 

under 13.5 J impact energy. 227 

Figure 6.30 Experimental versus FE post impact damage analysis 

under 15 J impact energy. 229 

Figure 6.31 Cross-sectional deflection of FML panels at maximum 

and final deflection under impact energy of 5, 8, 10, 12, 

13.5, and 15 J. 231 

Figure 6.32 Effect of the impact energy on the load-displacement 

curves at (a) 30, (b) 50, (c) 70, (d) 90, and (e) 110°C. 235 



 

xxiii 

Figure 6.33 Effect of increasing temperature on the load-

displacement curves at (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, 

and (f) 15 J. 238 

Figure 6.34 Effect of the impact energy on the velocity-displacement 

curves at (a) 30, (b) 50, (c) 70, (d) 90, and (e) 110°C. 239 

Figure 6.35 Effect of increasing temperature on the velocity-

displacement curves at (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, 

and (f) 15 J. 241 

Figure 6.36 Effect of the impact energy on the energy-time curves at 

(a) 30, (b) 50, (c) 70, (d) 90, and (e) 110°C. 243 

Figure 6.37 Effect of increasing temperature on the energy-time 

curves at (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, and (f) 15 

J. 244 

Figure 6.38 Effect of impact energy on the final deflection of FML 

panels at (a) 30, (b) 50, (c) 70, (d) 90, and (e) 110°C. 246 

Figure 6.39 Effect of increasing temperature on the final deflection 

of FML panels at (a) 5, (b) 8, (c) 10, (d) 12, (e) 13.5, and 

(f) 15 J. 248 

Figure 6.40 Total energy absorption of FML panels for varying 

impact energy and temperature. 250 

Figure 6.41 ERC of FML panels under different impact loading and 

temperature. 251 

Figure 6.42 The peak load of FML panels under different impact 

energy and temperature. 253 

Figure 6.43 Percentage rebound of FML panels under different 

impact energy and temperature. 255 

Figure 7.1 Effect of the impactor diameter on the load-displacement 

curves with clamped opening diameter of (a) 80, (b) 100, 

(c) 127, (d) 140, and (e) 160 mm. 261 

Figure 7.2 Effect of the clamped opening diameter on the load-

displacement curves with impactor diameter of (a) 8, (b) 

10, (c) 12.7, (d) 14, and (e) 16 mm. 264 



 

xxiv 

Figure 7.3 Effect of the impactor diameter on the velocity-

displacement curves with clamped opening diameter of 

(a) 80, (b) 100, (c) 127, (d) 140, and (e) 160 mm. 266 

Figure 7.4 Effect of the clamped opening diameter on the velocity-

displacement curves with impactor diameter of (a) 8, (b) 

10, (c) 12.7, (d) 14, and (e) 16 mm. 268 

Figure 7.5 Effect of the impactor diameter on the energy-time 

curves with clamped opening diameter of (a) 80, (b) 100, 

(c) 127, (d) 140, and (e) 160 mm. 269 

Figure 7.6 Effect of the clamped opening diameter on the energy-

time curves with impactor diameter of (a) 8, (b) 10, (c) 

12.7, (d) 14, and (e) 16 mm. 271 

Figure 7.7 Effect of the impactor diameter on the deflection 

responses with clamped opening diameter of (a) 80, (b) 

100, (c) 127, (d) 140, and (e) 160 mm. 272 

Figure 7.8 Effect of the clamped opening diameter on the deflection 

responses with impactor diameter of (a) 8, (b) 10, (c) 

12.7, (d) 14, and (e) 16 mm. 274 

Figure 7.9 Total energy absorption of FML panels for varying 

impactor diameter and clamped opening diameter. 275 

Figure 7.10 ERC of FML panels under different impactor diameter 

and clamped opening diameter. 276 

Figure 7.11 The peak load of FML panels under different impactor 

diameter and clamped opening diameter. 277 

Figure 7.12 Percentage rebound of FML panels under different 

impactor diameter and clamped opening diameter. 278 

Figure 7.13 Effect of the thickness ratio, φ on the load-displacement 

curves. 280 

Figure 7.14 Effect of the thickness ratio, φ on the velocity-

displacement curves. 281 

Figure 7.15 Effect of the thickness ratio, φ on the energy-time curves.

 282 

Figure 7.16 Effect of the thickness ratio, φ on the deflection 

responses. 283 



 

xxv 

Figure 7.17 Total energy absorption and ERC of FML panels across 

varying thickness ratio, φ. 284 

Figure 7.18 The peak load of FML panels across varying thickness 

ratio, φ. 285 

Figure 7.19 Percentage rebound of FML panels across varying 

thickness ratio, φ. 286 

  



 

xxvi 

LIST OF ABBREVIATIONS 

ARALL - Aramid Reinforced Aluminium Laminates 

ASTM - American Society for Testing Methods 

BFRP - Basalt Fibre Reinforced Polymer 

BVID - Barely Visible Impact Damage 

CARALL - Carbon Reinforced Aluminium Laminates 

CFRP - Carbon Fibre Reinforced Polymer 

DCB - Double Cantilever Beam 

ENF - End Notched Flexural 

ERC - Energy Restitution Coefficient 

FE - Finite Element 

FEM - Finite Element Method 

FML - Fibre Metal Laminates 

FRP - Fibre Reinforced Polymer 

GFRP - Glass Fibre Reinforced Polymer 

GLARE - Glass Laminated Aluminium Reinforced Epoxy 

MVF - Metal Volume Fraction 

PEEK  Poly-ether-ether-ketone 

UD - Unidirectional 

3D - Three-dimensional 

T-0 - Tensile loaded across 0° fibre direction 

T-90 - Tensile loaded across 90° fibre direction 

C-0 - Compression loaded across 0° fibre direction 

C-90 - Compression loaded across 90° fibre direction 

S - Shear loaded across ±45° fibre direction 

   

   

 

  



 

xxvii 

LIST OF SYMBOLS 

Tg - Glass transition temperature 

𝐸𝑎𝑏𝑠  - Energy absorbed 

𝐸𝑖𝑚𝑝  - Impact energy 

FP - Peak load 

L - Length 

W - Width 

h, t - Thickness/Height 

K - stiffness 

ao - Initial crack lengths 

L - Half-span length in ENF setup 

ρ  - Density 

E - Young’s modulus 

G - Shear modulus 

Ν - Poisson’s ratio 

σy - Flow stress 

A, B, n - Johnson-Cook plastic strain material constant 

C  - Johnson-Cook strain rate effect constant 

M - Johnson-Cook temperature effect constant 

𝜀𝑝̅ - Effective plastic strain 

𝜀̇ - Effective total strain rate 

𝜀0̇  - Quasi-static threshold rate 

T - Effective room temperature 

Troom - Room temperature 

Tmelt - Melting point 

d1, d2, d3 - Johnson-Cook pressure effect constants 

d4 - Johnson-Cook strain rate effect constant 

d5 - Johnson-Cook temperature effect constant 

𝜂 - Ratio between pressure and effective stress 

𝑒𝑓 - Tensile fibre failure mode 

𝑒𝑐 - Compressive fibre failure mode 



 

xxviii 

𝑒𝑚 - Tensile matrix failure mode 

𝑒𝑑 - Compressive matrix failure mode 

σ1 - Effective stress tensor components in fibre direction 

σ2 - Effective stress tensor components in matrix direction 

τ12 - Effective shear tensor 

XT - Longitudinal tensile strength 

XC - Longitudinal compressive strength 

YT - Transverse tensile strengths 

YC - Transverse compressive strengths 

SC - Shear strength 

EA - Longitudinal Young’s modulus 

EB - Transverse Young’s modulus 

EA
C - Longitudinal compressive Young’s modulus 

EB
C - Transverse compressive Young’s modulus 

GAB - Shear modulus 

υBA, υAB - In plane Poisson’s ratio  

Β - Weighting factor for the shear term 

ε1 - Axial tensile strain 

ε2 - Lateral tensile strain 

γ12 - Shear strain 

GIC - Mode-I energy release rate 

𝜎 - Normal direction peak traction 

δN - Normal direction ultimate displacement 

EN - Mode-I penalty stiffness 

GIIC - Mode-II energy release rate 

𝜏 - Tangential direction peak traction 

δT - Tangential direction ultimate displacement 

ET - Mode-II penalty stiffness 

δ0 - Mixed-mode damage initiation displacement 

𝛿𝐼 - Normal separation 

𝛿𝐼𝐼 - Tangential separation 

𝛿𝐼
0 - Mode-I damage initiation separation 

𝛿𝐼𝐼
0  - Mode-II damage initiation separation 



 

xxix 

δF - Mixed-mode displacement 

𝜓 - Mode mixity 

XMU - Mixed-mode criteria stiffness 

𝐸𝐼𝐶 - Back-calculated Mode-I modulus 

𝐸𝐼𝐼𝐶 - Back-calculated Mode-II modulus 

kI  - Mode-I stiffness 

kII - Mode-II stiffness 

Γ𝐼 - Mode-I compliance 

Γ𝐼𝐼 - Mode-II compliance 

𝑃(𝑇) - Material property at effective temperature 

Pmin - Material property at minimum temperature 

Pmax - Material property at maximum temperature 

Tmin - Minimum temperature 

T0, m0 - Mahieux model parameters 

k’, Tx - Gibson model parameters 

M, N - Correia model parameters 

Ζ - Current (modified Wong) model parameter 

Φ - Thickness ratio between aluminium and GFRP 

   

   

   

   

   

 

  



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

In the recent decades, fibre metal laminates (FMLs) have become one of the 

major interesting research subjects. This is due to increasing requirement for superior 

lightweight, durable, and damage tolerant materials by particularly aircraft and 

aerospace industries. The substantial development of FMLs started at Fokker/TU Delft 

in the Netherlands, during the late 1970s. Typically, it has been suggested that thin 

sheets of metal alloy are laminated with alternating composite layers to form a 

laminated sandwich structure, as shown in Figure 1.1.  

 

Figure 1.1 Cross-section of a typical FML [1].  

The usefulness of structural materials depends on their ability to withstand 

damage, fracture, and failure. Damage is a broad term used to define when a material 

or structure loses some integrity that decreases its ability to function. Damage can 

range from minor to large scale impairment and can be caused by a large variety of 

different sources. Hence, the term ‘damage’ can be used in any part where impairment 

is involved. Meanwhile, fracture is more specific, which is defined by when a structure 

cracks, and is broken off physically, either into smaller pieces or into two separate 
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parts. Finally, failure is the condition when a said material or structure completely 

loses its intended function. Therefore, damage, fracture, and failure are often related 

to each other. Increasing damage typically leads to failure, but do not always cause 

fracture, depending on the type of damage. Moreover, fracture in materials is also 

usually a form of damage. 

FML is a better substitute material for aircraft structures. These advantages will 

help towards developing of much larger aircrafts such as the Airbus A3XX shown in 

Figure 1.2 [2]. It has been increasingly found in aeronautical, marine, and automobile 

applications. The glass laminate aluminium reinforced epoxy (GLARE) variant of 

FML has been used prevalently in aircraft structures, most notably the fuselage and 

tail units of Airbus A380 [2, 3]. 

 

Figure 1.2 Large commercial aircraft - Airbus A3XX [2]. 

GLARE has the potential to be used at elevated temperatures owing to the heat 

resistance of the glass fibres. Previous reports indicate potential use of FMLs as fire 

retardants and thermal resistors [4, 5]. A vital feature of aircraft crashworthiness is to 

consider the fire resistance of fuselage skin materials. That is, in the event of aircraft 

catching fire, there is very short escape time, especially for large passenger aircrafts 

(>500 passengers). There is a possibility to expand the use of FML into other 

applications that requires energy absorption and impact absorption at elevated 

temperature. For instance, aircraft turbine and exhausts, supersonic aircraft structures, 

aerospace structures, and even advanced automobile structures often operates at high 

temperature and impact prone conditions.  
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1.2 Problem Statement 

Material strength generally degrade due to rise of temperature; therefore, it is 

imperative to probe the extent of strength reduction on FML. Furthermore, the low-

velocity impact response of FML could be significantly exacerbated at high 

temperature and must be investigated. What is the low-velocity impact response of 

FML at higher temperature? The effects of temperature towards the low-velocity 

impact response of FMLs are still sparse, and limited finding is only available in the 

general literature. Thermal stress and strains are common in aircraft structure and FML 

operating conditions. Metal and composite as constituents of FMLs are both 

temperature dependent. For instance, even when the strength of FML is good, the 

structure may be significantly affected by temperature.  

Furthermore, impact damage causes 13% of the total repair done on the 

primary structure of Boeing 747 [2], and this raise concerns on the costs required 

ascribed to impact. There are vast possible combinations for the relatively new FML, 

which makes research difficult in terms of cost, time, and waste. Hence, more research 

is much needed to expand this field. Many studies have studied the low-velocity impact 

of FMLs using FE analyses, while there is currently no known investigation that 

includes temperature effect. The effects of temperature on the low-velocity impact 

response, morphology, and characteristics of FML are currently unknown. 

1.3 Objective 

The aim of this research is to evaluate the low-velocity impact characteristics 

of FML under high temperatures. The objectives are: 

1. To simulate the low-velocity impact response of FML at high temperatures by 

utilising FE model.  

2. To validate the FE models with experimental results at each temperature.  

3. To perform experimental tests and implement empirical model to obtain material 

properties at each temperature. 
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4. To characterise the property degradation for FE model inputs using empirical 

model.  

5. To examine the effects of geometrical changes on low-velocity impact at elevated 

temperature. 

1.4 Scopes of Study 

The study focuses on temperatures of 30, 70, and 110°C in experimental tests 

and FE validation. After validation, FE analysis on temperature effects are performed 

on 30, 50, 70, 90, and 110°C to scrutinise temperature effect. Temperatures below 30 

and above 110°C are not covered in this research. The extent of high temperature in 

this study only reaches until the temperature of 110°C. 

The study covers on materials including glass fibre reinforced polymer (GFRP), 

GFRP laminated aluminium, and glass laminated aluminium reinforced epoxy. The 

aluminium used is 2024-T3 grade aluminium. The GFRP is S2 grade unidirectional 

glass fibres prepreg with glass transition temperature (Tg) of 125°C and adhesive 

epoxy with Tg of 130°C. Other grades of aluminium and types of composites are not 

analysed. The fabrication process includes oven bonding and hand layup techniques.  

The experimental tests include tensile, compression, and shear tests for 

properties extraction, along with double cantilever beam (DCB) and end notched 

flexural (ENF) tests for properties extraction and validation. Furthermore, quasi-static 

indentation tests and low-velocity impact tests were conducted for validation. All 

experimental tests are conducted in quasi-static rates of loading, except for low-

velocity impact tests at impact energies of 5, 8, 10, 12, 13.5, and 15 J. Higher rates of 

loading and fatigue loading types are not focused on. 

The numerical method consists of DCB and ENF FE models, quasi-static, and 

low-velocity impact models all of which simulated at temperatures of 30, 70, and 

110°C. The material models used in FE modelling include Johnson-Cook material 

model, Chang-Chang failure criteria, and Cohesive Zone Modelling. The FE models 
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are also modelled in half and quarter models. The parameters used for validation 

comprise of load-extension curves, peak loads, and slopes for DCB and ENF. 

Meanwhile, the validation parameters include load-displacement, damage morphology, 

and total energy absorption for quasi-static and low-velocity impact model. 

The main study of this research includes combined analysis between impact 

energy of 5, 8, 10, 12, 13.5, and 15 J with temperatures 30, 50, 70, 90, and 110°C. The 

research also incorporates parametric studies on: first, the joint effects of impactor 

diameter 8, 10, 12.7, 14, and 16 mm with clamped opening diameter of 80, 100, 127, 

140, and 160 mm. Secondly, the thickness ratio between aluminium and GFRP with 

fixed total mass of FML were investigated. Based on the validation of the FE quarter 

and half models, quarter model is used to simulate parametric study at 10 J based on 

the design limitation. 

1.5 Significance of Research 

Research on low-velocity impact of FMLs under high temperatures can bring 

much understanding, information, and improvements on the material and domain of 

composites. This can also ensure aeronautical and aerospace structures much safer and 

reliable. The methodology used in this study will provide insight on the ways of 

analysing performances of FMLs. The results from experimental tests provide means 

of creating relation or chart on temperature effect towards composite and delamination 

parameters for implementing them into FE models. The parametric studies on different 

impactor diameter, clamped opening diameter, and individual thickness of aluminium 

and GFRP will generate more practical and beneficial information of FMLs in different 

applications. Finally, the outcome of the research may facilitate the application of FML 

under higher temperature condition. 
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1.6 Thesis Chapter Summary 

As presented in Chapter 1, the introduction included the background and the 

motivations of this study. The problem statement, main aim, objectives, and scopes of 

study were established. Then, the significance of this research was described.  

Chapter 2 is the literature review of this research based on previous researchers. 

The literatures consist of the development of composite and FML structures, the 

scrutinization of the factors the contribute towards the composition, and the 

performance of FMLs. The next part involves the fabrication methods of FMLs in 

literature. Next, the focus turns on mechanical and thermal factors that affects FML 

during its operational conditions, how damage occurs, and how to evaluate them. 

Finally, the methods of study on FML are probed.  

Chapter 3 is the methodology of this research. It consists of the material 

selection, material acquisition, preparation of the specimens. Specimens include GFRP, 

GFRP laminated aluminium, and FML. Subsequently, the experimental setup for each 

test are described in detail. Then, FE methodology from the model simplification, 

approach, and validation are outlined. The material models implemented in this study 

are also presented. The planning of parametric study is also covered. 

Chapter 4 is the experimental results of the tensile, compression, and shear tests 

on GFRP, then followed by the DCB and ENF results. Furthermore, an empirical curve 

fitting model is implemented to study and fit the trend of each properties from the 

experimental results. There is also comparison with some examples from literature. 

Chapter 5 detailly describes the results from quasi-static indentation tests and 

low-velocity impact tests on FMLs. The load-displacement curves are examined to 

analyse the effects of temperature and impact energy. The damage response is also 

compared.  

Chapter 6 focuses on the detail of modelling each of the FE models, their 

respective validations, and results. The input of properties for the material models are 
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described in detail. Then, delamination, quasi-static, and low-velocity impact models 

are presented in depth, first with the model setup, followed by the mesh convergence 

study. The validation of each model is shown based on the impact characteristics along 

with damage morphologies. Most importantly, the main results of combined effects 

between impact energy and temperatures are examined.  

In Chapter 7, the parametric studies of geometrical properties of the FML under 

low-velocity impact at high temperature are presented. The first part consists of the 

parametric study outcome of impactor diameter and clamped opening diameter. Next, 

the second part involves the results from simulation different thickness ratio of 

aluminium and GFRP. 

Lastly, Chapter 8 is the conclusion and recommendations of this research. The 

main research outcomes are demonstrated, followed by the major contributions 

towards knowledge in this field. The future works that might stem from this study are 

also established. 
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